Jan 122015
 
Print Friendly
James profile

James Gethi and one of the crops closest to his heart – maize. He also has a soft spot for hardy crop varieties that survive harsh and unforgiving drylands, such as Machakos, Kenya, where this June 2011 photo of him with drought-tolerant KARI maize was taken.

As we tell our closing stories on our Sunset Blog, in parallel, we’re also catching up on the backlog of stories still in our store from the time GCP was a going concern. Our next stop is Kenya, and the narrative below is from 2012, but don’t go away as it is an evergreen – a tale that can be told at any time, as it remains fresh as ever. At that time, and for the duration of the partnership with GCP, the Food Crops Research Institute of the Kenya Agricultural and Livestock Research Organisation (KALRO) was then known as the Kenya Agricultural Research Institute (KARI), and we shall therefore stay with this previous name in the story. KARI was also the the name of the Kenyan institute at the time when James Gethi (pictured) left for a sabbatical at the International Maize and Wheat Improvement Center (CIMMYT by its Spanish acronym). On to the story then, and please remember we’re travelling back in time to the year 2012. 

“I got into science by chance, for the fun of it,” muses James, maize breeder and former GCP scientist “With agricultural school promising a flight to overfly the country’s agricultural areas– this was an interesting prospect for a village guy. ‘This could be fun’, I thought!”

And it turned out to be a chance well worth taking.  His first step was getting the requisite education. And so he armed himself with a BSc in Agriculture from the University of Nairobi, Kenya, topped with a Master’s and PhD in Plant Breeding from the University of Alberta (Canada) and Cornell University (USA), respectively. Beyond academics, in the course of his crop science career, James has developed 13 crop varieties, that included maize and cassava, published papers in numerous peer-reviewed papers (including the 2003 prize for Best paper in the field of crop science in the prestigious Crop Science journal. And in leadership, James headed the national maize research programme in his native Kenya. These are just a few of the achievements James has garnered in the course of his career, traversing  and transcending not only the geographical frontiers initially in his sights, but also scientific ones, reaching professional heights that perhaps his younger self might never have dreamt possible.

As a Research Officer at KARI, a typical day sees James juggling his time between hands-on research (developing maize varieties resistant to drought, field and storage pests) and project administration, coordinating public–private partnerships and the maize research programme at both institutional and country level. What motivates the man shouldering much of the responsibility for the buoyancy of his nation’s staple crop? James explains, “Making a difference by providing solutions to farmers. That’s my passion and that’s what makes me get up in the morning and go to work. It’s hugely satisfying!”

Without GCP, I would not be where I am today as a scientist… [it] gave me a chance to work with the best of the best worldwide… You develop bonds and understanding that last well beyond the life of the projects.”

Rapid transitions: trainee to trainer to leader
It was this passion and unequivocal dedication to his vocation – not to mention a healthy dollop of talent – that GCP was quick to recognise back in 2004, when James first climbed aboard the GCP ship. Like a duck to water, he proceeded to engage in all manner of GCP projects and related activities, steadily climbing the ranks from project collaborator to co-Principal Investigator and, finally, Principal Investigator in his own right, leading a maize drought phenotyping project. Along the way, he also secured GCP Capacity building à la carte and Genotyping Support Service grants to further the maize research he and his team were conducting.

Combo1

FLASHBACK: At a GCP drought phenotyping course in mid-2006 at Montpellier, France. (1) James (left) pays keen attention during one of the practical sessions. (2) In the spirit of “All work and no play, etc”, taking a break from the course to take in some of the sights with colleagues. Clearly, James, “the guy from the village” is anything but a dull boy! Next to James, second left, is BM Prasanna, currently leader of CIMMYT’s maize programme.

DSC00606_w

From trainee to trainer and knowledge-sharer: James (behind the camera) training KARI staff on drought phenotyping in June 2009 at Machakos, in Kenya’s drylands.

The GCP experience, James reveals, has been immensely rewarding: “Without GCP, I would not be where I am today as a scientist,” he asserts. And on the opportunity to work with a capable crew beyond national borders, as opposed to operating as a solo traveller, he says: “GCP gave me a chance to work with the best of the best worldwide, and has opened up new opportunities and avenues for collaboration between developing-country researchers and advanced research institutes, creating and cementing links that were not so concrete before. This has shown that we don’t have to compete with one another; we can work together as partners to derive mutual benefits, finding solutions to problems much faster than we would have done working alone and apart from each other.”

The links James has in mind are not only tangible but also sustainable: “You develop bonds and understanding that last well beyond the life of the projects,” James enthuses, citing additional professional engagements (the African Centre for Crop Improvement in KwaZulu-Natal, South Africa, and the West Africa Centre for Crop Improvement, have both welcomed James and his team into their fold), as well as firm friendships with former GCP project colleagues as two key take-home benefits of his interaction with the Programme. These new personal and professional circles have fostered a happy home for dynamic debates on the latest news and views from the crop-science world, and the resultant healthy cross-fertilisation of ideas, James affirms.

Reflecting on what he describes as a ‘mentor’ role of GCP, and on the vital importance of capacity building in general, he continues: “By enhancing the ability of a scientist to collect germplasm, or to analyse that germplasm, or by providing training and tips on how to write a winning project proposal to get that far in the first place, you’re empowering scientists to make decisions on their own – decisions which make a difference in the lives of farmers. This is tremendous empowerment.”

Another potent tool, says James, is the software made available to him through GCP’s Integrated Breeding Platform (IBP), which is a handy resource package to dip into for – among other things – analysing data and selecting the right varieties at the right time. The next step for IBP, he feels, should be scaling up and aiming for outreach to the wider scientific community, forecasting that such a step could bring nothing but success: “The impacts could be enormous!” he projects, with a palpable and infectious enthusiasm.

People… don’t eat publications, they eat food… I’m not belittling knowledge, but we can do both”

Fast but not loose on the R&D continuum: double agent about?
For James, outreach and impacts are not limited to science alone. In parallel with his activities in upstream genetic science, James’ efforts are equally devoted to the needs of his other client base-–the development community and farmers. For this group, James’ focus is on putting tangible products on the table that will translate into higher crop yields and incomes for farmers. Yet whilst products from any highly complex scientific research project worth its salt are typically late bloomers, often years in the making on a slow burner as demanded by the classic linear R&D view that research must always precede development, adaptation and final adoption, James has been quick to recognise that actors in the world of development and the vulnerable communities they serve do not necessarily have this luxury of time.

 August 2008: a huge handful, and more where that came from in Kwale, Kenya. This farmer's healthy harvest came from KARI hybrids.

August 2008: a huge handful, and more where that came from in Kwale, Kenya. This farmer’s healthy harvest came from KARI hybrids.

His solution for this challenge? “Sitting where I sit, I realised from very early on that if I followed the traditional linear scientific approach, my development clients would not take it kindly if I still had no products for them within the three-year lifespan of the project. The challenge then was to deliver results for farmers without compromising or jeopardising their integrity or the science behind the product,” he recalls. In the project he refers to – a GCP-funded project to combat drought and disease in maize and rice – James applied a novel double-pronged approach to get around this seeming conundrum of the need for sound science on the one hand, and the need for rapid results for development on the other hand. Essentially, he simultaneously walked on both tracks of the research–development continuum.

The project – led by Rebecca Nelson of Cornell University and with collaborators including James’ team at KARI (leading the maize component), the International Rice Research Institute (IRRI), researchers in Asia, as well as other universities in USA – initially set out with the long-term goal of dissecting quantitative trait loci (QTLs) for rice and maize with a view to combating drought and disease in these crops. Once QTLs were dissected and gene crosses done, James and his team went about backcrossing these new lines to local parental lines, generating useful products in the short term. The results, particularly given the limited resources and time invested, have been impressive, with seven hybrid varieties developed for drylands and coastal regions having been released in Kenya by 2009, and commercialised from 2010.

James and his colleagues have applied the same innovative approach to other GCP projects, grappling to get a good grasp of the genetic basis of drought tolerance, whilst also generating intermediate products for practical use by farmers along the way. James believes this dual approach paves the way for a win-win situation: “People on the ground don’t eat publications, they eat food,” he says. “As we speak now, there are people out there who don’t know where their next meal will come from. I’m not belittling knowledge, but we can do both – boiled maize on the cob and publications on the boil. But let’s not stop at crop science  and knowledge dissemination – let’s move it to the next level, which means products,” he challenges, adding: “With GCP support, we were able do this, and reach our intended beneficiaries.”

It is perhaps this kind of vision and inherent instinct to play the long game that has taken James this far professionally, and that will no doubt also serve him well in the future.

As our conversation comes to a close, we ask James for a few pearls of wisdom for other young budding crop researchers eager to carve out an equally successful career path for themselves, James offers “Form positive links and collaborations with colleagues and peers. Never give up; never let challenges discourage you. Look for organisations where you can explore the limits of your imagination. Stay focused and aim high, and you’ll reach your goal.”

Upon completion of his ongoing sabbatical at CIMMYT in Zimbabwe, where he is currently working on seed systems, James plans to return to KARI, armed with fresh knowledge and ready to seize – with both hands – any promising collaborative opportunities that may come his way .

Certainly, prospects look plentiful for this ‘village lad’ in full flight, and who doesn’t look set to land any time soon!

DSC03659_w

In full flight – Montpellier, Brazil, Benoni, Bangkok, Bamako, Hyderabad… our boy voyaged from the village to Brazil and back, and far beyond that. Sporting the t-shirt from GCP’s Annual Research Meeting in Brazil in 2006, which James attended, he also attended the same meeting the following year, in Benoni, South Africa, in 2007, when this photo was taken. James is a regular at these meetings which are the pinnacle on  GCP’s calendar (http://bit.ly/I9VfP4). But he always sings for his supper and is practically part of the ‘kitchen crew’, but just as comfortable in high company. For example, he was one of the keynote speakers at the 2011 General Research Meeting (see below).

