Oct 242014
 

OAweek2014By Eloise Phipps

Imagine the scene: it is the dead of night, and you are engaged on a dangerous mission. You are tense, alert for any noise. You must complete your task without being seen, or risk the shame and humiliation of failure… but it is not a pleasant undertaking!

Your mission? A critical matter of honour. To dispose of your family’s cassava peelings – not with the rest of your household waste, but smuggled into the murky depths of the pit latrine. Why?

“The stigma about cassava is mostly among the Kikuyu people of central Kenya,” explains Henry Ngugi, Kenyan scientist and former Maize Pathologist for Latin America at the International Maize and Wheat Improvement Center (CIMMYT). “Traditionally, the Kikuyu are very proud, and self-sufficiency in basic needs such as food is an important factor in this. That is, you cannot be proud if you cannot feed yourself and your family. Now, the other part of the equation regarding cassava is that, traditionally, cassava was eaten during seasons of severe food shortages. It is a hardy and drought-tolerant crop so it would be available when the ‘good food’ was not. This also meant that it was associated with hunger and poverty – inability to feed oneself.”

“Another factor that may have played a role in the way the Kikuyu view cassava is that some of the traditional cultivars produced high levels of cyanide and were toxic [if not properly cooked], so as a crop it was not very highly regarded to start with. Improved cultivars have been bred to remove this problem. But because of these issues, many people would not want their neighbours to know they were so hungry they had to rely on cassava, and would go to great lengths to conceal any evidence!”

The story is not the same everywhere: graceful and strong, this farmer tends her field of cassava, in the village of Tiniu, near Mwanza, northern Tanzania.

Opening up for Open Access Week

This year, 20–26 October is Open Access Week, a global event celebrating, promoting and sharing ideas on open access – that is, making research results, including both publications and data, freely and publicly available for anyone to read, use and build upon. Even more exciting for us, this year’s theme is ‘Generation Open’, reflecting the importance of students and researchers as advocates for open access – a call that falls on fertile ground at the Generation Challenge Programme  (video below courtesy of UCMerced on YouTube).

We at GCP have been reflecting this week on different virtues of openness and transparency, and the perils of shame and secrecy. But before we go on, we’re sticking with cassava (carrying over from World Food Week!) but crossing the globe to China to celebrate the latest open-access publication to join the GCP parade. ‘Cassava genome from a wild ancestor to cultivated varieties’ by Wang et al is still practically a newborn, published on the 10th of October 2014.

The article presents draft genome sequences of a wild ancestor and a domesticated variety of cassava, with additional comparative analyses with other lines. It shows, for example, that genes involved in starch accumulation have been positively selected in cultivated cassava, and those involved in cyanogenic (ie, cyanide-producing) glucoside formation have been negatively selected. The authors hope that their results will contribute to better understanding of cassava biology, and provide a platform for marker-assisted breeding of better cassava varieties for farmers.

The research was carried out by a truly international team, led by scientists from the Chinese Academy of Tropical Agriculture Sciences (CATAS) and Chinese Academy of Sciences (CAS). Authors Wenquan Wang of CATAS and Bin Liu of CAS are delighted that their publication will be freely available, particularly in a journal with the prestige and high impact of the Nature family. As they observe, the open access to the paper will spread their experience and knowledge quickly to every corner of China and of the world where people have internet connections.

The work incorporated and partially built upon previous work mapping the cassava genome, which was funded by GCP in our project on Development of genomic resources for molecular breeding of drought tolerance in cassava (G3007.03), led by Pablo Rabinowicz, then with the University of Maryland, USA. This provides a perfect example of the kind of constructive collaboration and continuation that open access and sharing of research results can facilitate: by building on what has already been done, rather than re-inventing the wheel or working in isolation, we share, disseminate and amplify knowledge more rapidly and efficiently, with win–win outcomes for all involved.

Cassava farmers in Vietnam.

One thing that makes the latest research even more special is that it was published in Nature Communications, which marked Open Access Week by going 100 percent open access from the 20th of October, making it an open-access flagship within the Nature Publishing Group – a clear indicator of the ever-increasing demand for and credibility of open-access publishing. We congratulate all of our open-access authors for making their work publicly available, and Nature Communications for its bold decision!

A matter of perspective: turning shame to pride and fears to opportunities

No shame here: a little girl clutches a cassava root in Kenya.

Of course, human beings worrying about their social status is old as humanity itself and nothing new. Food has never been an exception as an indicator. Back in mediaeval Europe, food was a hugely important status symbol: the poor ate barley, oats and rye, while only the rich enjoyed expensive and prestigious wheat. Although our ideas about what is luxurious have changed – for example, sugar was considered a spice thanks to its high cost – rare imported foods were something to boast about just as they might be today.

But why are we ashamed of eating the ‘wrong foods’ – like cassava – when we could take pride in successfully feeding our families? Many of the things we tend to try to hide are really nothing to be ashamed of, and a simple change in perspective can turn what at first seem like weaknesses into sources of pride (and there are two sides to the cassava saga, as we shall see later).

Throughout its existence, GCP has been characterised by its openness and transparency. We have worked hard to be honest about our mistakes as well as our successes, so that both we and others can learn from them. The rewards of this clear-eyed approach are clearly noted in our Final External Review: “GCP has taken an open and pro-active attitude towards external reviews – commissioning their own independent reviews (the case of the current one) as well as welcoming a number of donor reviews. There have been clear benefits, such as the major governance and research reforms that followed the EPMR [External Programme and Management Review] and EC [European Commission] Reviews of 2008. These changes sharply increased the efficiency of GCP in delivering benefits to the poor.”

