Jan 122015
James profile

James Gethi and one of the crops closest to his heart – maize. He also has a soft spot for hardy crop varieties that survive harsh and unforgiving drylands, such as Machakos, Kenya, where this June 2011 photo of him with drought-tolerant KARI maize was taken.

As we tell our closing stories on our Sunset Blog, in parallel, we’re also catching up on the backlog of stories still in our store from the time GCP was a going concern. Our next stop is Kenya, and the narrative below is from 2012, but don’t go away as it is an evergreen – a tale that can be told at any time, as it remains fresh as ever. At that time, and for the duration of the partnership with GCP, the Food Crops Research Institute of the Kenya Agricultural and Livestock Research Organisation (KALRO) was then known as the Kenya Agricultural Research Institute (KARI), and we shall therefore stay with this previous name in the story. KARI was also the the name of the Kenyan institute at the time when James Gethi (pictured) left for a sabbatical at the International Maize and Wheat Improvement Center (CIMMYT by its Spanish acronym). On to the story then, and please remember we’re travelling back in time to the year 2012. 

“I got into science by chance, for the fun of it,” muses James, maize breeder and former GCP scientist “With agricultural school promising a flight to overfly the country’s agricultural areas– this was an interesting prospect for a village guy. ‘This could be fun’, I thought!”

And it turned out to be a chance well worth taking.  His first step was getting the requisite education. And so he armed himself with a BSc in Agriculture from the University of Nairobi, Kenya, topped with a Master’s and PhD in Plant Breeding from the University of Alberta (Canada) and Cornell University (USA), respectively. Beyond academics, in the course of his crop science career, James has developed 13 crop varieties, that included maize and cassava, published papers in numerous peer-reviewed papers (including the 2003 prize for Best paper in the field of crop science in the prestigious Crop Science journal. And in leadership, James headed the national maize research programme in his native Kenya. These are just a few of the achievements James has garnered in the course of his career, traversing  and transcending not only the geographical frontiers initially in his sights, but also scientific ones, reaching professional heights that perhaps his younger self might never have dreamt possible.

As a Research Officer at KARI, a typical day sees James juggling his time between hands-on research (developing maize varieties resistant to drought, field and storage pests) and project administration, coordinating public–private partnerships and the maize research programme at both institutional and country level. What motivates the man shouldering much of the responsibility for the buoyancy of his nation’s staple crop? James explains, “Making a difference by providing solutions to farmers. That’s my passion and that’s what makes me get up in the morning and go to work. It’s hugely satisfying!”

Without GCP, I would not be where I am today as a scientist… [it] gave me a chance to work with the best of the best worldwide… You develop bonds and understanding that last well beyond the life of the projects.”

Rapid transitions: trainee to trainer to leader
It was this passion and unequivocal dedication to his vocation – not to mention a healthy dollop of talent – that GCP was quick to recognise back in 2004, when James first climbed aboard the GCP ship. Like a duck to water, he proceeded to engage in all manner of GCP projects and related activities, steadily climbing the ranks from project collaborator to co-Principal Investigator and, finally, Principal Investigator in his own right, leading a maize drought phenotyping project. Along the way, he also secured GCP Capacity building à la carte and Genotyping Support Service grants to further the maize research he and his team were conducting.


FLASHBACK: At a GCP drought phenotyping course in mid-2006 at Montpellier, France. (1) James (left) pays keen attention during one of the practical sessions. (2) In the spirit of “All work and no play, etc”, taking a break from the course to take in some of the sights with colleagues. Clearly, James, “the guy from the village” is anything but a dull boy! Next to James, second left, is BM Prasanna, currently leader of CIMMYT’s maize programme.


From trainee to trainer and knowledge-sharer: James (behind the camera) training KARI staff on drought phenotyping in June 2009 at Machakos, in Kenya’s drylands.

The GCP experience, James reveals, has been immensely rewarding: “Without GCP, I would not be where I am today as a scientist,” he asserts. And on the opportunity to work with a capable crew beyond national borders, as opposed to operating as a solo traveller, he says: “GCP gave me a chance to work with the best of the best worldwide, and has opened up new opportunities and avenues for collaboration between developing-country researchers and advanced research institutes, creating and cementing links that were not so concrete before. This has shown that we don’t have to compete with one another; we can work together as partners to derive mutual benefits, finding solutions to problems much faster than we would have done working alone and apart from each other.”

The links James has in mind are not only tangible but also sustainable: “You develop bonds and understanding that last well beyond the life of the projects,” James enthuses, citing additional professional engagements (the African Centre for Crop Improvement in KwaZulu-Natal, South Africa, and the West Africa Centre for Crop Improvement, have both welcomed James and his team into their fold), as well as firm friendships with former GCP project colleagues as two key take-home benefits of his interaction with the Programme. These new personal and professional circles have fostered a happy home for dynamic debates on the latest news and views from the crop-science world, and the resultant healthy cross-fertilisation of ideas, James affirms.

Reflecting on what he describes as a ‘mentor’ role of GCP, and on the vital importance of capacity building in general, he continues: “By enhancing the ability of a scientist to collect germplasm, or to analyse that germplasm, or by providing training and tips on how to write a winning project proposal to get that far in the first place, you’re empowering scientists to make decisions on their own – decisions which make a difference in the lives of farmers. This is tremendous empowerment.”

Another potent tool, says James, is the software made available to him through GCP’s Integrated Breeding Platform (IBP), which is a handy resource package to dip into for – among other things – analysing data and selecting the right varieties at the right time. The next step for IBP, he feels, should be scaling up and aiming for outreach to the wider scientific community, forecasting that such a step could bring nothing but success: “The impacts could be enormous!” he projects, with a palpable and infectious enthusiasm.

People… don’t eat publications, they eat food… I’m not belittling knowledge, but we can do both”

Fast but not loose on the R&D continuum: double agent about?
For James, outreach and impacts are not limited to science alone. In parallel with his activities in upstream genetic science, James’ efforts are equally devoted to the needs of his other client base-–the development community and farmers. For this group, James’ focus is on putting tangible products on the table that will translate into higher crop yields and incomes for farmers. Yet whilst products from any highly complex scientific research project worth its salt are typically late bloomers, often years in the making on a slow burner as demanded by the classic linear R&D view that research must always precede development, adaptation and final adoption, James has been quick to recognise that actors in the world of development and the vulnerable communities they serve do not necessarily have this luxury of time.

 August 2008: a huge handful, and more where that came from in Kwale, Kenya. This farmer's healthy harvest came from KARI hybrids.

August 2008: a huge handful, and more where that came from in Kwale, Kenya. This farmer’s healthy harvest came from KARI hybrids.

His solution for this challenge? “Sitting where I sit, I realised from very early on that if I followed the traditional linear scientific approach, my development clients would not take it kindly if I still had no products for them within the three-year lifespan of the project. The challenge then was to deliver results for farmers without compromising or jeopardising their integrity or the science behind the product,” he recalls. In the project he refers to – a GCP-funded project to combat drought and disease in maize and rice – James applied a novel double-pronged approach to get around this seeming conundrum of the need for sound science on the one hand, and the need for rapid results for development on the other hand. Essentially, he simultaneously walked on both tracks of the research–development continuum.

The project – led by Rebecca Nelson of Cornell University and with collaborators including James’ team at KARI (leading the maize component), the International Rice Research Institute (IRRI), researchers in Asia, as well as other universities in USA – initially set out with the long-term goal of dissecting quantitative trait loci (QTLs) for rice and maize with a view to combating drought and disease in these crops. Once QTLs were dissected and gene crosses done, James and his team went about backcrossing these new lines to local parental lines, generating useful products in the short term. The results, particularly given the limited resources and time invested, have been impressive, with seven hybrid varieties developed for drylands and coastal regions having been released in Kenya by 2009, and commercialised from 2010.

James and his colleagues have applied the same innovative approach to other GCP projects, grappling to get a good grasp of the genetic basis of drought tolerance, whilst also generating intermediate products for practical use by farmers along the way. James believes this dual approach paves the way for a win-win situation: “People on the ground don’t eat publications, they eat food,” he says. “As we speak now, there are people out there who don’t know where their next meal will come from. I’m not belittling knowledge, but we can do both – boiled maize on the cob and publications on the boil. But let’s not stop at crop science  and knowledge dissemination – let’s move it to the next level, which means products,” he challenges, adding: “With GCP support, we were able do this, and reach our intended beneficiaries.”

It is perhaps this kind of vision and inherent instinct to play the long game that has taken James this far professionally, and that will no doubt also serve him well in the future.

As our conversation comes to a close, we ask James for a few pearls of wisdom for other young budding crop researchers eager to carve out an equally successful career path for themselves, James offers “Form positive links and collaborations with colleagues and peers. Never give up; never let challenges discourage you. Look for organisations where you can explore the limits of your imagination. Stay focused and aim high, and you’ll reach your goal.”

Upon completion of his ongoing sabbatical at CIMMYT in Zimbabwe, where he is currently working on seed systems, James plans to return to KARI, armed with fresh knowledge and ready to seize – with both hands – any promising collaborative opportunities that may come his way .

Certainly, prospects look plentiful for this ‘village lad’ in full flight, and who doesn’t look set to land any time soon!


In full flight – Montpellier, Brazil, Benoni, Bangkok, Bamako, Hyderabad… our boy voyaged from the village to Brazil and back, and far beyond that. Sporting the t-shirt from GCP’s Annual Research Meeting in Brazil in 2006, which James attended, he also attended the same meeting the following year, in Benoni, South Africa, in 2007, when this photo was taken. James is a regular at these meetings which are the pinnacle on  GCP’s calendar (http://bit.ly/I9VfP4). But he always sings for his supper and is practically part of the ‘kitchen crew’, but just as comfortable in high company. For example, he was one of the keynote speakers at the 2011 General Research Meeting (see below).




Jan 072015

Beyond chickpeas to embrace beans, chickpeas, groundnuts and pigeonpeas

Paul_w2As a scientist who comes from the dessicated drylands of the unforgiving Kerio Valley, where severe drought can mean loss of life through loss of food and animals, what comes first is food security… I could start to give something back to the community… It’s been a dream finally coming true.” – Paul Kimurto, Senior Lecturer and Professor in Crop Physiology and Breeding, Egerton University, Kenya

As a son of peasant farmers growing up in a humble home in the Rift Valley of Kenya, agriculture was, for Paul Kimurto (pictured above), not merely a vocation but a way of life: “Coming from a pastoral community, I used to take care of the cattle and other animals for my father. In my community livestock is key, as is farming of food crops such as maize, beans and finger millet.”