Links:

 

 

Nov 132014
 
Print Friendly

Long legs: our longest running capacity-building marathon’s end is in sight and a new breed of breeders is ready and set to go

Photo: IAMZAs we ‘speak’, the Integrated Breeding Multiyear Course (IB–MYC) is in its final session, reaching its close after three intensive years. This last gathering runs from 3rd to 14th November 2014, and as always is hosted by our partners IAMZ–CIHEAM (the Mediterranean Agronomic Institute of Zaragoza, Spain). IB–MYC is unusual in its approach, but by taking a risk and investing in long-term in-depth training, GCP has shown that IB–MYC is a powerful model for capacity building with profound impact. Congratulations to our marathon runners as they approach the finish line… and all the best for an ‘integrated breeding’ future!

Breeders develop new varieties of crop through several methods. IBP has developed new varieties of breeders through the IB-MYC programme.”
— Johnson Adedayo Adetumbi: IB–MYC participant, research fellow at the Institute of Agricultural Research & Training (IAR&T), Obafemi Awolowo University, Nigeria, and breeder working on cowpeas, kenaf, maize and soya beans

IB–MYC: integrated, intensive, incomparable

IB–MYC differed from most other courses in two important ways, both reflected in its name: its ‘integrated breeding’ curriculum and its ‘multiyear’ timescale.  Implemented by GCP’s Integrated Breeding Platform (IBP), the course aimed to empower breeders in developing countries to adopt molecular-breeding techniques. The ‘integrated’ approach to making this happen meant equipping students not only with the latest knowhow on molecular breeding itself, but also hands-on training in and effective tools for data management and analysis.

Course participant Samuel Adelowo Olakojo, Head of the Cereals Improvement Programme at IAR&T and maize breeder, is an enthusiast of IBP’s Breeding Management System (BMS). “My perception about data management is that it helps the breeder to plan their work very easily without stress. The time you take in thinking how to fashion out the design of the trials – you can actually get that done very quickly, very precisely,” he says. “Secondly… after you have produced your output, with minimal editing you can transfer your data to the preparation platform for publishing it. You don’t have to sit down writing everything again,” he adds. “The presentation that comes out of it now seems more graphical. And when you present reports in a graphical, pictorial form… people are enlightened, quickly.”

Since IB–MYC began in August 2012, the participants have each received two weeks of intensive face-to-face training per year. The participants were divided between three annual training sessions, broadly reflecting the three target regions for the course of Eastern and Southern Africa, West and Central Africa, and South and Southeast Asia. In between these sessions they were expected to work on assignments and project, with ongoing in-depth support including online resources from IBP. While well-supported, it was a demanding course, with students expected to pass each year and complete their assignments as a precondition to proceeding to the next year.

More than forty participants came together in November 2014 for the final IB–MYC training session, hosted by IAMZ. For more photos, see the IAMZ Facebook page.

More than forty participants came together in November 2014 for the final IB–MYC training session, hosted by IAMZ. For more photos, see the IAMZ Facebook page.

Taking the slow train to knowledge that sticks

Just as for the participants, this three-year course was also a major commitment for GCP, and – being unlike anything that had gone before – a risky investment of funds and efforts. However, this long-distance marathon has had some special advantages over the quick sprints of more conventional training courses, whose length is normally measured in weeks.

Rather than simply imparting knowledge that is forgotten as quickly as it is learnt, the practical focus, ongoing support and extended time-frame of IB–MYC ensured that participants were able to test and see the value of what they were learning within their own breeding activities, leading them to adopt useful technologies, tools and practices as an integral part of their work – and, it is hoped, becoming advocates, trainers and mentors themselves. Furthermore, as trainees have got to know each other and build relationships over the years, they have woven true communities of practice, springboards for sharing information and working together into the future.

Of course, not everyone has made it to the finish line. A few participants have dropped out over the years as they have changed jobs and directions, and some have even flunked the course. But the great majority have stayed the distance, and with both trainers and trainees convinced of IB–MYC’s value.

Seeds for the future in IB–MYC’s IAMZ roots

Not least of the relationships that have flourished during the course is GCP’s partnership with IAMZ, which also contains the seeds of one of the ways IB–MYC will live on into the future, after GCP’s planned close in December 2014. “We are working with IAMZ to continue that collaboration through IBP,” says Ndeye Ndack Diop, GCP’s Capacity Building Leader. “IAMZ has decided to include the BMS within… the short training course they provide, and that is of course a big endorsement for us that we appreciate. But beyond that, right now Ignacio [Romagosa], the Director of IAMZ, is working towards developing one project with different partners at the European level, where IBP also will be taking part.” This will use both the training material that IBP has developed in the course of these three years, and also the BMS. Says Ndeye Ndack: “the programme that he’s thinking of will be targeting breeders, in which case we believe BMS will be a good tool for them.”

Watch IAMZ’ interview with Ndeye Ndack below (or on YouTube) for more, including GCP’s approach to capacity building, how the GCP-IAMZ relationship began, and the stellar support that IAMZ has provided.

So even as we come to the finish line of this first IB–MYC marathon with the final training session, many more races are yet to be run and many new pathways are opening up for Johnson’s “new varieties of breeders” – and perhaps a new variety of trainers too. We at GCP would like to take this opportunity to give our special thanks to our friends at IAMZ–CIHEAM, and to thank and congratulate all IB–MYC participants and trainers for their commitment, hard work and fantastic achievements.

Links

Aug 152014
 
Print Friendly

 

Samuel Gudu

Samuel Gudu

Having funding to support PhD students and provide them with the resources they need to complete their research is very fulfilling and will go a long way to enhance the long-term success of our goal: to provide Kenyan farmers with cereal varieties that will improve their yields and make their livelihood more secure and sustainable.” – Samuel Gudu, Professor and Deputy Vice-Chancellor (Planning & Development) at Moi University, and now Principal, Rongo University College: a Constituent College of Moi University, Kenya.

Growing up, and getting dirty
Learner, teacher and leader. Sam Gudu has been all these, but this doesn’t mean he doesn’t like to get his hands dirty.

Growing up in a small fishing village on the banks of Lake Victoria, in Western Kenya, Sam was always helping his parents to fish and garden, or his grandparents to muster cattle.

“I remember spending long hours before and after school either on the lake or in the field helping to catch, harvest and produce enough food to eat and support our family,” reminisces Sam.

He attributes this “hard and honest” work to why he still enjoys being in the field.

“Even though I now spend most of my days doing administration work, I’m always trying to get out into the field to get my hands dirty and see how our research is helping to make the lives of Kenyan farmers a lot more profitable and sustainable,” he says.

Sam in a maize field in Kenya.

Doing what he likes to do best: Sam in a maize field in Kenya.

I was… captivated by the study of genetics as it focused on what controlled life.”

Taking control: bonded to genetics, at home and away
Sam says his love for the land transferred to an interest and then passion in the classroom during high school. “I became very interested in Biology as I wanted to know how nature worked,” says Sam. “I was particularly captivated by the study of genetics as it focused on what controlled life.”

This interest grew during his undergraduate years at the University of Nairobi where he completed a Bachelor of Science in Agriculture and a Master’s of Science in Agriculture, focusing on genetics and plant breeding.

“I fondly remember a lecturer during my master’s degree studies who would continually give us challenges to test in the field and in the lab. If you had a viable idea he supported you to design an experiment to test your theory. I like to use the same method in teaching my students. I discuss quite a lot with my students and I encourage them to disagree if they use scientific process.”

Driven by an ever-growing passion and enthusiasm, Sam secured a scholarship to travel to Canada to undertake a PhD in Plant Genetics and Biotechnology at the University of Guelph.

[There has been an] influx of young Kenyans who are choosing degrees in science. The Kenyan Government has recently increased its funding for science and research…”

Nurturing the next breed of geneticists
After graduating from Guelph in 1993, Sam returned to Kenya to lecture at Moi University where he initiated and helped expand teaching and research in the disciplines of Genetic Engineering, Biotechnology and Molecular Biology.

In the past two decades, he has recruited young talented graduates in genetics and helped acquire advanced laboratory equipment that has enabled practical teaching and research in molecular biology.

“I wouldn’t be where I am now were it not for all the assistance I received from my teachers, lecturers and supervisors; notably my PhD supervisor – Prof Ken Kasha of the University of Guelph. So I’ve always tried my best to give the same assistance to my students. It’s been hard work but very rewarding, especially when you see your students graduate to become peers and colleagues.” (Meet some of Sam’s students)

Sam (2nd right), with some of his young charges: Thomas Matonyei (far left) , Edward Saina (2nd left) and Evans Ouma (far right)

Sam (2nd right), with some of his young charges: Thomas Matonyei (far left), Edward Saina (2nd left) and Evans Ouma (far right).

Sam is particularly buoyed by the influx of young Kenyans who are choosing degrees in science.

“The Kenyan Government has recently increased its funding for science and research to two percent of GDP,” explains Sam. “This has not only helped us compete in the world of research but has helped raise the profile of science as a career.”

Knowing which genes are responsible for aluminium tolerance will allow us to more precisely select for aluminium tolerance in our breeding programmes, reducing the time it takes for us to breed varieties that will have improved yields in acidic soils without the use of costly inputs such as lime or fertiliser.” (See the work that Sam does in this area with other partners outside Kenya)

So far we have produced 10 inbred lines that are outstanding for phosphorus efficiency, and two that were outstanding for aluminium toxicity. We are now testing unique verities developed for acid soils of Kenya.”

Slashing costs, increasing yields and resilience: genes to the rescue
Currently, Sam and his team of young researchers at Moi University are working with several other research facilities around the world (Brazilian Agricultural Research Corporation, EMBRAPA; Cornell University, USA; the International Rice Research Institute (IRRI); Japan’s International Research Center for Agricultural Sciences, JIRCAS; and the Kenya Agricultural Research Institute, KARI–Kitale) to develop high-yielding maize varieties adapted to acid soils in East Africa, using molecular and conventional breeding approaches.