Transparent decision-making processes for determining choices of methods have also improved the quality of our science, while open, mutually respectful relationships – including open data-sharing – have underpinned our rich network of partnerships.

One aspect of this open approach is, of course, our commitment to open access. All of our own publications are released under Creative Commons licences, and we encourage all GCP grant recipients to do the same, or to pursue other open-access options. When exploring our research publications you will note that many are directly available to download. Our website will act as an archive for the future, ensuring that GCP publications remain online in one place after GCP’s closure in December this year. See our Global Access Policy and our policy on data-sharing.

“Open access journals are just terrific,” says Jean-Marcel Ribault, Director of GCP. “It’s great to enable access to publications, and it’s important to promote sharing of data and open up analysis too. The next big challenge is data management, and assuring the quality of that data. At the end of the day, the quality of the information that we share with others is fundamental.”

Proud in pink and polka dots: a farmer shows off a healthy cassava leaf in a plantation in Kampong Cham, Cambodia.

That’s a challenge that many other organisations are also grappling with. Richard Fulss, Head of Knowledge Management at our host CIMMYT is currently working on standards and approaches for the quality and structure of data, with the aim of implementing open access to all data within five years, meeting guidelines being put in place across CGIAR. “The issues to resolve are threefold,” he explains. “You have a licence issue, a technology issue – including building the right platform – and a cultural issue, where you need to build a culture of knowledge sharing and make open access publishing the norm rather than the exception.”

Our partners at the International Center for Tropical Agriculture (CIAT) already have a strong open-access policy, and are debunking some cherished open-access myths.

It’s good to talk: saying no to secrecy

Back to cassava, and of course not everyone feels the same way about the same crop, as there are many sides to any story. In China, demand for cassava is soaring – for food, for animal feed and most of all as a raw material for starch and biofuel production – making breeding of resilient, productive cassava varieties even more important. Even within Kenya, there are those who are quicker to see the crop’s virtues. The Luhya people of western Kenya often mix cassava with finger millet or sorghum to make flour for ugali (a stiff porridge or dough eaten as a staple food in vast swathes of Eastern and Southern Africa). As Henry explains “one reason was that such ugali ‘stayed longer in the stomach’ in literal translation from local parlance meaning it kept you full for longer – which is scientifically sound because cassava has a crude starch that takes longer to digest, and lots of fibre!”

Meanwhile, watch the delightful Chiedozie Egesi, Nigerian plant breeder and molecular geneticist, in the video below to hear all about the high potential of cassava, both as a food in itself and as a raw material to make flour and other products – something some farmers have already spotted. “Cassava can really sustain a nation… we’ve seen that it can,” he says. “You have in Nigeria now some of the Zimbabwean farmers who left Zimbabwe, got to Nigeria, and they changed from corn [maize] to cassava, because they see the potential that it has.”

The power of openness is already showing itself in the case of cassava, as well as other root, tuber and banana crops. Check out RTBMaps, an online atlas developed by the CGIAR Research Program on Roots, Tubers and Bananas (RTB), using ‘scientific crowdsourcing’ to combine data on a wide range of variables, shared by many researchers, in a single map. Putting all that information together can help people make better decisions, for example on how to target breeding, or where disease threats are likely to be strongest. And for a sweet serving, here’s our humble contribution from Phase I to a world-favourite dessert!

We leave you with one final thought. It is not just cassava that is plagued with pride and prejudice; many foods attract high or low statuses in different regions – or even just variations of the same food. People in Asia and North America, for example, tend to prefer yellow maize, while Africans like their maize white. In fact, yellow maize still carries a powerful stigma in many parts of Africa, as this was the colour of the maize that arrived as external  aid in periods of famine, oftentimes perceived in Africa as animal fodder and not human food in the countries it was sourced from. And thus yellow maize became synonymous with terrible times and the suffering and indignity of being unable to feed oneself and one’s family. Consequently, some of the famine-stricken families would only cook the yellow ‘animal-fodder’  maize in the dead of night, to avoid ‘detection’ and preserve family pride and honour.

This might at first blush appear to be a minor curiosity on colour and coloured thinking, were it not for the fact that when crops – such as sweet potato, cassava, or indeed maize – are bred to be rich in pro-vitamin A, and so provide plenty of the vitamin A that is particularly crucial for young children and pregnant women, they take on a golden yellow-orange hue. When promoting the virtues of this enriched maize in parts of Africa, it’s vital to know that as ‘yellow maize’ it would fall flat on its face, but as ‘orange maize’ or ‘golden maize’ it is a roaring success. A tiny difference in approach and label, perhaps, but one that is a quantum leap in nutritional improvement, and in ‘de-stigmatisation’ and accelerating adoption. Ample proof then that sharing details matters, and that it’s good to talk – even about the things we are a little ashamed of, thereby breathing substance into the spirit of the theme ‘Generation Open’.

Do have some of these uncomfortable but candid conversations this Open Access Week and live its spirit to the fullest every day after that! As for us here at GCP, we shall continue to sow and cultivate the seeds of Generation next for plant breeding into the future, through our Integrated Breeding Platform which will outlive GCP.

A little girl in Zambia gets a valuable dose of vitamin A as she eats her orange maize.

Eyes dancing with past, present or future mischief, two cheeky young chappies from Mozambique enjoy the sweet taste of orange sweet potato enriched with pro-vitamin A.