Covering some six kilometres each day by foot to bolster this invaluable home education with rural school, an affiliation and ever-blossoming passion for agriculture soon led him to Kenya’s Egerton University.

There, Paul excelled throughout his undergraduate course in Agricultural Sciences, and was thus hand-picked by his professors to proceed to a Master’s degree in Crop Sciences at the self-same university, before going on to obtain a German Academic Exchange Service (DAAD) scholarship to undertake a ‘sandwich’ PhD in Plant Physiology and Crop Breeding at Egerton University and the Leibniz Institute for AgriculturalEngineering (ATB) in Berlin, Germany.

… what comes first is food security… offering alternative drought-tolerant crops… is a dream finally coming true!…  GCP turned out to be one of the best and biggest relationships and collaborations we’ve had.”

Local action, global interaction
With his freshly minted PhD, Paul returned to Egerton’s faculty staff and steadily climbed the ranks to his current position as Professor and Senior Lecturer in Crop Physiology and Breeding at Egerton’s Crop Sciences Department. Yet for Paul, motivating this professional ascent throughout has been one fundamental factor:  “As a scientist who comes from a dryland area of Kerio valley, where severe drought can mean loss of food and animals, what comes first is food security,” Paul explains. “Throughout the course of my time at Egerton, as I began to understand how to develop and evaluate core crop varieties, I could start to give something back to the community, by offering alternative drought-tolerant crops like chickpeas, pigeonpeas, groundnuts and finger millet that provide farmers and their families with food security. It’s been a dream finally coming true.”

And thus one of academia’s true young-guns was forged: with an insatiable thirst for moving his discipline forward by seeking out innovative solutions to real problems on the ground, Paul focused on casting his net wide and enhancing manpower through effective collaborations, having already established fruitful working relationships with the International Maize and Wheat Improvement Center (CIMMYT), the (then) Kenya Agricultural Research Institute (KARI) and the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in earlier collaborative projects on dryland crops in Kenya. It was this strategy that paved the way towards teaming up with GCP, when, in 2008, Paul and his team were commissioned to lead the chickpea work in Kenya for the GCP Tropical Legumes I project (TLI), with local efforts being supported by colleagues at ICRISAT, and friends down the road at KARI undertaking the bean work of the project. Climbing aboard the GCP ship, Paul reveals, was a move worth making: “Our initial engagement with GCP started out as a small idea, but in fact, GCP turned out to be one of the best and biggest relationships and collaborations we’ve had.”

…GCP is people-oriented, and people-driven” 

Power to the people!
The success behind this happy marriage, Paul believes, is really quite simple: “The big difference with GCP is that it is people-oriented, and people-driven,” Paul observes, continuing: “GCP is building individuals: people with ideas become equipped to develop professionally.” Paul elaborates further: “I wasn’t very good at molecular breeding before, but now, my colleagues and I have been trained in molecular tools, genotyping, data management, and in the application of molecular tools in the improvement of chickpeas through GCP’s Integrated Breeding Multiyear Course. This has opened up opportunities for our local chickpea research community and beyond, which, without GCP’s support, would not have been possible for us as a developing-country institution.”

Inspecting maturity, Koibatek FTC, Bomet_R Mulwa_Sep'12_w

Inspecting pod maturity with farmers at Koibatek Farmers Training Centre in Eldama Ravine Division, Baringo County, Kenya, in September 2012. Paul is on the extreme right.

Passionate about his teaching and research work, it’s a journey of discovery Paul is excited to have shares with others: “My co-workers and PhD students have all benefitted. Technicians have been trained abroad. All my colleagues have a story to tell,” he says. And whilst these stories may range from examples of access to training, infrastructure or genomic resources, the common thread throughout is one of self-empowerment and the new-found ability to move forward as a team: “Thanks to our involvement with the GCP’s Genotyping Support Service, we now know how to send plant DNA to the some of the world’s best labs and to analyse the results, as well as to plan for the costs. With training in how to prepare the fields, and infrastructure such as irrigation systems and resources such as tablets, which help us to take data in the field more precisely, we are now generating accurate research results leading to high-quality data.”

The links we’ve established have been tremendous, and we think many of them should be long-lasting too: even without GCP

Teamwork, international connections and science with a strong sense of mission
Teaming up with other like-minded colleagues from crème de la crème institutions worldwide has also been vital, he explains: “The links we’ve established have been tremendous, and we think many of them should be long-lasting too: even without GCP, we should be able to sustain collaboration with KBioscience [now LGC Genomics] or ICRISAT for example, for genotyping or analysing our data.” He holds similar views towards GCP’s Integrated Breeding Platform (IBP): “IBP is one of the ideas which we think, even after GCP’s exit in December 2014, will continue to support our breeding programmes. My colleagues and I consult IBP regularly for a range of aspects, from markers to protocols to germplasm and the helpdesk, as well as for contacts and content available via the IBP Communities of Practice.” Paul’s colleagues are Richard Mulwa, Alice Kosgei, Serah Songok, Moses Oyier, Paul Korir, Bernard Towett, Nancy Njogu and Lilian Samoei. Paul continues: “We’ve also been encouraging our regional partners to register on IBP – I believe colleagues across Eastern and Central Africa could benefit from this one-stop shop.”

Yet whilst talking animatedly about the greater sophistication and accuracy in his work granted as a result of new infrastructure and the wealth of molecular tools and techniques now available to him and his team, at no point do Paul’s attentions stray from the all-important bigger picture of food security and sustainable livelihoods for his local community: “When we started in 2008, chickpeas were known as a minor crop, with little economic value, and in the unfavoured cluster termed ‘orphan crops’ in research. Since intensifying our work on the crop through TLI, we have gradually seen chickpeas become, thanks to their relative resilience against drought, an important rotational crop after maize and wheat during the short rains in dry highlands of Rift valley and also in the harsh environments of the Kerio Valley and swathes of Eastern Kenya.”

This GCP-funded weather station is at Koibatek Farmers Training Centre, Longisa Division, Bomet County.

This GCP-funded weather station is at Koibatek Farmers Training Centre.

Having such a back-up in place can prove a vital lifeline to farmers, Paul explains, particularly during moments of crisis, citing the 2011–2012 outbreak of the maize lethal necrosis (MLN) disease which wiped out all the maize throughout Kenya’s  Bomet County, where Paul, Richard, Bernard and their team had been working on the chickpea reference set. Those farmers who had planted chickpeas – Paul recalls Toroto and Absalom as two such fortunate souls – were food-secure. Moreover, GCP support for infrastructure such as a weather station have helped farmers in Koibatek County to predict weather patterns and anticipate rainfall, whilst an irrigation system in the area is being used by the Kenyan Ministry of Agriculture to develop improved seed varieties and pasture for farmers.

The science behind the scenes and the resultant products are of course not to be underestimated: in collaboration with ICRISAT, Paul and his team released four drought-resistant chickpea varieties in Kenya in 2012, with the self-same collaboration leading to the integration of at least four varieties of the crop using marker-assisted backcrossing, one of which is in the final stages and soon to be released for field testing. With GCP having contributed to the recent sequencing of the chickpea genome, Paul and his colleagues are now looking to up their game by possibly moving into work on biotic stresses in the crop such as diseases, an ambitious step which Paul feels confident can be realised through effective collaboration, with potential contenders for the mission including ICRISAT (for molecular markers), Ethiopia and Spain (for germplasm) and researchers at the International Center for Agricultural Research in the Dry Areas (ICARDA) for germplasm. Paul first established contact with all of these partners during GCP meetings.

By coming together, pooling skills from biotechnology, agronomy, breeding, statistics and other disciplines, we are stronger as a unit and better equipped to offer solutions to African agriculture and to the current challenges we face.”

Links that flower, a roving eye, and the heat is on!
In the meantime, the fruits of other links established since joining the GCP family are already starting to blossom. For example, TLI products such as certified seeds of chickpea varieties being released in Kenya – and in particular the yet-to-be-released marker-assisted breeding chickpea lines which are currently under evaluation – caught the eye of George Birigwa, Senior Programme Officer at the Program for Africa’s Seed Systems (PASS) initiative of the Alliance for a Green Revolution in Africa (AGRA), which is now supporting the work being undertaken by Paul and his team through the Egerton Seed Unit and Variety Development Centre (of which Paul is currently Director) at the Agro-Based Science Park.

Yet whilst Paul’s love affair with chickpeas has evidently been going from strength to strength, he has also enjoyed a healthy courtship with research in other legumes: by engaging in a Pan-African Bean Research Alliance (PABRA) bean project coordinated by the International Center for Tropical Agriculture (CIAT), Paul and his team were able to release and commercialise three bean varieties which are currently in farmers’ fields in Kenya.


Paul (left) in the field. The crop is chickpeas of course!

With so many pots on the boil, the heat is certainly on in Paul’s research kitchen, yet he continues to navigate such daily challenges with characteristic aplomb. As a proven leader of change in his community and a ‘ can-do, make-it-happen’ kind of guy, he is driving research forward to ensure that both his school and discipline remain fresh and relevant – and he’s taking his colleagues, students and local community along with him every step of  the way.

Indeed, rallying the troops for the greater good is an achievement he values dearly: “By coming together, pooling skills from biotechnology, agronomy, breeding, statistics and other disciplines, we are stronger as a unit and better equipped to offer solutions to African agriculture and to the current challenges we face,” he affirms. This is a crusade he has no plans to abandon any time soon, as revealed when quizzed on his future aspirations and career plans: “My aim is to continue nurturing my current achievements, and to work harder to improve my abilities and provide opportunities for my institution, colleagues, students, friends and people within the region.”

With the chickpea research community thriving, resulting in concrete food-security alternatives, we raise a toast to Paul Kimurto and his chickpea champions!



Oct 242014

OAweek2014By Eloise Phipps

Imagine the scene: it is the dead of night, and you are engaged on a dangerous mission. You are tense, alert for any noise. You must complete your task without being seen, or risk the shame and humiliation of failure… but it is not a pleasant undertaking!

Your mission? A critical matter of honour. To dispose of your family’s cassava peelings – not with the rest of your household waste, but smuggled into the murky depths of the pit latrine. Why?