Can you spot Sam? It’s a dual life. Here, he sheds his field clothes in this 2011 suit-and-tie moment with Moi University and other colleagues involved in the projects he leads. Left to right: P Kisinyo, J Agalo, V Mugalavai, B Were, D Ligeyo, S Gudu, R Okalebo and A Onkware.

Acid soils cover almost 13 per cent of arable land in Kenya, and most of the maize-growing areas in Kenya. In most of these areas, maize yields are reduced by almost 60 per cent. Aluminium toxicity is partly responsible for the low and declining yields.

“We found that most local maize varieties and landraces grown in acid soils are sensitive to aluminium toxicity. The aluminium reduces root growth and as such the plant cannot efficiently tap into native soil phosphorus, or even added phosphorus fertiliser. However, there are some varieties of maize that are suited to the conditions even if you don’t use lime to improve the soil’s pH. So far we have produced 10 inbred lines that are outstanding for phosphorus efficiency, and two that were outstanding for aluminium toxicity. We are now testing unique varieties developed for acid soils of Kenya.”

Sam (left)   a group of farmers and alking to farmers and researchers at Sega, Western Kenya, in June 2009

Sam (left) addressing a mixed group of farmers and researchers at Sega, Western Kenya, in June 2009.

In a related project, Sam is working with the same partners to understand the molecular and genetic basis for aluminium tolerance.

“Knowing which genes are responsible for aluminium tolerance will allow us to more precisely select for aluminium tolerance in our breeding programmes, reducing the time it takes for us to breed varieties that will have improved yields in acidic soils without the use of costly inputs such as lime or fertiliser.”

 … my greatest achievements thus far have been those which have benefited farmers and my students.”

 Summing up success
For Sam, the greatest two successes in his career have not been personal.

“If I’m honest, I have to say my greatest achievements thus far have been those which have benefited farmers and my students. Having funding to support PhD students and provide them with the resources they need to complete their research is very fulfilling and will go a long way to enhance the long-term success of our goal: to provide Kenyan farmers with cereal varieties that will improve their yields and make their livelihoods more secure and sustainable.”

With a dozen aluminium-tolerant and phosphorus-efficient breeding lines under their belt already, and two lines submitted for National Variety Trials (a pre-requisite step to registration and release to farmers), Sam and his team seem well on their way towards their goal, and we wish them well in their quest and labour.

Links:

 

May 302014
 
Print Friendly
Rogério Chiulele

Rogério Chiulele

 

Today, we travel the Milky Way on a voyage to Mozambique. Our man along the Milky Way is Rogério Marcos Chiulele (pictured), a lecturer at Mozambique’s Universidade Eduardo Mondlane’s Crop Science Department. He is also the lead scientist for cowpea research in Mozambique for the Tropical Legumes I (TLI) project. This gives Rogério a crucial tri-focal down-to-earth and away-from-the-clouds perspective on cowpea pedagogy, research and development. It is through this pragmatic triple-lens prism that Rogerio speaks to us today, once he’s captained us safely back from the stars to Planet Earth, Southeast Africa. After the protein and profit, next stop for him and team is ridding cowpeas of pod-sucking pests, among other things slated for the future. But back from the future to the present and its rooted realities…Problems, yes, but also lots of good scores, plus a deft sleight of hand that are bound to have you starry-eyed, we bet.

…cowpeas rank fourth as the most cultivated crop…”

Q: Tell us about Mozambique and cowpeas: are they important?

The devastating effects of nematodes on cowpea roots.

The devastating effects of nematodes on cowpea roots.

In Mozambique, cowpeas are an important source of food, for both protein and profit, particularly for the resource-poor households that benefit from cowpea income and nutrition. In terms of cultivation, cowpeas rank fourth as the most cultivated crop after maize, cassava and groundnuts, accounting for about 9 percent of the total cultivated area, and estimated at nearly four million hectares of smallholder farms. The crop is produced for grain and leaves, mostly for household consumption but it is becoming increasingly important as a supplement for household income.

But while its potential for food, protein and income is recognised, the realisation of such potential is still limited by drought due to irregular and insufficient rain; affliction by pests such as aphids, flower thrips and nematodes; diseases such as cowpea aphid mosaic virus and cowpea golden mosaic virus; and cultivation of low-yielding and non-improved varieties.

…we backcross to varieties with traits that farmers prefer…”

Q: And on cowpea research and breeding?
Since 2008, Universidade Eduardo Mondlane [UEM] established a cowpea-breeding programme for addressing some of the limiting constraints affecting cowpea production and productivity. This has been possible through collaboration with different funding institutions such as the Generation Challenge Programme.

Photo: UEM

2008: Screening of the 300 genotypes.

That same year [2008], a UEM research team that I coordinate qualified for a GCP capacity-building à la carte grant. In this project, we screened 300 Mozambican cowpea lines for drought tolerance. From these, we identified 84 genotypes that were either high-yielding or drought-tolerant. We further evaluated the 84 genotypes for another three seasons in two locations. From the 84, we identified six genotypes that not only had the two sought-after traits, but were also adapted to different environments.

In 2010, the UEM team joined the TLI project. For the six pre-identified genotypes, the UEM breeding programme is using marker-assisted recurrent selection [MARS] and marker-assisted backcrossing [MABC], combining drought tolerance and resistance to major biotic stresses occurring in Mozambique. In MABC, we are conducting a backcross to varieties with traits that farmers prefer, which includes aspects such as large seeds, early maturity and high leaf production.

…we conducted a farmers’ participatory varietal selection to glean farmers’ perceptions and preferences on cowpea varieties and traits…”

Q: What is the main focus in your work, and how and when do farmers come in?
The breeding work conducted by UEM is targeting all Mozambican agroecologies, but with particular focus on southern Mozambique which is drought-prone. In addition to drought, the area is plagued by many pests such as aphids, flower thrips, nematodes and pod-sucking pests. So, in addition to drought tolerance, we are conducting screening and selection for resistance to aphids, flower thrips and nematodes. In the near future, we will start screening for resistance to pod-sucking pests.

2009: field screening of the 84 genotypes in diff locations.

2009: Rogério during field screening of the 84 genotypes in different locations.

In 2009, we conducted a farmers’ participatory varietal selection to glean farmers’ perceptions and preferences on cowpea varieties and traits. From the study, six of the lines passed participatory variety selection with farmers, as they were large-seeded with good leaf production which provides additional food.

we hope to release three varieties in 2015…Our involvement with GCP has not only increased our exposure, but also brought along tangible benefits… I firmly believe black-eyed peas can really make a difference.”

Q: To what would you attribute the successes your team is scoring, and what are your goals for the future, besides screening for pod-sucking pests?
The success of the work that the Eduardo Mondlane team is doing is partly due to the collaboration and partnership with USA’s University of California, Riverside [UCR]. UCR sent us 60 lines from the GCP cowpea reference set* [Editorial note: see explanation at the bottom], which we evaluated for drought tolerance for four seasons in two locations – one with average rainfall and the other drought-prone. As these lines were already drought-tolerant, we tested them for adaptation to the local environment, and for high yield. From the set, we hope to release three varieties in 2015. In addition, for evaluating the different varieties, we also crossed the local varieties with black-eyed peas, which have a huge market appeal: local varieties fetch roughly half a US dollar per kilo, compared to black-eyed peas whose price is in the region of four to five US dollars.

2013: multilocation trials.

2013: multilocation trials.

Our involvement with GCP has not only increased our exposure, but also brought along tangible benefits. For example, previously, nothing was being done on drought tolerance for cowpeas. But now we receive and exchange material, for example, the black-eyed peas from UCR that we received through GCP, which are set to boost production and markets, thereby improving lives and livelihoods. Amongst the varieties we are proposing to release is one black-eye type. I firmly believe black-eyed peas can really make a difference.

In addition, besides funding a PhD for one of our researchers, Arsenio Ndeve, who is currently at UCR, the Generation Challenge Programme, contributed to improvement on storage and irrigation facilities. We purchased five deep freezers for seed storage and one irrigation pump. Presently, we have adequate storage facilities and we conduct trials even during the off-season, thanks to the irrigation pump provided by GCP.

****

And on that upbeat note even as the challenge ahead is immense, today’s chat with Rogério ends here. To both pod-sucking pests and all manner of plagues on cowpeas, beware, as thy days are numbered: it would seem that Rogério and team firmly say: “A pox on both your houses!”

*A ‘reference set’ is a sub-sample of existing germplasm collections that facilitates and enables access to existing crop diversity for desired traits, such as drought tolerance or resistance to disease or pests

Links

May 122014
 
Print Friendly

 

Omari Mponda

Omari Mponda

After getting a good grounding on the realities of groundnut research from Vincent, our next stop is East Africa, Tanzania, where we meet Omari Mponda (pictured). Omari is a Principal Agricultural Officer and plant breeder at Tanzania’s Agricultural Research Institute (ARI), Naliendele, and country groundnut research leader for the Tropical Legumes I (TLI) project, implemented through our Legumes Research Initiative.  Groundnut production in Tanzania is hampered by drought in the central region and by rosette and other foliar diseases in all regions. But all is not bleak, and there is a ray of hope: “We’ve been able to identify good groundnut-breeding material for Tanzania for both drought tolerance as well as disease resistance,” says Omari. Omari’s team are also now carrying their own crosses, and happy about it. Read on to find out why they are not labouring under the weight of the crosses they carry…

…we have already released five varieties…TLI’s major investment in Tanzania’s groundnut breeding has been the irrigation system… Frankly, we were not used to being so well-equipped!”

Q: How  did you go about identifying appropriate groundnut-breeding material for Tanzania?
A: We received 300 reference-set lines from ICRISAT [International Crops Research Institute for the Semi-Arid Tropics], which we then genotyped over three years [2008– 2010] for both drought tolerance and disease resistance. After we identified the best varieties, these were advanced to TLII [TLI’s sister project] for participatory variety selection with farmers in 2011–2012, followed by seed multiplication. From our work with ICRISAT, we have already released five varieties.