Links:

Aug 292014
 

“…I wanted to contribute in a similar way” – Eva Weltzien

 

Eva Weltzien

Eva Weltzien

Learning about the work of Nobel laureate, Norman Borlaug, in high school inspired Eva Weltzien to become a plant breeder so she too could contribute to improving the living conditions in the developing world. Today, Eva is a Principal Scientist in sorghum breeding and genetic resources at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in Mali.

“Not only did Norman Borlaug revolutionise agriculture by breeding high-yielding wheat varieties, he then selflessly distributed these to the countries in the world that most needed them, saving hundreds of millions from starvation,” Eva recollects passionately, as she speaks about her scientific hero. “I remember being inspired when he won his Nobel Prize in 1970, mainly for the fact that agricultural research was actually being seen as contributing to world peace,” says Eva. “I knew then that I wanted to contribute in a similar way.”

I…wanted to take a break from… theory and instead gain an appreciation for plant breeding by working in the field”

The path to plant breeding, and pearls along the way
Eva was raised in her native Germany, as well as in Beirut, Lebanon, where she spent six years when her parents were stationed at the local university there. She credits her parents; both plant pathologists, for instilling in her a scientific mind-set from a tender age.

“They taught me to think outside the box and apply my knowledge and understanding to how I made sense of the world,” Eva recalls. “Being plant pathologists, they also encouraged me to observe the environment carefully and treat the earth with respect.”

Upon graduating from high school, Eva deferred going to university and instead worked as a seed technician for a private company in Germany. “I just wanted to take a break from studying theory and instead gain an appreciation for plant breeding by working in the field,” says Eva.

After one year with the company, Eva was ready to start university. During the decade that followed, she completed a Diploma in Agricultural Biology (University of Hohenheim, 1981) and a PhD in Agriculture (Munich University, 1986).

A year after completing her PhD, Eva accepted a postdoc position at Iowa State University, USA, where she met her future husband Fred Rattunde. After a few years, both Eva and Fred moved to India to work with ICRISAT. “I’ve been working for ICRISAT for almost 27 years now,” says Eva. “When I first started, I was working in pearl millet breeding.”

The key challenges have been improving the infrastructure of the national research facilities… as well as increasing the technical training for local researchers…this has slowly improved, particularly in the last four years with the funding and help through the GCP Sorghum Research Initiative.…we can see our work making an impact on people’s lives…”

Off to Africa, and bearing fruit
In 1998, ICRISAT offered Eva and Fred positions in Mali where they would take responsibility for the Institute’s sorghum-breeding programme in West Africa.

OLYMPUS DIGITAL CAMERA

Evaluating Eva: In Dioila district, Mali, evaluating the panicles of a new sorghum line after harvest.

“It was a great challenge that we both wanted to explore,” says Eva. “The key challenges have been improving the infrastructure of the national research facilities to do the research as well as increasing the technical training for local agronomists and researchers. Over the past 15 years, this has slowly improved, particularly in the last four years, with the funding and facilitation through the GCP Sorghum Research Initiative. Now we can see our work making an impact on people’s lives in West Africa.” (see GCP’s work on infrastructure improvement)

…we are closer to delivering more robust sorghum varieties which will help farmers and feed the ever-growing population in West Africa.”

Improving drought tolerance in sorghum for Africa
The second phase of GCP’s Sorghum Research Initiative focuses on Mali, where sorghum-growing areas are large, and distributed over a wide range of rainfall regimes.

Eva and her team are currently collaborating with local researchers at L’Institut d’économie rurale (IER), Mali and France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD) on a project to test a novel molecular-breeding approach – backcross nested association mapping (BCNAM). Eva says the approach has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to poor soil fertility conditions.

“We don’t have these type of molecular-breeding resources available in Mali, so it’s really exciting to be a part of this project.”  Still, Eva and her colleagues continue to press forwards in this new frontier in plant science, making good advances in another parallel but closely related project that Eva leads in the GCP Comparative Genomics Research Initiative.

Eva continues, “We’ve had good results in terms of field trials, despite the political situation. Overall, we feel the experience is enhancing our capacity here in Mali, and that we are closer to delivering more robust sorghum varieties which will help farmers and feed the ever-growing population in West Africa.”

Slides (with more links after the slides)

Links

Aug 272014
 
Leon Kochian

Leon Kochian

“By being involved with GCP, I’ve had more opportunities to travel to the developing world and witness the problems that local farmers in these countries are facing, as well as to meet with the local researchers who are trying to overcome these problems. It has made me appreciate that these  researchers also need the capacity to sustainably deal with agricultural problems once the project money starts to dry up.” – Leon Kochian (pictured), Professor, Cornell University, USA; and Director of Robert W Holley Center for Agriculture and Health, United States Department of Agriculture – Agricultural Research Service. Also Product Delivery Leader for GCP’s Comparative Genomics Research Initiative.

Bright and early beginnings in biology
For as long as Leon Kochian can remember, he’d always wanted to be a biologist.

“I remember my second-grade teacher reading a story to us about the white cliffs of Dover and thinking to myself ‘They’re white because they’re covered in the prehistoric remains of dead protozoan’,”’ says Leon with a chuckle. “Yes, I was a weird kid and that sort of stuff [biology] has always interested me.”

Having completed a Bachelor’s Degree in Botany at the University of California, Berkeley, and a PhD in Plant Physiology at the University of California, Davis (both in USA), Leon joined the United States Department of Agriculture based at Cornell University.