“The stigma about cassava is mostly among the Kikuyu people of central Kenya,” explains Henry Ngugi, Kenyan scientist and former Maize Pathologist for Latin America at the International Maize and Wheat Improvement Center (CIMMYT). “Traditionally, the Kikuyu are very proud, and self-sufficiency in basic needs such as food is an important factor in this. That is, you cannot be proud if you cannot feed yourself and your family. Now, the other part of the equation regarding cassava is that, traditionally, cassava was eaten during seasons of severe food shortages. It is a hardy and drought-tolerant crop so it would be available when the ‘good food’ was not. This also meant that it was associated with hunger and poverty – inability to feed oneself.”

“Another factor that may have played a role in the way the Kikuyu view cassava is that some of the traditional cultivars produced high levels of cyanide and were toxic [if not properly cooked], so as a crop it was not very highly regarded to start with. Improved cultivars have been bred to remove this problem. But because of these issues, many people would not want their neighbours to know they were so hungry they had to rely on cassava, and would go to great lengths to conceal any evidence!”

The story is not the same everywhere: graceful and strong, this farmer tends her field of cassava, in the village of Tiniu, near Mwanza, northern Tanzania.

Opening up for Open Access Week

This year, 20–26 October is Open Access Week, a global event celebrating, promoting and sharing ideas on open access – that is, making research results, including both publications and data, freely and publicly available for anyone to read, use and build upon. Even more exciting for us, this year’s theme is ‘Generation Open’, reflecting the importance of students and researchers as advocates for open access – a call that falls on fertile ground at the Generation Challenge Programme  (video below courtesy of UCMerced on YouTube).

We at GCP have been reflecting this week on different virtues of openness and transparency, and the perils of shame and secrecy. But before we go on, we’re sticking with cassava (carrying over from World Food Week!) but crossing the globe to China to celebrate the latest open-access publication to join the GCP parade. ‘Cassava genome from a wild ancestor to cultivated varieties’ by Wang et al is still practically a newborn, published on the 10th of October 2014.

The article presents draft genome sequences of a wild ancestor and a domesticated variety of cassava, with additional comparative analyses with other lines. It shows, for example, that genes involved in starch accumulation have been positively selected in cultivated cassava, and those involved in cyanogenic (ie, cyanide-producing) glucoside formation have been negatively selected. The authors hope that their results will contribute to better understanding of cassava biology, and provide a platform for marker-assisted breeding of better cassava varieties for farmers.

The research was carried out by a truly international team, led by scientists from the Chinese Academy of Tropical Agriculture Sciences (CATAS) and Chinese Academy of Sciences (CAS). Authors Wenquan Wang of CATAS and Bin Liu of CAS are delighted that their publication will be freely available, particularly in a journal with the prestige and high impact of the Nature family. As they observe, the open access to the paper will spread their experience and knowledge quickly to every corner of China and of the world where people have internet connections.

The work incorporated and partially built upon previous work mapping the cassava genome, which was funded by GCP in our project on Development of genomic resources for molecular breeding of drought tolerance in cassava (G3007.03), led by Pablo Rabinowicz, then with the University of Maryland, USA. This provides a perfect example of the kind of constructive collaboration and continuation that open access and sharing of research results can facilitate: by building on what has already been done, rather than re-inventing the wheel or working in isolation, we share, disseminate and amplify knowledge more rapidly and efficiently, with win–win outcomes for all involved.

Cassava farmers in Vietnam.

One thing that makes the latest research even more special is that it was published in Nature Communications, which marked Open Access Week by going 100 percent open access from the 20th of October, making it an open-access flagship within the Nature Publishing Group – a clear indicator of the ever-increasing demand for and credibility of open-access publishing. We congratulate all of our open-access authors for making their work publicly available, and Nature Communications for its bold decision!

A matter of perspective: turning shame to pride and fears to opportunities

No shame here: a little girl clutches a cassava root in Kenya.

Of course, human beings worrying about their social status is old as humanity itself and nothing new. Food has never been an exception as an indicator. Back in mediaeval Europe, food was a hugely important status symbol: the poor ate barley, oats and rye, while only the rich enjoyed expensive and prestigious wheat. Although our ideas about what is luxurious have changed – for example, sugar was considered a spice thanks to its high cost – rare imported foods were something to boast about just as they might be today.

But why are we ashamed of eating the ‘wrong foods’ – like cassava – when we could take pride in successfully feeding our families? Many of the things we tend to try to hide are really nothing to be ashamed of, and a simple change in perspective can turn what at first seem like weaknesses into sources of pride (and there are two sides to the cassava saga, as we shall see later).

Throughout its existence, GCP has been characterised by its openness and transparency. We have worked hard to be honest about our mistakes as well as our successes, so that both we and others can learn from them. The rewards of this clear-eyed approach are clearly noted in our Final External Review: “GCP has taken an open and pro-active attitude towards external reviews – commissioning their own independent reviews (the case of the current one) as well as welcoming a number of donor reviews. There have been clear benefits, such as the major governance and research reforms that followed the EPMR [External Programme and Management Review] and EC [European Commission] Reviews of 2008. These changes sharply increased the efficiency of GCP in delivering benefits to the poor.”

Transparent decision-making processes for determining choices of methods have also improved the quality of our science, while open, mutually respectful relationships – including open data-sharing – have underpinned our rich network of partnerships.

One aspect of this open approach is, of course, our commitment to open access. All of our own publications are released under Creative Commons licences, and we encourage all GCP grant recipients to do the same, or to pursue other open-access options. When exploring our research publications you will note that many are directly available to download. Our website will act as an archive for the future, ensuring that GCP publications remain online in one place after GCP’s closure in December this year. See our Global Access Policy and our policy on data-sharing.

“Open access journals are just terrific,” says Jean-Marcel Ribault, Director of GCP. “It’s great to enable access to publications, and it’s important to promote sharing of data and open up analysis too. The next big challenge is data management, and assuring the quality of that data. At the end of the day, the quality of the information that we share with others is fundamental.”

Proud in pink and polka dots: a farmer shows off a healthy cassava leaf in a plantation in Kampong Cham, Cambodia.

That’s a challenge that many other organisations are also grappling with. Richard Fulss, Head of Knowledge Management at our host CIMMYT is currently working on standards and approaches for the quality and structure of data, with the aim of implementing open access to all data within five years, meeting guidelines being put in place across CGIAR. “The issues to resolve are threefold,” he explains. “You have a licence issue, a technology issue – including building the right platform – and a cultural issue, where you need to build a culture of knowledge sharing and make open access publishing the norm rather than the exception.”

Our partners at the International Center for Tropical Agriculture (CIAT) already have a strong open-access policy, and are debunking some cherished open-access myths.

It’s good to talk: saying no to secrecy

Back to cassava, and of course not everyone feels the same way about the same crop, as there are many sides to any story. In China, demand for cassava is soaring – for food, for animal feed and most of all as a raw material for starch and biofuel production – making breeding of resilient, productive cassava varieties even more important. Even within Kenya, there are those who are quicker to see the crop’s virtues. The Luhya people of western Kenya often mix cassava with finger millet or sorghum to make flour for ugali (a stiff porridge or dough eaten as a staple food in vast swathes of Eastern and Southern Africa). As Henry explains “one reason was that such ugali ‘stayed longer in the stomach’ in literal translation from local parlance meaning it kept you full for longer – which is scientifically sound because cassava has a crude starch that takes longer to digest, and lots of fibre!”

Meanwhile, watch the delightful Chiedozie Egesi, Nigerian plant breeder and molecular geneticist, in the video below to hear all about the high potential of cassava, both as a food in itself and as a raw material to make flour and other products – something some farmers have already spotted. “Cassava can really sustain a nation… we’ve seen that it can,” he says. “You have in Nigeria now some of the Zimbabwean farmers who left Zimbabwe, got to Nigeria, and they changed from corn [maize] to cassava, because they see the potential that it has.”

The power of openness is already showing itself in the case of cassava, as well as other root, tuber and banana crops. Check out RTBMaps, an online atlas developed by the CGIAR Research Program on Roots, Tubers and Bananas (RTB), using ‘scientific crowdsourcing’ to combine data on a wide range of variables, shared by many researchers, in a single map. Putting all that information together can help people make better decisions, for example on how to target breeding, or where disease threats are likely to be strongest. And for a sweet serving, here’s our humble contribution from Phase I to a world-favourite dessert!

We leave you with one final thought. It is not just cassava that is plagued with pride and prejudice; many foods attract high or low statuses in different regions – or even just variations of the same food. People in Asia and North America, for example, tend to prefer yellow maize, while Africans like their maize white. In fact, yellow maize still carries a powerful stigma in many parts of Africa, as this was the colour of the maize that arrived as external  aid in periods of famine, oftentimes perceived in Africa as animal fodder and not human food in the countries it was sourced from. And thus yellow maize became synonymous with terrible times and the suffering and indignity of being unable to feed oneself and one’s family. Consequently, some of the famine-stricken families would only cook the yellow ‘animal-fodder’  maize in the dead of night, to avoid ‘detection’ and preserve family pride and honour.

This might at first blush appear to be a minor curiosity on colour and coloured thinking, were it not for the fact that when crops – such as sweet potato, cassava, or indeed maize – are bred to be rich in pro-vitamin A, and so provide plenty of the vitamin A that is particularly crucial for young children and pregnant women, they take on a golden yellow-orange hue. When promoting the virtues of this enriched maize in parts of Africa, it’s vital to know that as ‘yellow maize’ it would fall flat on its face, but as ‘orange maize’ or ‘golden maize’ it is a roaring success. A tiny difference in approach and label, perhaps, but one that is a quantum leap in nutritional improvement, and in ‘de-stigmatisation’ and accelerating adoption. Ample proof then that sharing details matters, and that it’s good to talk – even about the things we are a little ashamed of, thereby breathing substance into the spirit of the theme ‘Generation Open’.

Do have some of these uncomfortable but candid conversations this Open Access Week and live its spirit to the fullest every day after that! As for us here at GCP, we shall continue to sow and cultivate the seeds of Generation next for plant breeding into the future, through our Integrated Breeding Platform which will outlive GCP.

A little girl in Zambia gets a valuable dose of vitamin A as she eats her orange maize.

Eyes dancing with past, present or future mischief, two cheeky young chappies from Mozambique enjoy the sweet taste of orange sweet potato enriched with pro-vitamin A.


Aug 312014

 Crop disease costs farmers billions of dollars each year in lost yields and inputs. For farming communities in developing countries, such losses can mean deepening poverty, food insecurity, and the resulting poor nutrition and health. 