Harvesting ref set collection at Naliendele_w

Harvesting the groundnut reference-set collection at Naliendele. A ‘reference set’ is a sub-sample of existing germplasm collections that facilitates and enables access to existing crop diversity for desired traits, such as drought tolerance or resistance to disease or pests.

ARI–Naliendele has also benefitted from both human and infrastructure capacity building. Our scientists and technicians were trained in drought phenotyping at ICRISAT Headquarters in India. One of our research assistants, Mashamba Philipo, benefitted from six-month training, following which he advanced to an MSc specialising in drought phenotpying using molecular breeding. In his work, he is now using drought germplasm received from ICRISAT. In terms of laboratory and field infrastructure, the station got irrigation equipment to optimise drought-phenotyping trials. Precision phenotyping and accurate phenotypic data are indispensable for effective molecular breeding. To facilitate this, ARI–Naliendele benefitted from computers, measuring scales, laboratory ware and a portable weather station, all in a bid to assure good information on phenotyping. But by far, TLI’s major investment in Tanzania’s groundnut breeding has been the irrigation system which is about to be completed. This will be very useful as we enter TLIII for drought phenotyping.

 

For us, this is a big achievement to be able to do national crosses. Previously, we relied on ICRISAT…we are advancing to a functional breeding programme in Tanzania… gains made are not only sustainable, but also give us independence and autonomy to operate..We developing-country scientists are used to applied research and conventional breeding, but we now see the value and the need for adjusting ourselves to understand the use of molecular markers in groundnut breeding.”

Omari (right), with Hannibal Muhtar (left), who was contracted by GCP to implement infrastructure improvement for ARI Naliendele. See http://bit.ly/1hriGRp

Flashback to 2010: Omari (right), with Hannibal Muhtar (left), who was contracted by GCP to implement infrastructure improvement for ARI Naliendele, and other institutes. See http://bit.ly/1hriGRp

Q: What difference has participating in TLI made?
A: Frankly, we were not used to being so well-equipped, neither with dealing with such a large volume as 300 lines! But we filtered down and selected the well-performing lines which had the desired traits, and we built on these good lines. The equipment purchased through the project not only helped us with the actual phenotyping and being able to accurately confirm selected lines, but also made it possible for us to conduct off-season trials.

We’re learning hybridisation skills so that we can use TLI donors to improve local varieties, and our technicians have been specifically trained in this area. For us, this is a big achievement to be able to do national crosses. Previously, we relied on ICRISAT doing the crosses for us, but we can now do our own crosses. The difference this makes is that we are advancing to a functional breeding programme in Tanzania, meaning the gains made are not only sustainable, but also give us independence and autonomy to operate. Consequently, we are coming up with other segregating material from what we’ve already obtained, depending on the trait of interest we are after.

Another big benefit is directly interacting with world-class scientists in the international arena through the GCP community and connections – top-rated experts not just from ICRISAT, but also from IITA, CIAT, EMBRAPA [Brazil], and China’s DNA Research Institute. We have learnt a lot from them, especially during our annual review meetings. We developing-country scientists are used to applied research and conventional breeding, but we now see the value and the need for adjusting ourselves to understand the use of molecular markers in groundnut breeding. We now look forward to TLIII where we expect to make impact by practically applying our knowledge to groundnut production in Tanzania.

Interesting! And this gets us squarely back to capacity building. What are your goals or aspirations in this area?
A: Let us not forget that TLI is implemented by the national programmes. In Africa, capacity building is critical, and people want to be trained. I would love to see fulltime scientists advance to PhD level in these areas which are a new way of doing business for us. I would love for us to have the capacity to adapt to our own environment for QTLs [quantitative trait loci], QTL mapping, and marker-assisted selection. Such capacity at national level would be very welcome. We also hope to link with advanced labs such as BecA [Biosciences eastern and southern Africa] for TLI activities, and to go beyond service provision with them so that our scientists can go to these labs and learn.

There should also be exchange visits between scientists for learning and sharing, to get up to date on the latest methods and technologies out there. For GCP’s Integrated Breeding Platform [IBP], this would help IBP developers to design reality-based tools, and also to benefit from user input in refining the tools.

Links

SLIDES by Omari on groundnut research and research data management in Tanzania

 

Mar 202014
 
Print Friendly

 

Jeff Ehlers

Jeff Ehlers

Our guest today is Jeff Ehlers (pictured), Programme Officer at the Bill & Melinda Gates Foundation. Jeff’s an old friend of GCP, most familiar to the GCP community in his immediate past stomping grounds at the University of California, Riverside (UCR), USA, leading our research to improve cowpea production in the tropics, for which sunny California offers a perfect spot for effective phenotyping. Even then, Jeff was not new to CGIAR, as we’ll see from his career crossings. But let’s not get ahead of ourselves in narrating Jeff’s tale. First, what would high-end cowpea research have to do with crusading and catapults? Only Jeff can tell us, so please do read on!

The GCP model was a very important way of doing business for CGIAR and the broader development community, enabling partnerships between international research institutes, country programmes and CGIAR. This is particularly important as the possibilities of genomics-led breeding become even greater…If anything, we need to see more of this collaborative model.”

Growing green, sowing the seed, trading glory for grassroots
Growing up in USA’s Golden State of California, green-fingered Jeff had a passion for cultivating the land rather than laboratory samples, harbouring keen ambitions to become a farmer. This did not change with the years as he transited from childhood to adolescence. The child grew into a youth who was an avid gardener: in his student days, Jeff threw his energy into creating a community garden project ‒ an initiative which promptly caught the eye of his high school counsellor, who suggested Jeff give the Plant Science Department at UCR a go for undergraduate studies.

And thus the seeds of a positively blooming career in crop research were sown. However, remaining true to the mission inspired by his former community-centred stomping grounds, a grassroots focus triumphed over glory-hunting for Jeff, who – no stranger to rolling his sleeves up and getting his fingers into the sod – found himself, when at the University of California, Davis, for his advanced studies, embarking on what was to become a lifelong undertaking, first at the International Institute of Tropical Agriculture (IITA) and then at UCR, dedicated to a then under-invested plant species straggler threatening to fall by the research world’s wayside. With a plethora of potential genomic resources and modern breeding tools yet to be tapped into, Jeff’s cowpea crusade had begun in earnest…

GCP’s TLI was essential in opening that door and putting us on the path to increased capability – both for cowpea research enablement and human capacity”

Straggler no more: stardom beckons, and a place at the table for the ‘orphan’
And waiting in the wings to help Jeff along his chosen path was the Generation Challenge Programme (GCP), which, in 2007, commissioned Jeff’s team to tackle the cowpea component of the flagship Tropical Legumes I (TLI) project, implemented by GCP under the Legumes Research Initiative. TLI is mainly funded by the Bill & Melinda Gates Foundation. The significance of this project, Jeff explains, was considerable: “The investment came at a very opportune time, and demonstrated great foresight on the part of both GCP and the Foundation.” Prior to this initiative, he further explains, “there had been no investment by anyone else to allow these orphan crops to participate in the feast of technologies and tools suddenly available and that other major crops were aggressively getting into. Before GCP and Gates funding for TLI came along, it was impossible to think about doing any kind of modern breeding in the orphan grain legume crops. GCP’s TLI was essential in opening that door and putting us on the path to increased capability – both for cowpea research enablement and human capacity.”

Flashback: UCR cowpea team in 2009. Left to right: Wellington Muchero, Ndeye Ndack Diop (familiar, right?!), Raymond Fenton, Jeff Ehlers, Philip Roberts and Timothy Close in a greenhouse on the UCR campus, with cowpeas in the background. Ndeye Ndack and Jeff seem to love upstaging each other. She came to UCR as a postdoc working under Jeff, then she moved to GCP, with oversight over the TLI project, thereby becoming Jeff's boss, then he moved to the Foundation with oversight over TLI. So, what do you think might be our Ndeye Ndack's next stop once GCP winds up in 2014? One can reasonably speculate....!

Flashback: UCR cowpea team in 2009. Left to right: Wellington Muchero, Ndeye Ndack Diop (familiar, right?!), Raymond Fenton, Jeff Ehlers, Philip Roberts and Timothy Close in a greenhouse on the UCR campus, with cowpeas in the background. Ndeye Ndack and Jeff seem to love upstaging each other. She came to UCR as a postdoc working under Jeff, then she moved to GCP, with oversight over the TLI project, thereby becoming Jeff’s boss, then he moved to the Foundation with oversight over TLI. So, what do you think might be our Ndeye Ndack’s next stop once GCP winds up in 2014? One can reasonably speculate….!

Of capacity building, genomics and ‘X-ray’ eyes
This capacity-building cornerstone – which, in the case of the TLI project, is mainly funded by the European Commission – is, says Jeff, a crucial key to unlocking the potential of plant science globally. “The next generation of crop scientists ‒ particularly breeders ‒ need to be educated in the area of genomics and genomics-led breeding.”

While stressing the need for robust conventional breeding efforts, Jeff continues: ”Genomics gives the breeder X-ray eyes into the breeding programme, bringing new insights and precision that were previously unavailable.”

In this regard, Jeff has played a leading role in supporting skill development and organising training for his team members and colleagues across sub-Saharan Africa, meaning that partners from Mozambique, Burkina Faso and Senegal, among others, are now, in Phase II of the TLI project, moving full steam ahead with marker-assisted and backcross legume breeding at national level, thanks to the genotyping platform and genetic fingerprints from Phase I of the project. The genotyping platform, which is now publicly available to anyone looking to undertake marker-assisted breeding for cowpeas, is being widely used by research teams not only in Africa but also in China. Thanks in part then to Jeff and his team, the wheels of the genomics revolution for cowpeas are well and truly in motion.

Undergoing the transition from phenotypic old-school plant breeder to modern breeder with all the skills required was a struggle…it was challenging to teach others the tools when I didn’t know them myself!…without GCP, I would not have been able to grow in this way.”