For 30 years, he has combined lecturing and supervising duties at Cornell, with his quest to understand the genetic and physiological mechanisms that allow some cereals to tolerate acidic soils.

The GCP model has always attracted me, particularly its focus on making an impact on farmers’ lives… I had already been a successful researcher having published more than 250 papers, but I felt little of that had made any real impact on the world.”

Identifying genes and breeding tolerant crops for African farmers
Leon and Cornell University have been involved with GCP since the Programme’s inception in 2004, playing a lead role in GCP’s Comparative Genomics Research Initiative, of which Leon is the Product Delivery Coordinator. Cornell University is a member of the GCP Consortium, with Leon as Cornell’s representative in the GCP Consortium Committee.

“The GCP model has always attracted me, particularly its focus on making an impact on farmers’ lives,” says Leon, who has been a Principal Investigator for several Comparative Genomics Research Initiative projects. “I had already been a successful researcher having published more than 250 papers, but I felt little of that had made any real impact on the world.”

During the first phase of the project, Leon led a team comprising of researchers from Cornell, EMBRAPA in Brazil and Moi University in Kenya.

In the foreground, left to right, Leon, Jura and Sam in a maize field in Kenya.

Leon (left) with project colleagues, Jurandir Magalhães (EMBRAPA) and Sam Gudu (Moi University) in a maize field in Kenya in May 2010.

“We had been working for many years with both EMBRAPA and Moi University to identify the genes associated with aluminium tolerance in sorghum and maize and saw the potential to apply our research and expand it to explore other cereals such as rice and wheat,” explains Leon.

During GCP Phase I (2004–2008), the team successfully identified and cloned the major sorghum aluminium tolerance gene (AltSB). In Phase II (2009–2014), they are working towards breeding aluminium-tolerant sorghum lines for sub-Saharan Africa as well as applying what they have learnt to discover similar genes in rice and maize.

“Aluminium toxicity is a problem all over the world, but more so in Africa, as most farmers don’t have the money to manage it,” says Leon “These new aluminium-tolerant crops will improve African farmers’ yields, and, in turn, improve their quality of life.”

It’s like match.com for collaborative research and will hopefully foster greater collaboration between the two continents.”

Insights, connections and matchmaking
According to Leon, the funding from GCP has been very beneficial in making significant research progress on the projects he’s been involved with so far, and he is also quick to note the unexpected and very welcome non-monetary benefits from being involved with GCP.

“By being involved with GCP, I’ve had more opportunities to travel to the developing world and witness the problems that local farmers in these countries are facing, as well as to meet with the local researchers who are trying to overcome these problems. It has made me appreciate that these  researchers also need the capacity to sustainably deal with agricultural problems once the project money starts to dry up.”

Working with GCP, Leon has designed and run workshops to train African scientists on molecular breeding techniques and hosted several postgraduate researchers at Cornell. He is now working with GCP collaborators to develop a database that will help African scientists find potential collaborators in USA and the rest of the Americas. “It’s like match.com for collaborative research and will hopefully foster greater collaboration between the two continents,” says Leon.

Research is such a fun and social experience! … I still love getting into the lab and discovering new things. I’ve also learnt to enjoy being the old guy in the lab!”

Growing greyer, growing wiser
Leon says his passion for biology and research is steadfast and has not waned through the years. Although he doesn’t get to do much of the hands-on work these days, it still remains the most enjoyable part of his job. “Research is such a fun and social experience! I still love getting into the lab and discovering new things. I’ve also learnt to enjoy being the old guy in the lab! Just watching and helping young researchers grow and develop their skills is really rewarding. Each of the 13 PhD students I’ve supervised is like one of my kids and I still keep in touch with all of them, as I do with my own PhD supervisor, 30 years on!”

Having recently celebrated his 60th birthday, Leon has no plans on slowing down anytime soon. “I’m currently Director of the Robert W Holley Center for Agriculture and Health, lecturing undergraduate and postgraduate students, supervising two PhD students and sitting on several boards, all the while trying to find time to write papers and do some research. It’s hard work but I enjoy it.”

The three faces of Leon: (1) in the lab in Cornell; (2) in the field courtesy of USDA-ARS; and, (3) delivering opening remarks as Director of the Robert W Holley Center

The three faces of Leon: (1) in the lab in Cornell; (2) in the field, courtesy of USDA–ARS; and, (3) delivering opening remarks as Director of the Robert W Holley Center.

Leon tries to impart this philosophy to his students, believing scientists need to enjoy what they are doing, work hard at it, be flexible and creative, and, most importantly, not have ‘fear of failure’. “I don’t care how smart you are. If you’re not willing to work really hard and learn to improve yourself, then you’re not going to succeed.”

With regard to his GCP projects soon coming to a close when GCP sunsets in December 2014, Leon hopes he and team will succeed in meeting all their goals, but even if they don’t, he’s sure they’ll continue the research and try to discover more about aluminium tolerance. More power to them!

Leon’s slides, with links to more supplementary material after the slides

Links

Jul 232014
 

 

DNA spiral

DNA spiral

Crop researchers including plant breeders across five continents are collaborating on several GCP projects to develop local varieties of sorghum, maize and rice, which can withstand phosphorus deficiency and aluminium toxicity – two of the most widespread constraints leading to poor crop productivity in acidic soils. These soils account for nearly half the world’s arable soils, with the problem particularly pronounced in the tropics, where few smallholder farmers can afford the costly farm inputs to mitigate the problems. Fortunately, science has a solution, working with nature and the plants’ own defences, and capitalising on cereal ‘family history’ from 65 million years ago. Read on in this riveting story related by scientists, that will carry you from USA to Africa and Asia with a critical stopover in Brazil and back again, so ….