In Africa alone, it is estimated that crop pests and diseases lead to losing more than half the crops planted. Added to this, some fungal pathogens cause toxic compounds to accumulate in food. In extreme cases, crop diseases have led to widespread famine, social disruption and loss of life – the Irish Potato Famine in the 19th century is a case in point.

Overcoming this reality is what motivates plant pathologists like Rebecca Nelson (pictured below, and profiled here), of Cornell University, USA. For the past quarter century, Rebecca has worked across four continents to understand the ways in which plants defend themselves against diseases.

Rebecca Nelson

Rebecca Nelson

“Pesticides are the dominant way in which pests and diseases are managed, in spite of the many downsides to this approach,” says Rebecca. “For resource-limited farmers, this is often not an option. For those who use pesticides, the health impacts hit harder in the tropics, where protective clothing is not the norm. That’s why we’re trying to understand how plants naturally defend themselves, so that we can then tap into this, and learn from nature to breed crops that are resistant to disease.”

With this premise and funding from GCP, Rebecca collaborated with an interdisciplinary international team from USA, The Philippines, Indonesia and Kenya to identify genes associated with disease resistance in maize and rice. Although the project itself ended in 2009, that was far from the end of the story. In many ways, the end of the GCP project was in fact the beginning of life-changing chapters that followed. Thus far, the project has led to several locally developed disease-resistant varieties of rice in Indonesia and maize in Kenya.

We now already know quite a lot about the genetic architecture of several critical diseases, and this knowledge is enough for us to get started on improving the efficiency of resistance breeding”

Dissecting resistance – the genie in the genes
To understand the genetic reason behind resistance, Rebecca and her team used a range of genetic tools to dissect various forms of genetic resistance, understand the mechanisms that the plants use to reduce pathogen success, and identify the genes that provide resistance.

To create a near isogenic line, an organism with the phenotype of interest, often a plant, is crossed with a  standard line of the same plant. The F1 generation is selfed to produce the F2 generation.

NILS explained: To create a near-isogenic line, a plant with the phenotype of interest is crossed with a standard line of the same plant. The F1 (1st filial) generation is thereafter selfed (ie, crossbred within itself) to produce the F2 (2nd filial) generation.

“There has been a lot of work done on sequencing the genomes of rice and maize, so we tapped into this work and combined our team expertise in genetics, pathology and plant breeding to help identify these disease-resistance genes,” says Rebecca. “We used recombination breeding and other genetic techniques to dissect the genomes and identify specific regions that convey disease resistance. We now already know quite a lot about the genetic architecture of several critical diseases, and this knowledge is enough for us to get started on improving the efficiency of resistance breeding. In addition, we’re identifying the genes and the ways they work, so as to interrupt pathogenesis [the manner in which a disease develops]. This involved breeding near-isogenic lines of rice and maize with the genes of interest, infecting these plants with a disease of interest, and monitoring their resistance in the field.”

Identifying genes responsible for resistance
Through this process, the team identified several genomic regions and specific genes responsible for protecting resistant rice plants against rice blast and sheath blight and resistant maize plants against northern and southern leaf blight, grey leaf spot and ear rot.

An underlying objective of the project was to also investigate if some of these genes were responsible not for just one specific disease, but for multiple diseases.

“We were intrigued by the idea of multiple disease resistance, because farmers face a range of diseases in their fields. In maize, we identified a gene associated with resistance to three diseases – southern leaf blight, northern leaf blight and grey leaf spot.”

While the team found several gene loci in both maize and rice that provide resistance to more than one disease, they have so far found little cross-benefit from the work on the two crops. But from their research they have ‘handles’ on the rich diversity of resistance loci in each of the two crops.

“Plant breeders will be able to use this information to breed crops for multiple disease resistance, increasing the security of the crop and farmers’ livelihoods,” says Rebecca.

A 2008 update: A slide from Rebecca's presentation at the GCP General Research Meeting in September of that year.

A 2008 update: a slide from Rebecca’s presentation at the GCP General Research Meeting in September of that year.

Working with that great group of people and being a part of the larger GCP family, which comprises of an amazing talent pool, was really valuable.”

Collaborating with old friends, and new
Rebecca credits her collaborators and support from the GCP family for the success of the project, saying none of the outcomes could have been achieved without everyone playing their part.  “Working with that great group of people and being a part of the larger GCP family, which comprises of an amazing talent pool, was really valuable. I really appreciated that GCP supported my work at a time when I was making a transition in my career. GCP gave me and my team time and inspiration to find our feet. All of our labs are now well established, and we have since been able to diversify our funding sources.”

Project scientists from the Kenya Agricultural Research Institute (KARI) and the Indonesian Centre for Agricultural Resources Research and Development (ICABIOGRAD) reflect the involvement of country agricultural research programmes. Other partners included the International Rice Research Institute (IRRI) and four universities: Bogor Agriculture University in Indonesia and Colorado State, Cornell and North Carolina State Universities, all in USA.

Masdiar Bustamam

A highlight of the project for Rebecca was reconnecting with old colleagues at IRRI, where she had previously worked for eight years. “It was great to involve my IRRI mentor, Hei Leung, and our collaborator Jan Leach, as well as several other IRRI people whom I worked with on several rice disease-resistance projects. It was also great to involve Masdiar Bustamam of ICABIOGRAD. My team at IRRI had worked with her laboratory as she was getting it started. It was such a pleasure to see how far she and her lab had come since our earlier collaboration. They were able to make a significant contribution to the project in advancing the understanding of inheritance of rice blast and sheath blast resistance, and they developed germplasm that has really good resistance to these diseases.”

Having a limited background in maize research before the project began, Rebecca was grateful for her close collaboration with KARI’s James Gethi, who was a lead researcher in Kenya. At the time of the proposal, James was a recent Cornell graduate who was returning home to contribute to his nation’s crop-research capabilities.

“James and I were both getting our maize programmes going and the support was terrific for our labs and for our collaboration. We’ve continued to work together since our GCP project wrapped up.”

Rebecca (left) on a field visit to Kenya in September 2006. On the left is John Okalembo of Moi University, with James Gethi behind the camera.

A partnership of long standing: Rebecca (left) on a field visit to Kenya in September 2006. On the right is John Okalembo of Moi University, with James Gethi behind the camera.

You can’t see it, you can’t taste it, you can’t feel it. The population is being poisoned without knowing about it.”

Continuing projects, tracking a silent cereal killer, and spreading a positive epidemic
One such project, which Rebecca and James have worked tirelessly on, is understanding genetic resistance to aflatoxins in maize. “We were travelling through Kenya together in 2005 when there was an aflatoxin outbreak,” remembers Rebecca. “Ever since, we’ve been obsessed with the problem.”

Aflatoxin is the most carcinogenic natural substance known. It is produced by species of fungi, especially Aspergillus flavus, which can colonise and contaminate grain before harvest or during storage. Maize is particularly susceptible to infection during drought, or when it is attacked by insects, or improperly stored. In 2004, 125 people died in Kenya after eating maize with very high aflatoxin levels.

“This food-safety problem is rigorously and carefully managed in developed countries but less so in cash-strapped developing nations,” says Rebecca. “In tropical countries where maize and groundnuts are often grown under stress and stored under suboptimal conditions, it is a huge problem. Yet you can’t see it, you can’t taste it, you can’t feel it. The population is being poisoned without knowing about it.”

Rebecca and James spent years trying to get support for their work on aflatoxin – the silent cereal killer – and trying to get funding for a graduate student who could take a lead. They made headway while Rebecca was on sabbatical at the Biosciences eastern and central Africa (BecA) Hub in Nairobi. BecA eventually received a major grant from Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO), and Rebecca says a strong team is now tackling the issue.

We’re indebted to GCP for bringing us together to tackle cereal diseases”

“One of our big goals was to support a promising young talent named Samuel Mutiga. I’m delighted to say that he is just finishing his PhD at Cornell now, and has done some terrific work on aflatoxin in collaboration with James and BecA.”

Samuel is one of several PhD students at Cornell who are passionate about improving food safety in Africa by beating the aflatoxin problem. “One American students is working with a Kenyan student in Nairobi to develop an improved spectroscopic grain sorter for people processing their maize at small grain mills. This will allow them to remove the toxic kernels before they mill and eat the grain, something that cannot be done visually.”

Rebecca says it’s “exciting to see this new generation take on this huge challenge. There are more scientists who are coming on board and sharing their expertise. James and I are gratified that we helped ‘infect’ these people with the conviction that something needs to be done and can be done. We’re indebted to GCP for bringing us together to tackle cereal diseases.”



Jun 242014

Triumphs and tragedies, pitfalls and potential of the ‘camel crop’Cassava leaf. Photo: N Palmer/CIAT

We travel through space and time, with a pair of researchers who have a pronounced passion for a plant brought to Africa by seafaring Portuguese traders in the 16th century. Fastforwarding to today, half a millennium later, the plant is widespread and deep inland, and is the staple food for Africa’s most populous nation – Nigeria.

Meet cassava, the survivor. After rice and maize, cassava is the third-largest source of carbohydrate in the tropics. Surviving, nay thriving, in poor soils and shaking off the vagaries of weather – including an exceptionally high threshold for drought – little wonder that cassava, the ‘camel’ of crops is naturally the main staple in Nigeria. And with that, it has propelled Nigeria to the very top of the cassava totem pole as the world’s leading cassava producer, and consumer: most Nigerians eat cassava in one form or another practically every day.

Great, huh? But there’s also a darker side to cassava, as we will soon find out from our two cassava experts. For starters, the undisputed global cassava giant, Nigeria, produces just enough to feed herself. Even if there were a surplus for the external demand, farming families, which make up 70 percent of the Nigerian population, have limited access to these lucrative external markets. Secondly, cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) are deadly in Africa. Plus, cassava is a late bloomer (up to two years growth cycle, typically one year), so breeding and testing improved varieties takes time. Finally, cassava is most definitely not à la mode at all in modern crop breeding: the crop is an unfashionably late entrant into the world of molecular breeding, owing to its complex genetics which denied cassava the molecular tools that open the door to this glamour world of ‘crop supermodels’.

Emmanuel Okogbenin (left) and Chiedozie Egesi (right) in  a cassava field.

Emmanuel Okogbenin (left) and Chiedozie Egesi (right) in a cassava field.