Talking about a revolution, comrades-in-arms, and a master mastering some more
But as would be expected, the road to revolution has not always been entirely smooth. Reflecting on some of the challenges he encountered in the early TLI days, and highlighting the need to invest not only in new students, but also in upgrading the existing skills of older scientists, Jeff tells of a personal frustration that had him battling it out alongside the best of them: “Undergoing the transition from phenotypic old-school plant breeder to modern breeder with all the skills required was a struggle,” he confides, continuing: “It was challenging to teach others the tools when I didn’t know them myself!”

Thus, in collaboration with his cowpea comrades from the global North and South, Jeff braved the steep learning curve before him, and came out on the other side smiling – an accomplishment he is quick to credit to GCP: “It was a very interesting and fruitful experience, and without GCP, I would not have been able to grow in this way,” he reveals. Holding the collaborative efforts facilitated by the broad GCP network particularly dear, Jeff continues: “The GCP model was a very important way of doing business for CGIAR and the broader development community, enabling partnerships between international research institutes, country programmes and CGIAR. This is particularly important as the possibilities of genomics-led breeding become even greater…If anything, we need to see more of this collaborative model.”

GCP’s Integrated Breeding Platform addresses the lack of modern breeding skills in the breeding community as a whole, globally…The Platform provides extremely valuable and much-needed resources for many public peers around the world, especially in Africa…”

One initiative which has proved especially useful in giving researchers a leg up in the mastery of modern breeding tools, Jeff asserts, is GCP’s Integrated Breeding Platform (IBP): “IBP addresses the lack of modern breeding skills in the breeding community as a whole, globally. By providing training in the use of genomic tools that are becoming available, from electronic capture of data through to genotyping, phenotyping, and all the way to selective decision-making and analysis of results, IBP will play a critical role in helping folks to leverage on the genomics revolution that’s currently unfolding,” Jeff enthuses, expanding: “The Platform provides extremely valuable and much-needed resources for many public peers around the world, especially in Africa where such one-off tools that are available commercially would be otherwise out of reach.”

Conqueror caparisoned to catapult: life on the fast lane and aiming higher
Well-versed in conquering the seemingly unobtainable, Jeff shares some pearls of wisdom for young budding crop scientists:”Be motivated by the mission, and the ideas and the science, and not by what’s easy, or by what brings you the most immediate gratification,” he advises, going on to explain: “Cowpeas have been through some really tough times. Yet, my partners and I stuck it out, remained dedicated and kept working.” And the proof of Jeff’s persistence is very much in the pudding, with his team at UCR having become widely acclaimed for their success in catapulting cowpeas into the fast lane of crop research.

It was a success that led him to the hallways of the Bill & Melinda Gates Foundation, where, after two decades at UCR, Jeff is currently broadening his legume love affair to also embrace beans, groundnuts, chickpeas, pigeonpeas and soya beans.

February 2014: Jeff donning his new Gates hat (albeit with a literal ICRISAT cap on). Behind him is a field of early maturing pigeonpea experiment at ICRISAT India.

February 2014: Jeff donning his (now-not-so-)new Gates hat and on the road, visiting ICRISAT in India. Behind him is an ICRISAT experimental field of early-maturing pigeonpeas. Here, our conquering crusader is ‘helmeted’ in an ICRISAT cap, even if not horsed and caparisoned for this ‘peacetime’ pigeonpea mission!

On his future professional aspirations, he says: “The funding cut-backs for agriculture which started before 1990 or so gutted a lot of the capacity in the public sector, both in the national programmes in Africa but also beyond. I hope to play a role in rebuilding some of the capacity to ensure that people take full advantage of the technical resources available, and to enable breeding programmes to function at a higher level than they do now.”

Jeff (foreground) inspecting soya bean trials in Kakamega, Kenya.

Jeff (foreground) inspecting soya bean trials in Kakamega, Kenya, in January 2013. Next to Jeff is Emmanuel Monyo, the coordinator of the Tropical Legumes II (TLII) project – TLI’s twin – whose brief is seed multiplication. TLII is therefore responsible for translating research outputs from TLI into tangible products in the form of improved legume varieties.

Whilst it’s been several years since he donned his wellington boots for the gardening project of his youth, what’s clear in this closing statement is an unremitting and deeply ingrained sense of community spirit – albeit with a global outlook – and a fight for the greater good that remain at the core of Jeff’s professional philosophy today.

No doubt, our cowpea champion and his colleagues have come a long way, with foundations now firmly laid for modern breeding in the crop on a global scale, and – thanks to channels now being established to achieve the same for close relatives of the species – all signs indicate that the best is yet to come!

Links

Mar 072014
 
Print Friendly
Women in science

“Women can do advanced agricultural science, and do it well!” Elizabeth Parkes, cassava researcher, Ghana

Being a woman scientist in today’s world (or at any time in history!) is no mean feat, science traditionally having been the domain of men. We are therefore drawn to this sub-theme: Inspiring change, in addition to the global theme Equality for women is progress for all, To mark International Women’s Day tomorrow, UNESCO has developed an interactive tool which collates facts and figures from across the world on women in science. The cold scientific truth displayed in the attractive petri dish design shows that only 30 percent of researchers worldwide are women.

At GCP, we have been fortunate enough to have a cross-generational spectrum of, not only women scientists, but that even rarer species, women science leaders – who head a project or suite of projects and activities, and who actively nurture and mentor future science leaders – to ultimately contribute to the fulfilment of our mission: Using genetic diversity and advanced plant science to improve crops for greater food security in the developing world. The United Nations has designated 2014 as the Year of Family Farming. GCP’s women researchers have contributed to improving the lives of their farming counterparts the world over, especially in the developing world where on average, 43 percent of the agricultural labour force are women, rising to 60 percent and 70 percent in some regions. (FAO)

Please mind the gap…to leap to that all-important initiation into science

UNESCO's Women in Science interactive tool

UNESCO’s Women in Science interactive tool

The UNESCO tool mentioned above and embedded to the left allows users to “explore and visualise gender gaps in the pipeline leading to a research career, from the decision to get a doctorate degree to the fields of science that women pursue and the sectors in which they work” with this affirmation: “Perhaps most importantly, the data tool shows just how important it is to encourage girls to pursue mathematics and science at a young age.”

In our International Women’s Day multimedia expo, we profile the life and work of a selection of our smart scientific sisters through words, pictures and sound, to explain just how they overcame obstacles, from taking that first hurdle to study science at an early age, to mobility up the research rungs to reach the very top of their game, all the while balancing work, life and family.

A blogpost fest to introduce our first special guests

Masdiar Bustamam

Masdiar Bustamam

We begin our show with a blogpost fest, and first up is GCP’s original Mother Nature, renowned scientist and constant gardener of the molecular breeding plot, Masdiar Bustamam. After a virtual world-tour of research institutes early on in her career, Masdiar took the knowledge of molecular breeding back home, to the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD), where she personally took up the challenge to work with the fledgling world of biotechnology, set up a lab, and helped establish molecular breeding in her country. In an amazing 37-years-odd research career, Masdiar tended not only tender rice shoots, but also budding blossoms in the form of her many students, whom she nurtured and mentored throughout their studies, and who have now seamlessly inherited her mantle to carry on the mission with the same ever-bright spirit. More

Rebecca Nelson

Rebecca Nelson

We now skip continents and oceans  to meet the feisty, continent- and crop-hopping scientist, Rebecca Nelson (Cornell University, USA). “I wanted to get out into the world and try and have a practical impact instead of doing research for the sake of research,” Rebecca says – and that she did, first leaving her native USA to work in the International Rice Research Institute (IRRI) in the Philippines. There she teamed up with friend and colleague, Masdiar Bustamam, to establish Masdiar’s laboratory at ICABIOGRAD, Indonesia. The American continent then called her back, where she moved countries and institutes, and switched from rice to maize research, marking the launch of her GCP experience – which simultaneously introduced her to her a whole new network of international crop researchers. This rich research tapestry was  woven together by a poignant pain deep in her heart, as a mother herself, of “so many mothers not being able to feed their families.” Rebecca wanted to combat this problem,  and crop science is her weapon. More

Zeba Seraj

Zeba Seraj

Next, we meet another true mother of molecular plant breeding, Zeba Seraj (University of Dhaka, Bangladesh). Zeba, whose mind is perpetually on call in the pursuit of science, has been around the world, and from plants to animals and back again in the course of her multifaceted science career. During her PhD and postdoc experience in the UK, still with fauna, she cultivated her expertise in molecular biology and recombinant DNA technology, but a lack of opportunities in that field back in Bangladesh saw her enter the world of crop science, where she has remained ever since. Back at her alma mater, the University of Dhaka, she founded a molecular biology lab, and has nurtured and inspired generations of young biochemists. Her GCP project, using molecular markers to develop salt-tolerant rice, was a real eye-opener for her, and allowed her to truly ‘see’ how applied science and such a practical project would have a direct impact on her country’s food security, now and in the future. More

Sigrid Heuer

Sigrid Heuer

Our next scientist is also truly motivated by putting theory into practice through the application of upstream research all the way down the river, and directly into farmers’ fields. Sigrid Heuer (now with the Australian Centre for Plant Functional Genomics), a German national, has pursued her scientific ventures in Europe, Africa, Asia, and now Oceania, with many challenges along the way. Enter the Generation Challenge Programme, and the chance for Sigrid (then at IRRI)  to lead a major project, the Pup1 rice phosphorus uptake project, which taught Sigrid the A–Z of project management, and gave her ample scope for professional growth. Her team made a major scientific breakthrough, which was not only documented in international journals, but was also widely covered by global media.  From this pinnacle, Sigrid  passed on the baton to other scientists and moved on to new conquests. More

Arllet Portugal

Arllet Portugal

Now, all this research we’ve been celebrating generates a massive amount of data, as you can well imagine. What exactly can our scientists do with all that data, and how can they organise them? GCP’s Arllet Portugal, hailing from The Philippines, gives us the lowdown on smart and SHARP data management whilst also giving us some insights into how she started out on the long and winding road to leading data management for GCP’s Integrated Breeding Platform. In particular, Arllet describes the considerable challenge of changing researchers’ mindsets regarding the importance of effective data management in the context of their research, and enthuses over the excitement with which developing-country researchers welcome the GCP-funded electronic tablets they now use to collect and record data directly in the field. More