… welcome to Brazil, where there is more going than the 2014 football World Cup! Turning from sports to matters cerebral and science, drive six hours northwest from Rio de Janeiro and you’ll arrive in Sete Lagoas, nerve centre of the EMBRAPA Maize and Sorghum Research Centre. EMBRAPA stands for Empresa Brasileira de Pesquisa Agropecuária  ‒  in  English, the Brazilian Agricultural Research Corporation.

Jura_w

Jurandir Magalhães

Jurandir Magalhães (pictured), or Jura as he prefers to be called, is a cereal molecular geneticist and principal scientist who’s been at EMBRAPA since 2002.

“EMBRAPA develops projects and research to produce, adapt and diffuse knowledge and technologies in maize and sorghum production by the efficient and rational use of natural resources,” Jura explains.

Such business is also GCP’s bread and butter. So when in 2004, Jura and his former PhD supervisor at Cornell University, Leon Kochian, submitted their first GCP project proposal to clone a major aluminium tolerance gene in sorghum they had been searching for, GCP approved the proposal.

“We were already in the process of cloning the AltSB gene,” remembers Jura, “So when this opportunity came along from GCP, we thought it would provide us with the appropriate conditions to carry this out and complete the work.”

Cloning the AltSB gene would prove to be one of the first steps in GCP’s foundation sorghum and maize projects, both of which seek to provide farmers in the developing world with crops that will not only survive but thrive in the acidic soils that make up more than half of the world’s arable soils (see map below).

More than half of world’s potentially arable soils are highly acidic.

More than half of world’s potentially arable soils are highly acidic.

… identifying the AltSB gene was a significant achievement which brought the project closer to their final objective, which is to breed aluminium-tolerant crops that will improve yields in harsh environments, in turn improving the quality of life for farmers.”

A star is born: identifying and cloning AltSB
For 30 years, Leon Kochian (pictured below) has combined lecturing and supervising duties at Cornell University and the United States Department of Agriculture, with his quest to understand the genetic and physiological mechanisms behind the ability of some cereals to withstand acidic soils. Leon is also the Product Delivery Coordinator for GCP’s Comparative Genomics Research Initiative.

Leon Kochian

Leon Kochian

Aluminium toxicity is associated with acidic soils and is the primary limitation on crop production for more than 30 percent of farmland in Southeast Asia and Latin America, and approximately 20 percent in East Asia, sub-Saharan Africa and North America. Aluminium ions damage roots and impair their growth and function. This results in reduced nutrient and water uptake, which in turn depresses yield.

“These effects can be limited by applying lime to increase the soil’s pH. However, this isn’t a viable option for farmers in developing countries,” says Leon, who was the Principal Investigator for the premier AltSB project and is currently involved in several off-shoot projects.

Working on the understanding that grasses like barley and wheat use membrane transporters to insulate themselves against subsoil aluminium, Leon and Jura searched for a similar transporter in sorghum varieties that were known to tolerate aluminium.

“In wheat, when aluminium levels are high, these membrane transporters prompt organic acid release from the tip of the root,” explains Leon. “The organic acid binds with the aluminium ion, preventing it from entering the root. We found that in certain sorghum varieties, AltSB is the gene that encodes a specialised organic acid transport protein – SbMATE*  –  which mediates the release of citric acid. From cloning the gene, we found it is highly expressed in aluminium-tolerant sorghum varieties. We also found that the expression increases the longer the plant is exposed to high levels of aluminium.”

[*Editor’s note: different from the gene with the same name, hence not in italics]

Leon says identifying the AltSB gene and then cloning it was a significant achievement and it brought the project closer to their final objective, which he says is “to breed aluminium-tolerant crops that will improve yields in harsh environments, in turn improving the quality of life for farmers.”

This research was long and intensive, but it set a firm foundation for the work in GCP Phase II, which seeks to use what we have learnt in the laboratory and apply it to breed crops that are tolerant to biotic or abiotic stress such as aluminium toxicity and phosphorus deficiency.”

Comparative genomics: finding similar genes in different crops
Wheat, maize, sorghum and rice are all part of the Poaceae (grasses) family, evolving from a common grass ancestor 65 million years ago. Over this time they have become very different from each other. However, at a genetic level they still have a lot in common.

Over the last 20 years, genetic researchers all over the world have been mapping these cereals’ genomes. These maps are now being used by geneticists and plant breeders to identify similarities and differences between the genes of different cereal species. This process is termed comparative genomics and is a fundamental research theme for GCP research as part of its second phase.

rajeev-varshney_1332450938

Rajeev Varshney

“The objective during GCP Phase I was to study the genomes of important crops and identify genes conferring resistance or tolerance to biotic or abiotic stresses,” says Rajeev Varshney (pictured), Director, Center of Excellence in Genomics and Principal Scientist in applied genomics at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). “This research was long and intensive, but it set a firm foundation for the work in GCP Phase II, which seeks to use what we have learnt in the laboratory and apply it to breed crops that are tolerant to biotic or abiotic stress such as aluminium toxicity and phosphorus deficiency.”