But all is not doom and gloom, which inexorably dissolve in the face of dogged determination. All the above notwithstanding, cassava’s green revolution seems to be decidedly on the way in Nigeria, ably led by born-and-bred sons of the soil: Chiedozie Egesi and Emmanuel Okogbenin (pictured right) are plant breeders and geneticists at the National Root Crops Research Institute (NRCRI). With 36 years’ collective cassava research experience between them, the two men are passionate about getting the best out of Nigeria’s main staple crop, and getting their hands into the sod while about it: “I’m a plant breeder,” says Chiedozie, with pride. “I don’t just work in a laboratory. I am also in the field to experience the realities.”

Hitting two birds with one stone…two stones are even better!
As Principal Investigators (PIs) leading three different projects in the GCP-funded Cassava Research Initiative, Chiedozie and Emmanuel, together with other colleagues from across Africa, form a formidable team. They also share a vision to enable farmers increase cassava production for cash, beyond subsistence. This means ensuring farmers have new varieties of cassava that guarantee high starch-rich yields in the face of evolving diseases and capricious weather.

Chiedozie is one of cassava’s biggest fans. His affection for, and connection to, cassava is almost personal and definitely paternal. He is determined to deploy the best plant-breeding techniques to not only enhance cassava’s commercial value, but to also protect the crop against future disease outbreaks, including ‘defensive‘ breading. But more on that later…

Emmanuel is equally committed to the cassava cause. As part of his brief, Emmanuel liaises with the Nigerian government, to develop for – and promote to – farmers high-starch cassava varieties. This ensures a carefully crafted multi-pronged strategy to revolutionise cassava: NRCRI develops and releases improved varieties, buttressed by financial incentives and marketing opportunities that encourage farmers to grow and sell more cassava, which spurs production, thereby simultaneously boosting food security while also improving livelihoods.

erect cass1_LS 4 web

Standing tall. Disease resistance and high starch and yield aside, farmers also prefer an upright architecture, which not only significantly increases the number of plants per unit, but also favours intercropping, a perennial favourite   for cassava farmers.

Cross-continental crosses and cousins, magic for making time, and clocking a first for cassava

No one has been able to manufacture time yet, so how can breeders get around cassava’s notoriously long breeding cycle? MAS (marker-assisted selection) is crop breeding’s magic key for making time. And just as humans can benefit from healthy donor organ replacement, so too does cassava, with cross-continental cousins donating genes to rescue the cousin in need. Latin American cassava is nutrient-rich, while African cassava is hardier, being more resilient to pests, disease and harsh environments.

Thanks to marker-assisted breeding, CMD resistance from African cassava can now be rapidly ‘injected’ much faster into Latin American cassava for release in Africa. Consequently, in just a three-year span (2010–2012), Chiedozie, Emmanuel, Martin Fregene of the Donald Danforth Plant Science Center (USA) and the NRCRI team, released two new cassava varieties from Latin American genetic backgrounds (CR41-10 and CR36-5). These varieties, developed with GCP funding, are the first molecular-bred cassava ever to be released, meaning they are a momentous milestone in cassava’s belated but steady march towards its own green revolution.

Marker-assisted selection is much cheaper, and more focused.” 

On the cusp of a collaborative cassava revolution: on your marks…
With GCP funding, Chiedozie and Emmanuel have been able to use the latest molecular-breeding techniques to speed up CMD resistance. Using marker-assisted selection (MAS) which is much more efficient, the scientists identified plants combining CMD resistance with desirable genetic traits.

“MAS for CMD resistance from Latin American germplasm is much cheaper, and more focused,” explains Emmanuel. “There is no longer any need to ship in tonnes of plant material to Africa. We can narrow down our search at an early stage by selecting only material that displays markers for the genetic traits we’re looking for.” Using markers, combining traits (known as ‘gene pyramiding’) for CMD resistance is faster and more efficient, as it is difficult to distinguish phenotypes with multiple resistance in the field by just observing with the naked eye. This is what makes marker-assisted breeding so effective and desirable in Africa.

GCP’s mode of doing business coupled with its community spirit has spurred the NRCRI scientists to cast their eyes further out to the wider horizon beyond their own borders.

By collaborating with research centres in other parts of the world, Emmanuel and Chiedozie have made remarkable strides in cassava breeding. According to Emmanuel, “GCP helped us make links with advanced laboratories and service providers like LGC Genomics. The outsourcing of genotyping activities for molecular breeding initiatives is very significant, as it enables us to carry out analyses not otherwise possible.”

We can’t afford to sit idle until it comes – we need to be armed and on the ready.”

‘Defensive’ breeding: partnerships to pre-empt catastrophe and combat disease
Closer home in Africa, as PI of the corollary African breeders community of practice (CoP) project, Emmanuel co-organises regular workshops with plant breeders from a dozen other countries (Côte d’Ivoire, DR Congo, Ethiopia, Ghana, Kenya,  Liberia, Malawi, Mozambique, Sierra Leone, Tanzania, Uganda and South Sudan). These events are an opportunity to share knowledge on molecular breeding and compare notes.

Of the diseases that afflict cassava, CBSD is the most devastating. Mercifully, in Nigeria, the disease is non-existent, but Chiedozie is emphatic that this is by no means cause for complacency. “If CBSD gets to Nigeria, it would be a monumental catastrophe!” he cautions. “We can’t afford to sit idle until it comes – we need to be armed and on the ready.”

Putting words to action, though this work on CBSD resistance is still in its early stages, more than 1,000 cassava genotypes (different genetic combinations) have already have been screened in the course of just one year. Chiedozie hopes that the team will be able to identify key genetic markers, and validate these in field trials in Tanzania, where CBSD is widespread. This East African stopover, Chiedozie emphasises, is a crucial checkpoint in the West African process. So the cassava CoP not only provides moral but also material support.

And Africa is not the limit. GCP-funded work on CMD resistance is more advanced than the CBSD work, though the real breakthrough in CMD only happened recently, on the international arena within which the African breeders now operate. According to Chiedozie, two entire decades of screening cassava genotypes from Latin America yielded no resistance to CMD. The reason for this is that although it is widespread in Africa, CMD is non-existent in Latin America.

Through international collaborative efforts, cassava scientists, led by Martin Fregene (now based in USA), screened plants from Nigeria and discovered markers for the CMD2 gene, indicating resistance to CMD. Once they had found these markers, the scientists were off and away! By taking the best of the Latin American material and crossing it with Nigerian genotypes that have CMD resistance, promising lines were developed from which the Nigerian team produced two new varieties. These varieties, CR41-10 and CR36-5, have already been released to farmers, and that is not all. More varieties bred using these two as parents are in the pipeline.

“GCP funding has given us the opportunity to show that a national organisation can do the job and deliver.” 


Delivery attracts
The success of the CGP-funded cassava research in Nigeria lies in its in-country leadership. Chiedozie, Emmanuel and Martin are native Nigerian scientists and as such are – in many ways – best placed to drive a research collaboration to benefit the country’s farmers and boost food security. “GCP funding has given us the opportunity to show that a national organisation can do the job and deliver,” says Chiedozie.

This proven expertise has helped NRCRI forge other partnerships and attract more financial support, for example from the Bill & Melinda Gates Foundation for a project on genomic selection. GCP support has also bolstered communications with the Nigerian government, which has launched financial instruments, such as a wheat tariff,* to boost cassava production and use.

[Editors note: * wheat tariff: The Nigerian government is trying to reduce wheat import bills and also boost cassava commercialisation by promoting 20 percent wheat substitution in bread-making. Tariffs are being imposed on wheat to dissuade heavy imports and encourage utilisation of high-quality cassava flour for bread.]

“The government feels that to quickly change the fortunes of farmers, cassava is the way to go,” explains Emmanuel. He clarifies, “The tariff from wheat is expected to be ploughed back to support agricultural development – especially the cassava sector – as the government seeks to increase cassava production to support flour mills. Cassava offers a huge opportunity to transform the agricultural economy and stimulate rural development, including rapid creation of employment for youth.”

The Nigerian government is right in step aiding cassava’s march towards the crop’s own green revolution, as is evident in the the Minister of Agriculture’s tweet earlier this year, and in his video interview below. See also related media story, ‘Long wait for cassava bread’.

Clearly, the ‘camel’ crop – once considered an ‘orphan’ in research  –  has travelled as far in science as in geography, and it is a precious asset to deploy for food production in a climate-change-prone world. As Emmanuel observes, cassava’s future can only be brighter!

Slides by Chiedozie and Emmanuel


More links


May 302014
Rogério Chiulele

Rogério Chiulele


Today, we travel the Milky Way on a voyage to Mozambique. Our man along the Milky Way is Rogério Marcos Chiulele (pictured), a lecturer at Mozambique’s Universidade Eduardo Mondlane’s Crop Science Department. He is also the lead scientist for cowpea research in Mozambique for the Tropical Legumes I (TLI) project. This gives Rogério a crucial tri-focal down-to-earth and away-from-the-clouds perspective on cowpea pedagogy, research and development. It is through this pragmatic triple-lens prism that Rogerio speaks to us today, once he’s captained us safely back from the stars to Planet Earth, Southeast Africa. After the protein and profit, next stop for him and team is ridding cowpeas of pod-sucking pests, among other things slated for the future. But back from the future to the present and its rooted realities…Problems, yes, but also lots of good scores, plus a deft sleight of hand that are bound to have you starry-eyed, we bet.

…cowpeas rank fourth as the most cultivated crop…”

Q: Tell us about Mozambique and cowpeas: are they important?

The devastating effects of nematodes on cowpea roots.

The devastating effects of nematodes on cowpea roots.

In Mozambique, cowpeas are an important source of food, for both protein and profit, particularly for the resource-poor households that benefit from cowpea income and nutrition. In terms of cultivation, cowpeas rank fourth as the most cultivated crop after maize, cassava and groundnuts, accounting for about 9 percent of the total cultivated area, and estimated at nearly four million hectares of smallholder farms. The crop is produced for grain and leaves, mostly for household consumption but it is becoming increasingly important as a supplement for household income.

But while its potential for food, protein and income is recognised, the realisation of such potential is still limited by drought due to irregular and insufficient rain; affliction by pests such as aphids, flower thrips and nematodes; diseases such as cowpea aphid mosaic virus and cowpea golden mosaic virus; and cultivation of low-yielding and non-improved varieties.

…we backcross to varieties with traits that farmers prefer…”

Q: And on cowpea research and breeding?
Since 2008, Universidade Eduardo Mondlane [UEM] established a cowpea-breeding programme for addressing some of the limiting constraints affecting cowpea production and productivity. This has been possible through collaboration with different funding institutions such as the Generation Challenge Programme.