Armin Bhuiya

Armin Bhuiya

If there were a muse for young women scientists, it might very well be the subject of our next blogpost profile, Armin Bhuiya (Bangladesh Rice Research Institute). After completing her master’s degree on hybrid rice in her native Bangladesh, Armin was already thinking like a true change-catalyst scientist, trying to discover what line of research would be the most useful for her country and the world. After much deliberation, she embarked on a PhD focusing on developing salt- and submergence-tolerant rice. This wise choice would take her to study under the expert eye of Abdelbagi Ismail at IRRI, in The Philippines, with the helping hand of a GCP–DuPont postgraduate fellowship. There, she learnt much in the way of precise and meticulous research, while also taking advantage to self-train in modern molecular plant breeding methods. Our bright resourceful student has now advanced to the patient erudite teacher – as she takes home her knowledge of high-tech research methods to share with her colleagues and students in Bangladesh. More

Elizabeth Parkes

Elizabeth Parkes

Hello Africa! Switching continents and media, we now we move from the written medium to tune in to the melodic tones of Elizabeth Parkes (Crops Research Institute [CRI] of Ghana’s Council for Scientific and Industrial Research [CSIR], currently on leave of absence at the International Institute of Tropical Agriculture [ IITA]). We’re now at profile number seven in GCP’s gallery of women in science. Elizabeth, who is GCP’s Lead Cassava Researcher in Ghana, narrates an all-inclusive engaging story on the importance to agriculture of women scientists, women farmers, and cassava the wonder crop – all captured on memorable sound waves in this podcast.

If the gravity of words inscribed holds more weight, you can also read in depth about Elizabeth in a blogpost on this outstanding sister of science. Witness the full radiance of Elizabeth’s work in the life-changing world in which she operates; as she characteristically says, “I’ve pushed to make people recognise that women can do advanced agricultural science, and do it well.” And she is no exception to her own rule, as she grew professionally, apparently keeping pace with some of the giant cassava she has helped to develop through the years. But it is her role as nurturer, mentor and teacher that really raises her head-and-shoulders above the rest, from setting up a pioneering biotech lab at CRI–CSIR to conscientiously mentoring her many students and charges in work as in life, because, for Elizabeth, capacity building and cassava are inextricably coupled! More

Marie-Noëlle Ndjiondjop

Marie-Noëlle Ndjiondjop

In the wake of some recent high-profile screen awards, we close our multimedia expo with impressions of our science sisterhood through the medium of the seventh art: the magic visual world of the movies!  A good fit for a Friday!

The following tasteful and tasty (you’ll see why!) blogpost takes our film fans right onto the red carpet to rub shoulders with our scientific screen stars!

The first screen star you’ll meet is Marie-Noëlle Ndjiondjop (Africa Rice Center), Principal Investigator (PI) of GCP’s Rice Research Initiative, who opens the video-viewing session with seven succulent slices of rice research delight. Her movies are set in the rice-growing lands of Africa, where this savoury cereal is fast becoming a staple, and tackles the tricky topics of rice-growing constraints, capacity building, molecular breeding methods, and the colossal capacity of community in collaborative research projects.

Jonaliza Lanceras-Siangliw

Jonaliza Lanceras-Siangliw

The following feature introduces the talented GCP PI Jonaliza Lanceras-Siangliw (BIOTEC, Thailand), whose community-minded project, set in the Mekong region, focused on strengthening rice breeding programmes by using a genotyping building strategy and improving phenotyping capacity for biotic and abiotic stresses. Though this title is something of a spoiler alert, we hope you tune in to this comprehensive reel to see the reality of molecular rice breeding in the Mekong. More

Soraya Leal-Bertioli

Soraya Leal-Bertioli

Last, and by no means least, is a captivating collage of clips featuring GCP researcher, Soraya Leal-Bertioli (EMBRAPA, Brazil) waxing lyrical about that hard genetic nut to crack: the groundnut, and how GCP’s Tropical Legumes I (TLI) project was crucial in getting the crop breeding community to share genetic resources, molecular markers, knowledge, and tools on a cross-continental initiative breaking boundaries in multiple ways. Video collage

Links

Mar 072014
 
Print Friendly
Two in one, in more ways than one
Armin Bhuiya

Armin Bhuiya

Armin Bhuiya (pictured) is a dynamic and lively young geneticist and plant breeder, who has made huge strides in tracking crucial  genes in Bangladeshi rice landraces (or traditional farmer varieties). Armin took a ‘sandwich’ approach twinning two traits  – salt and submergence tolerance – in order to boost farmers’ yields. Her quest for salt-impervious ‘amphibian’ rice has seen her cross frontiers to The Philippines, and back to her native Bangladesh with solutions that will make a difference, borrowing a leaf along the way from the mythical submarine world of Atlantis for life under water. Using cutting-edge crop science, Armin is literally recreating out-of-this-world stuff working two elements of the ancient world  earth and water – plus that commodity that was then so prized enjoying a  premium comparable to gems: salt. Read on! 

A rice heritage, and the ‘sandwich’ saga and submarine search both begin…

“My father worked at the Bangladesh Rice Research Institute (BRRI), which basically means I grew up in rice research. You could say that I was born and bred in agriculture and this inspired me to study agriculture myself,” says Armin. As a result of these early experiences, Armin started a master’s degree in 2006 on genetics and plant breeding, specialising in hybrid rice. Ever since, rice has been her religion, following in the footsteps of her father to join the Bangladesh Rice Research Institute (BRRI).

Her other defining hallmark is her two-in-one approach. Sample this: once she completed her two-in-one master’s, Armin went on to study for a PhD in the same twin areas at Bangladesh Agricultural University. Pondering long and hard on what research would be of most practical use, she asked herself “What is the need? What research will be useful for my country and for the world?” (Editorial aside: out of this world work, apparently…)

Not content  pondering  over the question by herself, her natural two-track approach kicked in. Mulling with her colleagues from BRRI, the answer, it first seemed, was to find ways to produce salt-tolerant high-yielding rice. In Bangladesh and many other parts of South and Southeast Asia, climate change is driving up the sea level, spreading salinity further and deeper across low-lying coastal rice-fields, beyond the bounds where salt-drenched terrain has long been a perennial problem. Modern rice varieties are highly sensitive to salt. So, despite the low yields and quality, farmers continue to favour hardy traditional rice landraces that can take the heat and hit from the salt. Proceeding from this earthy farmer reality and inverting the research–development continuum, Armin needed no further thinking as the farmers showed the way to go. Her role and the difference she could make was to track the ‘treasure’ genes locked in these landraces that were transferred to high-yielding but salt-sensitive rice varieties, to fortify them against salt.

But that was not all. There’s power in numbers and consulting others, harnessing the best in diversity. In comes the two-track approach again, with Armin now turning to fellow scientists again, with the reality from farmers. Upon further consultations with colleagues, yet another fundamental facet emerged that could not be ignored. Apparently, salt-impervious rice alone would not be not enough, and here’s why. Salt and tides aside, during the rainy season inland, flash floods regularly submerge the fields, literally drowning the crop. More than 20 million hectares in South and Southeast Asia are affected – including two million hectares in coastal Bangladesh alone. The southern belt of Bangladesh is particularly affected, as modern varieties are sensitive to not only submergence but also salinity. So Armin had her work cut out for her, and she now knew that for the fruit of her labour to boost rice production in coastal regions as well (two tracks again! Inland and coastal low-lying rice-lands), what she needed to do was to work on producing high-yielding, salt-impervious, ‘amphibian’ rice that could withstand not only salinity but also submarine life. In other words, pretty much rice for a latter-day real-life rendition of the mythical Atlantis.

Armin has successfully incorporated dual tolerance to salinity and submergence in the popular Bangladeshi mega-variety BR11. This will provide the ideal salt-tolerant ‘amphibian’ rice suitable for farmers in the flood-prone salty-water-drenched swaths of southern Bangladesh.

Through the door of opportunity
The opportunity that opened the door for Armin to fulfil her dream was a DuPont Pioneer postgraduate fellowship implemented by GCP. The competitive programme provides grants for postgraduate study in plant breeding and genetics to boost the yields of staple food crops. This fellowship took Armin to Filipino shores and the molecular breeding labs at the International Rice Research Institute (IRRI). Here she got what she terms a golden opportunity to work under the tutelage of Abdelbagi Ismail, a leading plant physiologist focusing on overcoming abiotic stresses. From him, Armin learnt how carry out the precise meticulous research required for identifying quantitative trait loci (QTLs).

Armin at work at the greenhouse.

Armin at work at the IRRI greenhouse in 2011.

Armin conducted her research with two different mapping populations, both derived from Bangladeshi landraces (Kutipatnai and Ashfal). She found a total of nine quantitative trait loci (QTLs) from one mapping population and 82 QTLs from another for tolerance to salinity stress at seedling stage (QTL is a gene locus where allelic variation is associated with variation in a quantitative trait). Incorporating these additional genes into a high-yielding variety will help to develop promising salt-tolerant varieties in future. She has also successfully incorporated QTLs for dual tolerance to salinity (Saltol) and submergence (Sub1) in the popular Bangladeshi mega-variety, BR11. Stacking (or ‘pyramiding’ in technical terms) Saltol and Sub1 QTLs in BR11 will provide the ideal salt-tolerant ‘amphibian’ rice suitable for farmers in the flood-prone salty-water-drenched swaths of southern Bangladesh.

I know what to do and what is needed… I am going to share what I learned with my colleagues at BRRI and agricultural universities, as well as teach these techniques to students”

Dream achiever and sharer: aspiring leader inspiring change
The Pioneer–GCP fellowship has given Armin the opportunity to progress professionally. But, more than that, it means that through this remarkable young scientist, others from BRRI will benefit – as will her country and region. “While I was at IRRI,” Armin says, “I trained myself in modern molecular plant-breeding methods, as I knew that this practical experience in high-tech research methods would definitely help Bangladesh. I know what to do and what is needed. I am going to share what I learned with my colleagues at BRRI and agricultural universities, as well as teach these techniques to students. It makes me very happy and my parents very proud that the fellowship has helped me to make my dream come true.”