Until August 2013, Rajeev had oversight on GCP’s comparative genomics research projects on aluminium tolerance and phosphorus deficiency is sorghum, maize and rice, as part of his GCP role as Leader of the Comparative and Applied Genomics Theme.

“Phosphorus deficiency and aluminium toxicity are soil problems that typically coincide in acidic soils,” says Rajeev. “They are two of the most critical constraints responsible for low crop productivity on acid soils worldwide. These projects are combining the aluminium tolerance work done by EMBRAPA and Cornell University with the phosphorus efficiency work done by IRRI [International Rice Research Institute] and JIRCAS [Japan International Research Centre for Agricultural Sciences] to first identify and validate similar aluminium-tolerance and phosphorus-efficient genes in sorghum, maize and rice, and then, secondly, breed crops with these combined improvements.”

These collaborations are really exciting! They make it possible to answer questions that we could not answer ourselves, or that we would have overlooked, were it not for the partnerships.”

When AltSB met Pup1
Having spent more than a decade identifying and cloning AltSB, Jura and Leon have recently turned their attention to identifying and cloning the genes responsible for phosphorus efficiency in sorghum. Luckily, they weren’t starting from scratch this time, as another GCP project on the other side of the world was well on the way to identifying a phosphorus-efficiency gene in rice.

Led by Matthias Wissuwa at JIRCAS and Sigrid Heuer at IRRI, the Asian base GCP project had identified a gene locus, which encoded a particular protein kinase that allowed varieties with this gene to grow successfully in low-phosphorous conditions. They termed the region of the rice genome where this gene resides as ‘phosphorus uptake 1’ or Pup1 as it is commonly referred to in short.

“In phosphorus-poor soils, this protein kinase instructs the plant to grow larger, longer roots, which are able to forage through more soil to absorb and store more nutrients,” explains Sigrid. “By having a larger root surface area, plants can explore a greater area in the soil and find more phosphorus than usual. It’s like having a larger sponge to absorb more water!”

Read more about the mechanics of Pup-1 and the evolution of the project.

Jura and Leon are working on the same theory as IRRI and JIRCAS, that larger and longer roots enhance phosphorus efficiency. They are identifying sorghum with these traits, using comparative genomics to identify a locus similar to Pup1 in these low-phosphorus-tolerant varieties, and then verify whether the genes at this locus are responsible for the trait.

“So far, the results are promising and we have evidence that Pup1 homologues may underlie a major QTL for phosphorous uptake in sorghum,” says Jura who is leading the project to identify and validate Pup1 and other phosphorus-efficiency QTLs in sorghum.  QTL stands for ‘quantitative trait locus’ which refers to stretches of DNA containing ‒ or linked to ‒ the genes responsible for a quantitative trait  “What we have to do now is to see if this carries over in the field, leading to enhanced phosphorus uptake and grain yield in low-phosphorus soils,” he adds.

Jura and Leon are also returning the favour to IRRI and JIRCAS and are collaborating with both institutes to identify and clone in rice similar genes to the AltSB gene in sorghum.

“These collaborations are really exciting! They make it possible to answer questions that we could not answer ourselves, or that we would have overlooked, were it not for the partnerships,” says Sigrid.

To make a difference in rural development, to truly contribute to improved food security through crop improvement and incomes for poor farmers, we knew that capacity development had to be a continuing cornerstone in our strategy.”

Building capacity in Africa
In GCP Phase II which is more application oriented, projects must have objectives that deliver products and build capacity in developing-world breeding programmes.

Jean-Marcel Ribaut

Jean-Marcel Ribaut

“The thought behind the latter requirement is that GCP is not going to be around after 2014 so we need to facilitate these country breeding programmes to take ownership of the science and products so they can continue it locally,” says Jean-Marcel Ribaut, GCP Director (pictured). “To make a difference in rural development, to truly contribute to improved food security through crop improvement and incomes for poor farmers, we knew that capacity development had to be a continuing cornerstone in our strategy.”

Back to Brazil: Jura says this requirement is not uncommon for EMBRAPA projects as the Brazilian government seeks to become a world leader in science and agriculture. “Before GCP started, we had been working with African partners for five to six years through the McKnight Project. It was great when GCP came along as we were able to continue these collaborations.”

Samuel Gudu

Samuel Gudu

One collaboration Jura was most pleased to continue was with his colleague and friend, Sam Gudu (pictured), from Moi University, Kenya. Sam has been collaborating with Jura and Leon on several GCP projects and is the only African Principal Investigator in the Comparative Genomics Research Initiative.

“Our relationship with EMBRAPA and Cornell University has been very fruitful,” says Sam. “We wouldn’t have been able to do as much as we have done without these collaborations or without our other international collaborators at IRRI, JIRCAS, ICRISAT or Niger’s National Institute of Agricultural Research [INRAN].”

Sam is currently working on several projects with these partners looking at validating the genes underlying major aluminium-tolerance and phosphorus-efficiency traits in local sorghum and maize varieties in Kenya, as well as establishing a molecular breeding programme.

“The molecular-marker work has been very interesting. We have selected the best phosphorus-efficient lines from Brazil and Kenya, and have crossed them with local varieties to produce several really good hybrids which we are currently field-testing in Kenya,” explains Sam. “Learning and using these new breeding techniques will enable us to select for and breed new varieties faster.”

Sam is also grateful to both EMBRAPA and Cornell University for hosting several PhD students as part of the project. “This has been a significant outcome as these PhD students are returning to Kenya with a far greater understanding of molecular breeding which they are sharing with us to advance our national breeding programme.”