Photo: UEM

2008: Screening of the 300 genotypes.

That same year [2008], a UEM research team that I coordinate qualified for a GCP capacity-building à la carte grant. In this project, we screened 300 Mozambican cowpea lines for drought tolerance. From these, we identified 84 genotypes that were either high-yielding or drought-tolerant. We further evaluated the 84 genotypes for another three seasons in two locations. From the 84, we identified six genotypes that not only had the two sought-after traits, but were also adapted to different environments.

In 2010, the UEM team joined the TLI project. For the six pre-identified genotypes, the UEM breeding programme is using marker-assisted recurrent selection [MARS] and marker-assisted backcrossing [MABC], combining drought tolerance and resistance to major biotic stresses occurring in Mozambique. In MABC, we are conducting a backcross to varieties with traits that farmers prefer, which includes aspects such as large seeds, early maturity and high leaf production.

…we conducted a farmers’ participatory varietal selection to glean farmers’ perceptions and preferences on cowpea varieties and traits…”

Q: What is the main focus in your work, and how and when do farmers come in?
The breeding work conducted by UEM is targeting all Mozambican agroecologies, but with particular focus on southern Mozambique which is drought-prone. In addition to drought, the area is plagued by many pests such as aphids, flower thrips, nematodes and pod-sucking pests. So, in addition to drought tolerance, we are conducting screening and selection for resistance to aphids, flower thrips and nematodes. In the near future, we will start screening for resistance to pod-sucking pests.

2009: field screening of the 84 genotypes in diff locations.

2009: Rogério during field screening of the 84 genotypes in different locations.

In 2009, we conducted a farmers’ participatory varietal selection to glean farmers’ perceptions and preferences on cowpea varieties and traits. From the study, six of the lines passed participatory variety selection with farmers, as they were large-seeded with good leaf production which provides additional food.

we hope to release three varieties in 2015…Our involvement with GCP has not only increased our exposure, but also brought along tangible benefits… I firmly believe black-eyed peas can really make a difference.”

Q: To what would you attribute the successes your team is scoring, and what are your goals for the future, besides screening for pod-sucking pests?
The success of the work that the Eduardo Mondlane team is doing is partly due to the collaboration and partnership with USA’s University of California, Riverside [UCR]. UCR sent us 60 lines from the GCP cowpea reference set* [Editorial note: see explanation at the bottom], which we evaluated for drought tolerance for four seasons in two locations – one with average rainfall and the other drought-prone. As these lines were already drought-tolerant, we tested them for adaptation to the local environment, and for high yield. From the set, we hope to release three varieties in 2015. In addition, for evaluating the different varieties, we also crossed the local varieties with black-eyed peas, which have a huge market appeal: local varieties fetch roughly half a US dollar per kilo, compared to black-eyed peas whose price is in the region of four to five US dollars.

2013: multilocation trials.

2013: multilocation trials.

Our involvement with GCP has not only increased our exposure, but also brought along tangible benefits. For example, previously, nothing was being done on drought tolerance for cowpeas. But now we receive and exchange material, for example, the black-eyed peas from UCR that we received through GCP, which are set to boost production and markets, thereby improving lives and livelihoods. Amongst the varieties we are proposing to release is one black-eye type. I firmly believe black-eyed peas can really make a difference.

In addition, besides funding a PhD for one of our researchers, Arsenio Ndeve, who is currently at UCR, the Generation Challenge Programme, contributed to improvement on storage and irrigation facilities. We purchased five deep freezers for seed storage and one irrigation pump. Presently, we have adequate storage facilities and we conduct trials even during the off-season, thanks to the irrigation pump provided by GCP.


And on that upbeat note even as the challenge ahead is immense, today’s chat with Rogério ends here. To both pod-sucking pests and all manner of plagues on cowpeas, beware, as thy days are numbered: it would seem that Rogério and team firmly say: “A pox on both your houses!”

*A ‘reference set’ is a sub-sample of existing germplasm collections that facilitates and enables access to existing crop diversity for desired traits, such as drought tolerance or resistance to disease or pests


May 122014


Omari Mponda

Omari Mponda

After getting a good grounding on the realities of groundnut research from Vincent, our next stop is East Africa, Tanzania, where we meet Omari Mponda (pictured). Omari is a Principal Agricultural Officer and plant breeder at Tanzania’s Agricultural Research Institute (ARI), Naliendele, and country groundnut research leader for the Tropical Legumes I (TLI) project, implemented through our Legumes Research Initiative.  Groundnut production in Tanzania is hampered by drought in the central region and by rosette and other foliar diseases in all regions. But all is not bleak, and there is a ray of hope: “We’ve been able to identify good groundnut-breeding material for Tanzania for both drought tolerance as well as disease resistance,” says Omari. Omari’s team are also now carrying their own crosses, and happy about it. Read on to find out why they are not labouring under the weight of the crosses they carry…

…we have already released five varieties…TLI’s major investment in Tanzania’s groundnut breeding has been the irrigation system… Frankly, we were not used to being so well-equipped!”

Q: How  did you go about identifying appropriate groundnut-breeding material for Tanzania?
A: We received 300 reference-set lines from ICRISAT [International Crops Research Institute for the Semi-Arid Tropics], which we then genotyped over three years [2008– 2010] for both drought tolerance and disease resistance. After we identified the best varieties, these were advanced to TLII [TLI’s sister project] for participatory variety selection with farmers in 2011–2012, followed by seed multiplication. From our work with ICRISAT, we have already released five varieties.

Harvesting ref set collection at Naliendele_w

Harvesting the groundnut reference-set collection at Naliendele. A ‘reference set’ is a sub-sample of existing germplasm collections that facilitates and enables access to existing crop diversity for desired traits, such as drought tolerance or resistance to disease or pests.

ARI–Naliendele has also benefitted from both human and infrastructure capacity building. Our scientists and technicians were trained in drought phenotyping at ICRISAT Headquarters in India. One of our research assistants, Mashamba Philipo, benefitted from six-month training, following which he advanced to an MSc specialising in drought phenotpying using molecular breeding. In his work, he is now using drought germplasm received from ICRISAT. In terms of laboratory and field infrastructure, the station got irrigation equipment to optimise drought-phenotyping trials. Precision phenotyping and accurate phenotypic data are indispensable for effective molecular breeding. To facilitate this, ARI–Naliendele benefitted from computers, measuring scales, laboratory ware and a portable weather station, all in a bid to assure good information on phenotyping. But by far, TLI’s major investment in Tanzania’s groundnut breeding has been the irrigation system which is about to be completed. This will be very useful as we enter TLIII for drought phenotyping.


For us, this is a big achievement to be able to do national crosses. Previously, we relied on ICRISAT…we are advancing to a functional breeding programme in Tanzania… gains made are not only sustainable, but also give us independence and autonomy to operate..We developing-country scientists are used to applied research and conventional breeding, but we now see the value and the need for adjusting ourselves to understand the use of molecular markers in groundnut breeding.”

Omari (right), with Hannibal Muhtar (left), who was contracted by GCP to implement infrastructure improvement for ARI Naliendele. See http://bit.ly/1hriGRp

Flashback to 2010: Omari (right), with Hannibal Muhtar (left), who was contracted by GCP to implement infrastructure improvement for ARI Naliendele, and other institutes. See http://bit.ly/1hriGRp

Q: What difference has participating in TLI made?
A: Frankly, we were not used to being so well-equipped, neither with dealing with such a large volume as 300 lines! But we filtered down and selected the well-performing lines which had the desired traits, and we built on these good lines. The equipment purchased through the project not only helped us with the actual phenotyping and being able to accurately confirm selected lines, but also made it possible for us to conduct off-season trials.

We’re learning hybridisation skills so that we can use TLI donors to improve local varieties, and our technicians have been specifically trained in this area. For us, this is a big achievement to be able to do national crosses. Previously, we relied on ICRISAT doing the crosses for us, but we can now do our own crosses. The difference this makes is that we are advancing to a functional breeding programme in Tanzania, meaning the gains made are not only sustainable, but also give us independence and autonomy to operate. Consequently, we are coming up with other segregating material from what we’ve already obtained, depending on the trait of interest we are after.

Another big benefit is directly interacting with world-class scientists in the international arena through the GCP community and connections – top-rated experts not just from ICRISAT, but also from IITA, CIAT, EMBRAPA [Brazil], and China’s DNA Research Institute. We have learnt a lot from them, especially during our annual review meetings. We developing-country scientists are used to applied research and conventional breeding, but we now see the value and the need for adjusting ourselves to understand the use of molecular markers in groundnut breeding. We now look forward to TLIII where we expect to make impact by practically applying our knowledge to groundnut production in Tanzania.

Interesting! And this gets us squarely back to capacity building. What are your goals or aspirations in this area?
A: Let us not forget that TLI is implemented by the national programmes. In Africa, capacity building is critical, and people want to be trained. I would love to see fulltime scientists advance to PhD level in these areas which are a new way of doing business for us. I would love for us to have the capacity to adapt to our own environment for QTLs [quantitative trait loci], QTL mapping, and marker-assisted selection. Such capacity at national level would be very welcome. We also hope to link with advanced labs such as BecA [Biosciences eastern and southern Africa] for TLI activities, and to go beyond service provision with them so that our scientists can go to these labs and learn.

There should also be exchange visits between scientists for learning and sharing, to get up to date on the latest methods and technologies out there. For GCP’s Integrated Breeding Platform [IBP], this would help IBP developers to design reality-based tools, and also to benefit from user input in refining the tools.