Away from professional life, there have been benefits at home too, with these benefits delivered with Armin’s aplomb and signature style in science – doing two in one, in more ways than one. This time around, the approach has led to dual doctorates for a dual-career couple in different disciplines: “When I went to The Philippines” Armin reveals, “my husband decided to come with me, and took the opportunity to study for a PhD in development communications. So we were both doing research at the same time!”

While Armin’s research promises to make a real difference in coastal rice-growing areas, Armin herself has the potential to lead modern plant breeding at her institute, carry GCP work forward in the long term, post-GCP, and to inspire others as she herself was inspired – to make dreams come true and stimulate change. An inspired rice scientist is herself an inspiration. You will agree with us that Armin personifies Inspiring change, our favoured sub-theme for International Women’s Day this year.

Go, Armin, Go! We’re mighty proud of what you’ve achieved, which we have no doubt serves as inspiration for others!

Links

 

Mar 052014
 
Print Friendly
Two peas in a pod, hand in hand, 

Elizabeth Parkes

In the past, the assumption was always that ‘Africa can’t do this.’ Now, people see that when given a chance to get round circumstances – as GCP has done for us through the provision of resources, motivation, encouragement and training – Africa can achieve so much!…GCP has made us visible and attractive to others; we are now setting the pace and doing science in a more refined and effective manner…Building human capacity is my greatest joy….I’ve pushed to make people recognise that women can do advanced agricultural science, and do it well. To see a talented woman researcher firmly established in her career and with her kids around her is thrilling….Rural families are held together by women, so if you are able to change their lot, you can make a real mark…” –  Elizabeth Parkes, cassava researcher, Ghana

Elizabeth’s PhD is on cassava genetic diversity, combining ability, stability and farmer preference in Ghana. But for Elizabeth, it is not the academic laurels and limelight but rather, a broader vision of social justice which really drives her: “I see African communities where poverty and hunger are seemingly huge problems with no way out; I’m fortunate to be working on a crop whereby, if I put in enough effort, I can bring some solutions. My primary target group in my research is the less privileged, and women in particular have been my friends throughout. Rural families are held together by women, so if you are able to change their lot, you can make a real mark.”

 

…agricultural research was a man’s job!”

A perennial passion for cassava, and walking with giants: Elizabeth with the pick of the crop for the 2014 cassava harvest season at  IITA, Ibadan, Nigeria.

A perennial passion for cassava, and walking with giants: Elizabeth with the pick of the crop for the 2014 cassava harvest season at IITA, Ibadan, Nigeria.

Prowess and prejudice: Breaking the mould and pioneering into pastures new
On first tentatively dipping her toe into the professional waters of crop science when growing up in her native Ghana, initial reactions from her nearest and dearest suggested that carving out a name for herself in her career of choice was never going to be a walk in the park: “As an only girl among eight  boys of whom three were half-siblings, and the youngest child, my father was not very amused; he thought agricultural research was a man’s job!” she recalls. Undeterred and ever more determined to turn this commonly held canard on its head, Elizabeth went on to bag a Bachelor’s degree in Agriculture, a diploma in Education, and an MPhil degree in Crop Science. During a stint of national service between academic degrees, she approached a scientist engaged in root and tuber projects at Ghana’s Council for Scientific and Industrial Research (CSIR) Crops Research Institute (CRI), offering to carry out some research on cassava, and soon establishing the institute’s first trials in Techiman, in the Brong Ahafo Region,where she was doing her national service. Recognising all the hallmarks of a great scientist, nurturer and leader, her CRI colleagues were quick to welcome this fresh talent into the fold as an Assistant Research Officer, with the full treasure trove of root tuber crops – from cassava to sweet potato to yam and cocoyam, among others – all falling under her remit. Not a bad start for the first woman to be assigned to the project!

Quickly proving herself as a fiercely cerebral researcher with a natural knack for the plant sciences, Elizabeth was encouraged by seasoned (then) GCP scientist, Martin Fregene (their paths had crossed during Elizabeth’s master’s degree thanks to research collaboration with the International Institute of Tropical Agriculture – IITA), to embark on a PhD degree with a focus on cassava. Coinciding with an era when links between Martin’s then home institute, the International Center for Tropical Agriculture (CIAT) and GCP were beginning to really take off the ground, it was a move that proved timely, and a path which Elizabeth pursued with her characteristic vigour and aplomb, climbing the GCP research ranks from multiple travel-grant recipient to a research fellow, and, more recently, to Lead Researcher for GCP’s cassava work in Ghana. Now a well established cassava connoisseur who regularly rubs shoulders with the crème de la crème of the global crop science community, Elizabeth specialises in drought tolerance and disease resistance in the GCP-related aspects of her work, whilst also turning her hand to biofortification research for GCP sister CGIAR Challenge Programme, HarvestPlus.

… it [biotechnology] was a breakthrough which Elizabeth spearheaded…”

Up, up and away! How a helping hand has led Elizabeth & Co to new professional and research heights
Life aboard the GCP ship, Elizabeth reveals, has offered a wealth of professional opportunities, both on personal and institutional levels. GCP-funded infrastructure, such as weather stations and irrigation systems, has helped to boost yields and enhance the efficiency of CRI trials, she observes. Professional development for herself and her team, she says, has been multifold: “Through our GCP work, we were able to build a lab and kick-start marker-assisted breeding – that ignited the beginning of biotechnology activities in CRI,” Elizabeth asserts.  It was a breakthrough which Elizabeth spearheaded, and which, happily, has since become run-of-the mill practice for the institute: “Now CRI scientists are regularly using molecular tools to do their work and are making cassava crosses on their own.” The positive domino effect of this change in tide cannot be underestimated: “Our once small biotechnology laboratory has evolved into a Centre of Excellence under the West Africa Agricultural Productivity Programme. Its first-class facilities, training courses and guiding hand in finding solutions have attracted countless visiting scientists, both from Ghana and internationally – this means that the subregion is also benefitting enormously.” The GCP’s Genotyping Support Service (GSS), Elizabeth affirms, has also proved an invaluable sidekick to these developments: “Through the GSS, our team learnt how to extract DNA as a first step, and later to re-enact all the activities that were initially done for us externally – data sequencing, interpretation and analysis for example – on a smaller scale in our own lab.” The collection and crunching of data has also become a breeze: “Thanks to GCP’s support, we have become a pace-setter for electronic data gathering using tablets, field notebooks and hand-held devices,” she adds.

….GCP gives you the keys to solving your own problems, and puts structures in place so that knowledge learnt abroad can be transferred and applied at home – it’s been an amazing journey!”

Ruth Prempeh, one of Elizabeth's charges, collecting data for her GCP-funded PhD on cassava post-harvest physiological deterioration. Ruth is one of those whose work–family balance Elizabeth celebrates. Ruth has since submitted her thesis awaiting results. As you'll hear in the accompanying podcast, both of Ruth's young children have each, er, sort of 'attended' two big  GCP events!

Ruth Prempeh, one of Elizabeth’s charges, collecting data for her GCP-funded PhD on cassava post-harvest physiological deterioration. Ruth is one of those whose work–family balance Elizabeth celebrates. Ruth has since submitted her thesis awaiting results. As you’ll hear in the podcast below, both of Ruth’s young children have each, er, sort of ‘attended’ two big GCP events!

People power: capacity building and work–life balance
Elizabeth lights up most when waxing lyrical about the leaps and bounds made by her many students and charges through the years, who – in reaping some of the benefits offered by GCP, such as access to improved genetic materials; forging links with like-minded colleagues near and far, and, critically, capacity building – have gone on to become established and often internationally recognised breeders or researchers, with the impacts of their work posting visible scores in the fight against global food insecurity. On the primordial role of capacity building, she says: “GCP gives you the keys to solving your own problems, and puts structures in place so that knowledge learnt abroad can be transferred and applied at home – it’s been an amazing journey!” Of her female students who’ve surmounted the work–family pendulum challenge, she says: “I’ve pushed to make people recognise that women can do advanced agricultural science, and do it well. To see a talented woman researcher firmly established in her career and with her kids around her is thrilling.”

At IITA, Elizabeth continues to be an inspiration on work–life balance for women working on their PhDs, and more so for young women whose work is on cassava. In a male-dominated environment (global statistics report that women researchers are a meagre 30 percent), this inspiration is critical. .

No ‘I’ in team: tight-knit community a must for kick-starting real and sustainable solutions
As Elizabeth well knows, one swallow does not a summer make: as demonstrated by the GCP’s Communities of Practice (CoPs), she says, strength really does come in numbers: “The GCP Cassava CoP has brought unity amongst cassava breeders worldwide; it’s about really understanding and tackling cassava challenges together, and bringing solutions home.” Bolstering this unified spirit, Elizabeth continues, is the GCP’s Integrated Breeding Platform (IBP): “With the initial teething problems mainly behind us, IBP is now creating a global community and is an excellent way of managing limited resources, reducing duplication of efforts and allowing people to be more focused.” On helping scientists inundated with information to spot the wood from the trees, she says: “Over the years, lots of data have been generated, but you couldn’t find them! Now, thanks to IBP, you have sequencing information that you can tap into and utilise as and where you need to. It’s very laudable achievement!”

In the past, the assumption was always that ‘Africa can’t do this.’…GCP has made us visible and attractive to others; we are now setting the pace and doing science in a more refined and effective manner.” 

Clearly, keeping the company of giants is not new for Elizabeth (right). This giant cassava tuber is from a 2010 CRI trial crossing improved CIAT material with CRI landraces (traditional farmer varieties. The trial was part of Bright Boakye Peprah’s postgraduate work. Bright has since completed his GCP-funded masters on cassava breeding, and now a full time cassava breeder with CSIR–CRI. He is currently on study leave  pursuing a PhD on cassava biofortification in South Africa. On the left is Joseph Adjebeng-Danquah, a GCP-funded PhD student whose work centres on cassava drought tolerance. Our best quote from Joseph: “It is important to move away from the all too common notion that cassava is an ‘anywhere, anyhow’ crop.”