We’ve used the knowledge that Jura’s and Leon’s AltSB projects have produced to discover and validate similar genes in maize…We identified Kenyan lines carrying the superior allele of ZmMATE …This work will also improve our understanding of what other mechanisms may be working in the Brazilian lines too.” 

‘Everyone’ benefits! Applying the AltSB gene to maize
Claudia Guimarães (pictured) is a maize geneticist at EMBRAPA. But unlike Jura, her interest lies in maize.

Claudia

Claudia Guimarães

Working on the same comparative genomics principle used to identify Pup1 in sorghum, Claudia has been leading a GCP project replicating the sorghum aluminium tolerance work in maize.

“We’ve used the knowledge that Jura’s and Leon’s AltSBprojects have produced to discover and validate similar genes in maize,” explains Claudia. “From our mapping work we identified ZmMATE as the gene underlying a major aluminium tolerance QTL in maize. It has a similar sequence as the gene found in sorghum and it encodes a similar protein membrane transporter that is responsible for citrate extradition.”

A maize field at EMBRAPA. Maize on the left is aluminum-tolerant while the maize on the right is not.

A maize field at EMBRAPA. Maize on the left is aluminium-tolerant while the maize on the right is not.

Using molecular markers, Claudia and her team of researchers from EMBRAPA, Cornell University and Moi University have developed near-isogenic lines from Brazilian and Kenyan maize varieties that show aluminium tolerance, with ZmMATE present. From preliminary field tests, the Brazilian lines have had improved yields in acidic soils.

“We identified a few Kenyan lines carrying the superior allele of ZmMATE that can be used as donors to develop maize varieties with improved aluminium tolerance,” says Claudia.  “This work will also improve our understanding of what other mechanisms may be working in the Brazilian lines too.”

What has pleased Jura and other Principal Investigators the most is the leadership that African partners have taken in GCP projects.

Cherry on the cereal cake
With GCP coming to an end in December 2014, Jura is hopeful that his and other offshoot projects dealing with aluminium tolerance and phosphorus efficiency will deliver on what they set out to do.

“For me, the cherry on the cake for the aluminium-tolerance projects would be if we show that AltSB improves tolerance in acidic soils in Africa. If everything goes well, I think this will be possible as we have already developed molecular markers for AltSB.”

What has pleased Jura and other Principal Investigators the most is the leadership that African partners have taken in GCP projects.

“This has been a credit to them and all those involved to help build their capacity and encourage them to take the lead. I feel this will help sustain the projects into the future and one day help these developing countries produce varieties of sorghum and maize for their farmers that are able to yield just as well in acidic soils as they do in non-acidic soils.”

In the foreground, left to right, Leon, Jura and Sam in a maize field in Kenya.

In the foreground, left to right, Leon, Jura and Sam in a maize field at the Kenya Agricultural Research Institute (KARI), Kitale, in May 2010. They are examining crosses between Kenyan and Brazilian maize germplasm.

Links

 

 

Nov 122013
 

 

 

Participants at the 2013 GRM. High-resolution version on Flickr: http://bit.ly/1fxhkmQ

Participants at the 2013 GRM. High-resolution version on our Flickr account.

The General Research Meeting (GRM) is by far the largest and most important event on our calendar. This year’s GRM was held on September 27‒30 2013, with 135 people from 35 countries attending (see list).

Various presentations were made on progress and next steps on research in GCP projects, including for GCP’s Integrated Breeding Platform (IBP). Focus was on GCP’s nine focus crops in Phase II – beans, cassava, chickpeas, cowpeas, groundnuts, maize, rice, sorghum and wheat, with the poster sessions adding a couple more (see ‘sixty posters’ below). You can view the presentations made on our website  (to see them in the context of the overall agenda), or on SlideShare (all gathered in one place).  We have uploaded all but one presentation, where we’re still waiting for the presenter’s permission to publish. A comprehensive update on all GCP projects is here (PDF). The meeting was a blend of plenary sessions on core topics and research updates, and ‘drill-down’ breakouts on crops, data management and capacity building (the last two, in the context of IBP’s proposed Phase II, which had its own dedicated one-day stakeholder meeting after GRM, on 1st October).DSC07162_w

Social were we…but we also did some heavy lifting
We didn’t just talk to ourselves: we made a bit of noise on social media to also bring in other voices into the GRM discourse and chit-chat, using the hashtag #GRM13, creating a good buzz of conversations. Also linking in to GRM were our LinkedIn followers. And neither was it all business, science and rigid structure: there was free-flow too, with an open afternoon where participants could take a relaxing break, organise their own meetings, or take a tour to Lisbon. Some of the scenes from the tour are posted on Flickr, as are other snapshots from the meeting. We’ve since gathered up some of the social media posts on Storify.

GRM was far from its grim-sounding  abbreviation and hashtag on social media:  exemplifying the best of the ‘GCP spirit’,  the sessions were engaging, relaxed, conversational and spiced with humour and a light touch, despite the ‘heavy’ topics under discussion (see agenda). But the topic at hand was grim, since the situation is dire – drought affects almost all crops and all regions worldwide. As drought tolerance is our key focus since inception, most of the discussions naturally centred on this topic. Equally important is the scourge wrought by pests and disease, which afflict some crops more than others. For example, under most circumstance, cassava is naturally very drought-tolerant, but what good will this do if cassava survives drought only to succumb to the deadly pests and diseases that stalk this drought champion?