SLIDES by Omari on groundnut research and research data management in Tanzania


Apr 042014


Phil Roberts

Phil Roberts

Like its legume relatives, cowpeas belong to a cluster of crops that are still referred to in some spheres of the crop-breeding world as ‘orphan crops’. This, because they have largely been bypassed by the unprecedented advances that have propelled ‘bigger’ crops into the world of molecular breeding, endowed as they are with the genomic resources necessary. But as we shall hear from Phil Roberts (pictured), of the University of California–Riverside, USA, and also the cowpea research leader for the Tropical Legumes I Project (TLI), despite the prefix in the  name, this ‘little kid’ in the ‘breeding block’ called cowpeas is uncowed and unbowed, confidently striding into the world of modern crop breeding, right alongside the ‘big boys’! What more on this new kid on the block of modern molecular breeding? Phil’s at hand to fill us in…

Vigna the VIP that shrinks with the violets
But is no shrinking violet, by any means, as we shall see. Also known  as niébé in francophone Africa, and in USA as black-eyed peas (no relation to the musical group, however, hence no capitals!), this drought-tolerant ancient crop (Vigna unguiculata [L] Walp) originated in West Africa. It is highly efficient in fixing nitrogen in the unforgiving and dry sandy soils of the drier tropics. And that is not all. This modest VIP is not addicted to the limelight and is in fact outright lowly and ultra-social: like their fetching African counterpart in the flower family, the African violet, cowpeas will contentedly thrive under the canopy of others, blooming in the shade and growing alongside various cereal and root crops, without going suicidal for lack of limelight and being in the crowd. With such an easy-going personality, added to their adaptability, cowpeas have sprinted ahead to become the most important grain legume in sub-Saharan Africa for both subsistence and cash. But – as always – there are two sides to every story, and sadly, not all about cowpeas is stellar…

Improved varieties are urgently needed to narrow the gap between actual and potential yields… modern breeding techniques… can play a vital role”

A cowpea experimental plot at IITA.

A cowpea experimental plot at IITA.

What could be, and what molecular breeding has to do with it
Yields are low, only reaching a mere 10 to 30 percent of their potential, primarily because of insect- and disease-attack, sometimes further compounded by chronic drought in the desiccated drylands cowpeas generally call home. “Improved varieties are urgently needed to narrow the gap between actual and potential yields,” says Phil. The cowpea project he leads in TLI is implemented through GCP’s Legume Research Initiative. Phil adds, “Such varieties are particularly valuable on small farms, where costly agricultural inputs are not an option. Modern breeding techniques, resulting from the genomics revolution, can play a vital role in improving cowpea materials.”

He and his research team are therefore developing genomic resources that country-based breeding programmes can use. Target-country partners are Institut de l’Environnement et de Recherches Agricoles (INERA) in Burkina Faso; Universidade Eduardo Mondlane in Mozambique; and Institut Sénégalais de Recherches Agricoles (ISRA) in Senegal. Other partners are the International Institute of Tropical Agriculture (IITA) headquartered in Nigeria and USA’s Feed the Future Innovation Labs for Collaborative Research on Grain Legumes and for Climate Resilient Cowpeas.

It’s a lot easier and quicker, and certainly less hit-or-miss than traditional methods!… By eliminating some phenotyping steps and identifying plants carrying positive-trait alleles for use in crossing, they will also shorten the time needed to breed better-adapted cowpea varieties preferred by farmers and markets.”

Cowpea seller at Bodija Market, Ibadan, Nigeria.

Cowpea seller at Bodija Market, Ibadan, Nigeria.


On target, and multiplying the score
[First, a rapid lesson on plant-genetics jargon so we can continue our story uninterrupted: ‘QTLs’ stands for quantitative trait loci, a technical term in quantitative genetics to describe the locations where genetic variation is associated with variation in a quantitative trait. QTL analysis estimates how many genes control a particular trait. ‘Allele’ means an alternative form of a the same gene. Continuing with the story…]

The curved shape means that these cowpea pods are mature and ready for harvesting.

Culinary curves and curls: the curved shape means that these cowpea pods are mature and ripe for harvesting.

“We first verified 30 cowpea lines as sources of drought tolerance and pest resistance,” Phil recalls. “Using molecular markers, we can identify the genomic regions of the QTLs that are responsible for the desired target phenotype, and stack those QTLs to improve germplasm resistance to drought or pests. It’s a lot easier and quicker, and certainly less hit-or-miss than traditional methods! However, standing alone, QTLs are not the silver bullet in plant breeding. What happens is that QTL information complements visual selection. Moreover, QTL discovery must be based on accurate phenotyping information, which is the starting point, providing pointers on where to look within the cowpea genome. Molecular breeding can improve varieties for several traits in tandem,” suggests Phil. “Hence, farmers can expect a more rapid delivery of cowpea varieties that are not only higher-yielding, but also resistant to several stresses at once.”

And what are Phil and team doing to contribute to making this happen?

The genomic resources from Phase I – especially genotyping platforms and QTL knowledge – are being used in Phase II of the TLI Project to establish breeding paradigms, using molecular breeding approaches,” Phil reveals. He adds that these approaches include marker-assisted recurrent selection (MARS) and marker assisted back-crossing (MABC). “These paradigms were tested in the cowpea target countries in Africa,” Phil continues. “By eliminating some phenotyping steps and identifying plants carrying positive-trait alleles for use in crossing, they will also shorten the time needed to breed better-adapted cowpea varieties preferred by farmers and markets.”

… best-yielding lines will be released as improved varieties… others will be used…as elite parents…”

Future work
What of the future? Phil fills us in: “The advanced breeding lines developed in TLI Phase II are now entering multi-location performance testing in the target African countries. It is expected that best-yielding lines will be released as improved varieties, while others will be used in the breeding programmes as elite parents for generating new breeding lines for cowpeas.”

Clearly then, the job is not yet done, as the ultimate goal is to deliver better cowpeas to farmers. But while this goal is yet to be attained and – realistically – can only be some more years down the road, it is also equally clear that Phil and his team have already chalked up remarkable achievements in the quest to improve cowpeas. They hope to continue pressing onwards and upwards in the proposed Tropical Legumes III Project, the anticipated successor to TLI and its twin project TLII – Tropical Legumes II.


Mar 312014
Vincent Vadez

Vincent Vadez

Today, we travel to yet another sun-kissed spot, leaving California behind but keeping it legumes. We land in Africa for some ground truths on groundnuts with Vincent Vadez (pictured), groundnut research leader for the Tropical Legumes I (TLI) Project. Vincent fills us in on facts and figures on groundnuts and Africa – a tale of ups and downs, triumphs and trials, but also of  ‘family’ alliances not feuds, and of problems, yes,  but also their present or potential solutions. On to the story then! Read on to find out why groundnuts are…

….A very mixed bag in Africa
Groundnuts (Arachis hypogaea L), also called peanuts, are a significant subsistence and food crop in sub-Saharan Africa. There, groundnuts are grown in practically every country, with the continent accounting for roughly a quarter of the world’s production. Despite this rosy African statistic, problems abound: for example, nearly half (40 percent) of the of the world’s total acreage for groundnuts is in Africa, which dramatically dims the 25 percent global production quota.

In Africa, groundnuts are typically cultivated in moderate rainfall areas across the continent, usually by women.

In Africa, groundnuts are typically cultivated in moderate rainfall areas across the continent, usually by women. (See editorial note* at the end of the story)

Clearly then, Africa’s yields are low, borne out by telling statistics which show African production at 950 kilos per hectare, in acute contrast to 1.8 tonnes per hectare in Asia.

…every year, yields worth about USD 500 million are lost”

What ails Africa’s production?
The main constraints hampering higher yields and quality in Africa are intermittent drought due to erratic rainfall, as well as terminal drought during maturation. And that is not all, because foliar (leaf) diseases such as the late leaf spot (LLS) or groundnut rosette are also taking their toll.  Economically speaking, every year, yields worth about USD 500 million are lost to drought, diseases and pests. Plus, the seeding rates for predominantly bushy groundnut types are low, and therefore insufficient to achieve optimal ground cover. Thus, genetic limitations meet and mingle with major agronomic shortcomings in the cultivation of groundnuts, making it…

…. A tough nut to crack
Groundnuts are mostly cultivated by impoverished farmers living in the semi-arid tropics where rainfall is both low and erratic.

Tough it may be for crop scientists, but clearly not too tough for these two youngsters shelling groundnuts at Mhperembe Market, Malawi.

. Tough it may be for crop scientists, but clearly not too tough for these two youngsters shelling groundnuts at Mhperembe Market, Malawi.

“To help double the productivity of this crop over the next 10 years, we need to improve groundnuts’ ability to resist drought and diseases without farmers needing to purchase costly agricultural inputs,” says Vincent.

But the crop’s genetic structure is complex, plus, for resistance to these stresses, its genetic diversity is narrow. “Groundnuts are therefore difficult and slow to breed using conventional methods,” says Vincent. And yet, as we shall see later, groundnuts are distinctly disadvantaged when it comes to molecular breeding. But first, the good news!

…wild relatives have genes for resisting the stresses… molecular markers can play a critical role”

Why blood is thicker than water, and family black sheep are valued
Kith and kin are key in groundnut science. Vincent points out that groundnuts have several wild relatives that carry the necessary genes for resisting the stresses – especially leaf diseases – to which the crop is susceptible. These genes can be transferred from the wild cousins to the cultivated crop by blending conventional and molecular breeding techniques. But that is easier said than done, because cultivated groundnuts can’t cross naturally with their wild relatives owing to chromosomic differences.

Groundnut flower

Groundnut flower

“In modern breeding, molecular markers can play a critical role,” says Vincent. “Using markers, one can know the locations of genes of interest from an agronomic perspective, and we can then transfer these genes from the wild relatives into the groundnut varieties preferred by farmers and their markets.”

[The] ‘variegated’ partnership has been essential for unlocking wild groundnut diversity…”

Partnerships in and out of Africa, core capacities
“Partners are key to this work,” says Vincent. The groundnut work is led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), with collaborators in the target countries, which are Malawi (Chitedze Agricultural Research Centre), Senegal (Institut sénégalais de recherches agricoles ‒ ISRA) and Tanzania (Agricultural Research Institute, Naliendele), Moving forward together, continuous capacity building for partners in Africa is part and parcel of the project. To this end, there have been several training workshops in core areas such as molecular breeding and phenotyping, farmer field days in the context of participatory varietal selection, as well as longer-term training on more complex topics such as drought, in addition to equipping the partners with the critical infrastructure needed for effective phenotyping.

Freshly dug-up groundnuts.

Freshly dug-up groundnuts.

Further afield out of Africa, Vincent’s team also collaborates with the Brazilian Agricultural Research Corporation (EMBRAPA), France’s Centre de coopération internationale en recherche agronomique pour le développement ‒ CIRAD, and USA’s University of Georgia.

This ‘variegated’ partnership has been essential for unlocking the wild groundnut diversity when about 12 years ago the EMBRAPA team successfully generated a number of ‘synthetic’ groundnuts from their wild relatives. Unlike the wild groundnuts, these synthetic groundnuts can be crossed to the cultivated type, bringing with them treasure troves of beneficial genes pertaining to the wild that would be otherwise unreachable for the cultivated varieties. Taking this one step further, the CIRAD‒ISRA team, in a close North‒South partnership, has used one of the synthetics from the Brazilian programme to generate new genetic diversity in the groundnut cultivar Fleur11. They are using additional synthetics from ICRISAT to further enlarge this genetic diversity in cultivated groundnuts.