Sunset and ‘moon-rise’
GRM was also a time for both stocktaking and mapping the future  given GCP’s sunset in 2014.  A central and recurring theme was GCP’s transition strategy, and how – and where – to embed GCP-initiated projects that will extend beyond the Programme’s lifetime. For this, the CGIAR Research Programs (CRPs) are a natural first choice. GRM enjoyed a very good representation of the CRPs, with all six crop CRPs represented, some at the highest level.

A few members of our Executive Board also attended. Board Chair, Andrew Bennett, set the right tone for the meeting. In his remarks at the opening session, he emphasised that this was not a time for sadness, swan songs and moping as GCP approaches sunset.  Rather, it was a time to appreciate the beauty of sunsets, in the sure knowledge that sunsets give rise to  moon-rise!

A section of Poster Session II presenters. IN the foreground, Andrew Bennett, Chair, GCP Excecutive Board.

A section of Poster Session II presenters. In the foreground, Andrew Bennett, Chair, GCP Executive Board.

“Say it succinctly in sixty seconds!”
The poster session was as lively as always, with a record of… (hold your breath!) 60 posters presented, surpassing the previous GRM in 2011 which attracted 53 posters.

Perfection!  Sixty posters for sixty seconds
Sixty was a PERFECT number for the 60-second sizzle, where each poster presenter had a maximum of 60 seconds (and not a second more!) to present at plenary, devising whichever means necessary to attract the audience to their poster. It was easy to discern the brash ‘old hands’ who had perfected their art after several GRMs; the tricksters and various reincarnations of The Artful Dodger amongst them, trying to beat the clock; new and slightly jittery presenters who were more than just a little bewildered but still proved their mettle; and the new, sassy and confident. This beautiful blend apart, the poster session brought in not only new faces to add to the familiar ones, but also refreshing new tastes to diversify and sweeten our Staple of Nine crops. To our diet of cereals, legumes and tubers, poster presenters from The Philippines added eggplants, rounded off with bananas for dessert.

"Definitely time for dessert, and do not disturb!" they seem to be saying. Jean-Christophe Glaszmann (left) and Hei Leung (right), who played ace roles on a multi-partner GCP project on bananas.

“Definitely time for dessert, and do not disturb!” they seem to be saying. Jean-Christophe Glaszmann (left) and Hei Leung (right), who played ace roles on a multi-partner GCP project on bananas.

♫ Welcome to the Hotel California! ♫…
As always, GRM was a mingling of old and new friends, a time for some paths to meet and for new forks to branch out, a season to reflectively look back and progressively face forwards. In keeping with Andrew’s continuity of sunsets giving way to moonrise, we said a group goodbye to Rajeev Varshney, former Genomics Theme Leader, who left the GCP Management Team in August. And we were happy to once again welcome, embrace and recognise two old friends – Jean Christophe Glaszmann (CIRAD) and Hei Leung (IRRI), who were, respectively ex-Subprogramme Leaders for genetic diversity and genomics in GCP Phase I, and continue to be involved with GCP as researchers, as will Rajeev.

In this picture, we caught up with them at a very appropriate moment: dessert during the Gala Dinner. Take it from us, these two guys are well versed in matters dessert, with a dash of science, as this blast from the past on bananas attests, also summarised in a Facebook photo-story here.

We are indeed a Hotel California of sorts – always open for check-in and checkout. As for leaving…we’re still working on the modalities of that!

And despite the fond farewell, truth is Rajeev is not going anywhere either, as far as GCP is concerned. You only needed to have been at GRM or following the conversations on Facebook and Twitter, especially the photos, to witness this. He was (delightfully!) all over the place, passing on his ‘positive epidemic’ of highly infectious enthusiasm and incredible energy. Here he is in action at the Gala Dinner in the photos below, which really need no caption. We’re sure you’ll be able to easily spot Rajeev, ‘high-fivin’ and ‘rapping’, eclipsing the GCP Director, who however appears quite pleased in his lower perch with Rajeev on the platform. But if you’re truly lost and can’t spot the super-charged high-energy guy in the photos, no worries! Here are some handy clues.

OLYMPUS DIGITAL CAMERAOLYMPUS DIGITAL CAMERA

In distinguished company
Rajeev’s energy goes beyond GRM and GCP; this year as in previous ones, he received several awards, among them, the Young Crop Scientist Award by Crop Science Society of America, and the Illumina Agriculture Greater Good Initiative Award.

Hari Upadhyaya

Hari Upadhyaya

Prior to these recognitions during the Gala Dinner, Jean-Marcel formally honoured ICRISAT’s Hari Upadhyaya (pictured) during plenary for two awards Hari had received in the course of the year, also from the Crop Science Society of America. These awards were for Hari’s notable contributions – at international level – to crop science, and to plant genetic resources.

Hari is a long-term GCP Principal Investigator, working primarily on sorghum. But that is not the only crop he works on. Hari was the lead author of the joint chickpea and pigeonpea chapter in our book on drought phenotyping.

Evaluation
Unlike other GRMs where we’ve requested participants to evaluate the meeting, we did not do so this year, since this is very likely the last meeting of its kind, and the goal of the evaluation is to use participant feedback to improve future meetings. With the help of our participants, we’ve applied the lessons we’ve learnt from them through the years to arrive at what we believe to be a winning combination, balancing the diverse interests of our participants for overall improvement of their GRM experience.

 

 

 

 

 

cheap ghd australia