These techniques and tools provide signposts on the genome of varieties for characteristics of importance”

A world first for an ‘orphan’, goals achieved, and what next
Among other goals, the team notably achieved a world first: “To produce the first SSR-based genetic linkage map for cultivated groundnuts!” declares Vincent. SSR stands for simple sequence repeat. The map was published in 2009,  followed later on by a groundnut consensus map in 2012.

Youngster bearing fresh groundnuts along River Gambia in Senegal.

Youngster bearing fresh groundnuts along River Gambia in Senegal.

But what do these maps and their publication mean for groundnut production? Vincent explains: “These techniques and tools provide signposts on the genome of varieties for characteristics of importance ‒ for instance, resistance to a disease ‒ and these are used in combination to speed up the development of groundnut varieties that are more resistant to the stresses found in the harsh environments where most of the tropical world’s poor farmers live. Accelerating development means quicker delivery to farmers who are at high risk of going hungry. TLI Phase I produced synthetic groundnuts with new genes for disease resistance.”

In Phase II of the TLI Project which terminates in mid-2014, the team has continued to identify new genetic and genomic resources, for instance new sources of drought resistance from the germplasm and which are currently being used in the development of new breeding stocks. What is significant about this is that groundnuts ‒ like most other members of the legume family ‒ do not have much in the way of genomic and molecular-genetic resources, and are in fact consequently referred to in some circles as ‘orphans’ of the genome revolution. The focus has also been on resistance to rust, early and late leaf spot, and rosette – all economically critical diseases – by tapping the resilience of GBPD4, a cultivar resistant to rust and leaf spot, and introducing its dual resistance to fortify the most popular varieties against these diseases. The team also hopes to scale up these promising examples.

We believe this team is firmly on the way to fulfilling their two-fold project objectives which were: (1) to develop genomic resources and produce the first molecular-breeding products of the crop by injecting  disease resistance (from TLI Phase I work) into farmer- and market-preferred varieties; and, (2)  to lay the foundation for future marker-assisted recurrent selection (MARS) breeding by tapping on newly identified sources of drought tolerance.

 the genetic stocks that hold the most promise to overcome leaf disease are found in the wild relatives… A thorough reflection is needed to combine good genetics with sound agronomic management”

The future
But the team is not resting on their laurels, as the work will not stop with the fulfillment of project objectives. In many ways, their achievements are in fact just the beginning. The new breeding stocks developed during TLI Phase II need to be evaluated further for their drought tolerance and disease resistance prior to their deployment in breeding programmes, and this activity ‒ among others ‒ is included for the next phase of the work in the proposed Tropical Legumes III project. In particular, the genetic stocks that hold the most promise to overcome leaf disease are found in the wild relatives. Thus, the existing materials need to be fully exploited and more need to be produced to cover the full breadth of potential stresses. Vincent adds “Of course an increasing part of the efforts will be about assuring quality evaluation data, meaning we must continue to significantly enhance the capacity ‒ both human and physical ‒ of our partners in target countries. Last but not least, the good wheat and rice cultivars that directly arose from the green revolution would have been nothing without nitrogen fertiliser and irrigation.” Vincent adds that the same applies to groundnuts: they are cultivated in infertile soil, at seeding rates that are unlikely to optimise productivity.

Groundnut drawing

Groundnut drawing

For this reason, and others explained above, “A thorough reflection is needed to combine good genetics with sound agronomic management,” Vincent concludes, stressing the importance of what he terms as ‘looking beyond  the fence’. Vincent’s parting shot, as our conversation draws to close: “In fact, I have grown increasingly convinced over the past year that we probably overlook those agronomic aspects in our genetic improvements at our peril, and we clearly need a re-think of how to better combine genetic improvement with the  most suitable and farmer-acceptable agronomic management of the crop.”

Much food for thought there! And probably the beginnings of an animated conversation to which a groundnut crop model, on which Vincent and team are currently working, could soon yield some interesting answers on the most suitable genetic-by-management packages, and therefore guide the most adequate targets for crop improvement.


*Editorial note: Erratum – Photo changed on April 8 2014, as the previous one depicted chickpeas, not groundnuts. We  apologise to our readers for the error.

Mar 062014
Restless Rebecca
Rebecca Nelson

Rebecca Nelson

I’m a mother and a wife. The idea of so many mothers not being able to feed their families, and so many children not getting the nutrients they need to reach their potential, has always pained me.” – Rebecca Nelson (pictured), Professor, Plant Pathology and Plant-Microbe Biology, Cornell University, USA

In this dispatch from the ‘frontline’, fired up and leading the charge against crop disease is ‘frontier’ scientist, restless Rebecca Nelson. Where does Rebecca’s restlessness and consequent fire come from? She says it has always bothered her that a billion people go hungry every single day

Wrestling Rebecca: feeding families one disease-resistant crop at a time
Wanting to remedy this billion-strong calamity, Rebecca has spent the last quarter century working with national and international institutes in Asia, Africa and the Americas. During this time, she has focused on understanding the ways in which plants defend themselves against diseases.

“An amazing percentage of crops are lost to pests and diseases in the developing world each year, which in turn leads to lack of food and impoverishes local economies,” she says. “These farmers can’t afford the herbicides and pesticides that developed-world farmers use to protect their crops, and those are not great solutions to the problems anyway. So it’s important to find ways to help these crops defend themselves.”

This means identifying crops with disease-resistant traits and using them to breed disease-resistant crops with long-lasting protection from a multitude of diseases.

We were really grateful that the GCP funded us so we could continue to understand and build resistance to rice blast and bacterial blight, and to connect the work on rice and maize”

Travels and travails to make a difference
After completing a PhD in zoology at the University of Washington, USA, in 1988, Rebecca spent eight years in The Philippines at the International Rice Research Institute (IRRI) and then five years at the International Potato Center in Peru. “I wanted to get out into the world and try and have a practical impact instead of doing research for the sake of research,” she says.

During her time in The Philippines, Rebecca worked on several rice disease-resistance projects. She was to continue many of these projects nine years later, as part of her GCP project – Targeted discovery of superior disease QTL alleles in the maize and rice. “We were really grateful that GCP funded us so we could continue to understand and build resistance to rice blast and bacterial blight, and to connect the work on rice and maize,” she says.

Rebecca was also delighted to involve her IRRI mentor, Hei Leung (then a GCP Subprogramme Leader for genomics), and friend, Masdiar Bustamam, of the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD). During her time at IRRI, Rebecca and her IRRI team had worked with Masdiar to establish her laboratory. “It was really pleasing to have Masdiar participate in the project and to see how far she and her lab had come since our earlier collaboration. The difference is that they now made a markedly significant contribution to the project in advancing the understanding of inheritance of rice blast and sheath blast resistance, and they developed germplasm that has really good resistance to these diseases.”

I’ve always been grateful to GCP for supporting me at that transitional stage in my career…. [I] was a relative newbie when it came to working with maize. However, I was lucky to have some really great collaborators…James helped me a lot at the start of the project and throughout. Even though our project is finished, we have teamed up on a number of other projects to continue what we started.

Tentative transition from rice to maize; shunting between class and grant-giving
Despite winning a merit-based competitive grant, Rebecca confesses she wasn’t sure GCP would accept her proposal, owing to her  then limited experience in maize research. “I’ve always been grateful to GCP for supporting me at that transitional stage in my career. I’d just returned from Peru and taken up a position at Cornell and was at that time a relative newbie when it came to working with maize. However, I was lucky to have some really great collaborators.”

Rebecca (left) on a field visit to Kenya in September 2006. On the left is John Okalembo of Moi University, with James Gethi behind the camera.

Rebecca (left) on a field visit to Kenya in September 2006. On the left is John Okalembo of Moi University, with James Gethi behind the camera.

One such collaborator, who Rebecca is thankful to have had on her project, was James Gethi, of the Kenya Agricultural Research Institute (KARI), and a leading researcher in Kenya. At the time, James was a recent Cornell graduate who was returning home to help bolster his nation’s crop-research capabilities. “James helped me a lot at the start of the project and throughout. Even though our project is finished, we have teamed up on a number of other projects to continue what we started.”

At Cornell, Rebecca oversees her own laboratory and still finds time to teach a class on international agriculture and rural development. She also serves as scientific director for the McKnight Foundation’s Collaborative Crop Research Program (CCRP), a grants programme funding agricultural research in developing countries.

Growing up with science…and a moderate Rebecca rebellion!
As our conversation draws to a close, Rebecca reveals she is currently skyping from the bedroom she grew up in, in Bethesda, Maryland, half an hour from downtown Washington DC, USA. “I’m down visiting my parents before I jet off to West Africa tomorrow,” she says where she is carrying out her CCRP commitments.

Rebecca credits her parents for encouraging her scientific inquisitiveness and determination to aid those in need. “Both of my parents are physicians, as is my younger brother. I thought I was a rebel with my interest in agriculture, but my younger sister is a farmer and agroecologist, so I guess we’re both straddling agriculture and science,” Rebecca says with a laugh.

“In all honesty though, my parents encouraged all of us to follow what we were fascinated by and passionate about, and for me and my sister, that was agriculture. We reared goats in our suburban backyard, dissected animal road-kills on the kitchen table and even turned the  family swimming pool into a fish-pond because we wanted to learn about fish farming!” Rebecca recollects with great fondness.

I still get a kick out of trying to understand the biology of disease resistance and to try to help develop disease-resistant crops, which will help alleviate the fallout from crop failure and subsequent food shortages in developing nations”

Wife and mum, manager and mentor, and what gives Rebecca a kick
Rebecca says she and her journalist husband, Jonathan Miller, try to encourage their two sons, William and Benjamin, in the same manner. She also says she uses a similar theory as a mentor. “I love interacting with the young talent and I like to think I’ve grown as a person the more that I’ve evolved as a manager and mentor.”

Although she spends most of her time at her desk or on a plane or in a meeting room, Rebecca is always keen to jump back into the field and familiarise herself with the science she is overseeing. “I still get a kick out of trying to understand the biology of disease resistance and to try to help develop disease-resistant crops, which will help alleviate the fallout from crop failure and subsequent food shortages in developing nations.”



cheap ghd australia