Clearly, keeping the company of giants is not new for Elizabeth (right). This giant cassava tuber is from a 2010 CRI trial crossing improved CIAT material with CRI landraces (traditional farmer varieties. The trial was part of Bright Boakye Peprah’s postgraduate work. Bright has since completed his GCP-funded master’s  degree on cassava breeding, and now a full time cassava breeder with CSIR–CRI. He is currently on study leave pursuing a PhD on cassava biofortification in South Africa. On the left is Joseph Adjebeng-Danquah, a GCP-funded PhD student whose work centres on cassava drought tolerance. Our best quote from Joseph: “It is important to move away from the all too common notion that cassava is an ‘anywhere, anyhow’ crop.”

Empowered and engaged: African cassava researchers reclaim the driving seat
The bedrock of GCP’s approach, Elizabeth suggests, is the facilitation of that magical much sought-after Holy Grail: self-empowerment. “When I first joined GCP,” she recalls, “I saw myself as somebody from a country programme being given a place at the table; my inputs were recognised and what I said would carry weight in decision-making.” It’s a switch she has seen gain traction at national and indeed regional levels: “In the past, the assumption was always that ‘Africa can’t do this.’ Now, people see that when given a chance to get round circumstances – as GCP has done for us through the provision of resources, motivation, encouragement and training – Africa can achieve so much!” Reflecting on the knock-on effect for African cassava researchers particularly, she concludes: “GCP has made us visible and attractive to others; we are now setting the pace and doing science in a more refined and effective manner.”

Paying it forward and sharing: Helping women, and thereby, communities
Armed with bundles of knowledge as she is, Elizabeth is a firm believer in paying it forward and sharing: “Building human capacity is my greatest joy,” she affirms, citing farmers, breeders, and a Ghanaian private-sector company as just a few of the fortunate beneficiaries of her expertise over recent years. And on sources of motivation, it is not the academic laurels or limelight but rather a broader vision of social justice which really drives her: “I see African communities where poverty and hunger are seemingly huge problems with no way out; I’m fortunate to be working on a crop whereby, if I put in enough effort, I can bring some solutions.” They are solutions which she hopes will be of lasting service to those closest to her heart: “My primary target group in my research is the less privileged, and women in particular have been my friends throughout. Rural families are held together by women, so if you are able to change their lot, you can make a real mark.”

We’re in a blessed and privileged era where cassava, an ancient and once orphan crop, is now receiving lots of attention… I encourage young scientists to come on board!”

Inspired, and inspiring: nurturing budding cassava converts, and seizing opportunities for impact
In terms of future horizons, Elizabeth – who after more than two decades of service at CRI is currently on leave of absence at IITA where she’s working on biofortification of cassava – hopes to thereby further advance her work on cassava biofortification, and perhaps later move into a management role, focusing on decision-making and leading agricultural research leaders with monitoring and evaluation specifically to “ensure that the right people are being equipped with skills and knowledge, and that those people are in turn teaching others.” She is also confident that any young, gifted researcher with an eye on the prize would be foolhardy to overlook what Elizabeth views as a golden opportunity for creating meaningful and lasting impacts: “We’re in a blessed and privileged era where cassava, an ancient and once orphan crop, is now receiving lots of attention. Every agricultural research lead we have in Africa is there to be seized – I encourage young scientists to come on board!” A clear and convincing clarion call to budding breeders or potential cassava converts if ever there was one…. who wants in, in this love-match where cassava and capacity building are truly two peas in a pod?

Like meets like in a fair match: Our cassava champion in a male-dominated environment, Elizabeth, meets her match in Farmer Beatrice who refused to take no for an answer, and beat Elizabeth hands down. Listen to this! 

 

Links

Feb 242014
 
Print Friendly
For this ‘IBP story-telling season’, our next stop is  very fittingly Africa, and her most populous nation, Nigeria. Travel with us!

Having already heard the Integrated Breeding Platform (IBP) story on data from Arllet (spiced with a brief detour through Asia’s sun-splashed rice paddies), and on IBP’s Breeding Management System from Mark (where we perched on a corner on his Toulouse workbench of tools and data), we next set out to get an external narrative on IBP, and specifically, one from an IBP user. Well, we got more than we had bargained for from our African safari

Yemi Olojede

Yemi Olojede

Yemi Olojede (pictured) is much more than a standard IBP user. An agronomist by training with a couple of decades-plus experience, he not only works closely with breeders and other crop scientitsts, but is also a research coordinator and data manager. As you can imagine, this made for a rich and insightful conversation, ferrying us far beyond the frontiers of Yemi’s base in Nigeria, to the rest of West Africa,  further out to Africa , and as far afield as Mexico, in his travels and travails with partners. We now bring to you some of this captivating conversation…

Yemi  has been working for the last 23 years (since 1991) at Nigeria’s National Root Crops Research Institute (NRCRI) at Umudike in various capacities. After heading NRCRI’s Minor Root Crops Programme for 13 years, he was last year appointed Coordinator-in-Charge of the Cassava Research Programme.

But his involvement in agriculture goes much further back than NRCRI: Yemi says he “was born into farming”. His father, to whom he credits his love for agriculture, was a cocoa farmer. “I enjoy seeing things grow. When I see a field of crops …what a view!” Yemi declares.

Yemi is also the Crop Database Manager for NRCRI’s GCP-funded projects. He spent time at GCP headquarters in Mexico in February 2012 to sharpen his skills and provide user insights to the IBP team on the cassava database, on the then nascent Integrated Breeding Fieldbook, and on the tablet that GCP was considering for electronic field data collection and management.

To meet the farmers’ growing need for improved higher-yielding and stress-tolerant varieties, plant breeders are starting to incorporate molecular-breeding techniques to speed up conventional breeding.

Flashback to 2010: GCP was then piloting and testing small handheld devices for data collection. Field staff going through a training session for these under Yemi's watchful eye (right).

Flashback to 2010: GCP was then piloting and testing small handheld devices for data collection. Field staff going through a training session for these under Yemi’s watchful eye (right).

But for this to happen effectively, cassava breeders require consistent and precise means to collect and upload research and breeding data, and secure facilities to upload that data into the requisite databases and share it with their peers. Eighty percent of farmers in Africa have less than a hectare of land – that’s roughly two football fields! With so little space, they need high-value crops that consistently provide them with viable yields, particularly during drought. For this reason, an increasing number of Nigerian farmers are adopting cassava. It is not as profitable as, say, wheat, but it has the advantage of being less risky. The Nigerian government is encouraging this change and is implementing a Cassava Transformation Agenda, which will improve cassava markets and value chains locally and create a sustainable export market. All this is designed to encourage farmers to grow more cassava.

Enter GCP’s Integrated Breeding Platform (IBP), which has been working closely with NRCRI and other national breeding programmes to develop the right informatic tools and support services for the job. The International Cassava Information System (ICASS), the Integrated Breeding Fieldbook and the tablet are all part of the solution, backed up by a variety of bioinformatic tools for data management, data analysis and breeding decision support that have been developed to meet the specific needs of the users.

I enjoy working with the team. They pay attention to what we as breeders want and are determined to resolve the issues we raise”

Fastfoward to 2012: Based on feedback, a larger electronic tablet was favoured over the smaller handheld device. Yemi (centre) takes field staff through the paces in tablet use.

Fastfoward to 2012: Based on feedback, a larger electronic tablet was favoured over the smaller handheld device. Yemi (centre) takes field staff through the paces in tablet use.

The database and IB Fieldbook
“When I received the tablet I was excited! I had heard so much about it but only contributed ideas for its use through Skype and email,” Yemi remembers, echoing a sentiment that is frequently expressed by many partners who have been introduced to the device. “I experimented with the Integrated Breeding Fieldbook software focusing on pedigree management, trait ontology management, template design ‒ testing how easy it was to input data into the program and database.”  Yemi noted a few problems with layout and data uploading and suggested a number of additional features. The IBP Team found these insights particularly useful and worked hard to implement them in time for the 2nd Scientific Conference of the Global Cassava Partnership for the 21st Century (GCP21 II), held in Kampala, Uganda, in June, 2012.

“I enjoy working with the team. They pay attention to what we as breeders want and are determined to resolve the issues we raise,” says Yemi. He believes the IB FieldBook and the tablet, on which it runs, will greatly benefit breeders all over the world, but particularly in Africa. “At the moment, our breeders and researchers have to write down their observations in a paper field book, take that book back to their computer, and enter the data into an Excel spreadsheet,” he notes. “We have to double-handle the data and this increases the possibility of mistakes, especially when we are transferring it to our computers. The IB Fieldbook will streamline this process, minimising the risk of making mistakes, as we enter our observations straight into the tablet, using specified terms and parameters, which will upload all the data to the shared central database when it’s connected to the internet.”

The whole room was wide-eyed and excited when they first saw the tablets”

Bringing the tablet to Africa
After his trip to Mexico, Yemi was concerned that some African breeders would be put off using the IB Fieldbook and accompanying electronic tablet because both require some experience with computers. “I found the tablet and the FieldBook quite easy to use because I’m relatively comfortable with computers,” says Yemi. “The program is very similar to MS-Excel, which many breeders are comfortable with, but I still thought it would be difficult to introduce it given that computer literacy across the continent is very uneven.”

Slim, portable and nearly invisible. A junior scientist at NRCRI Umudike tries out the tablet during the 2012 training session.

Slim, elegant, portable and nearly invisible is this versatile tool. A junior scientist at NRCRI Umudike tries out the tablet during the 2012 training session.

At the GCP21 II meeting in Uganda, Yemi helped the IBP team run IB Fieldbook workshops for plant breeders from developing countries, with an emphasis on data quality and sharing. “The whole room was wide-eyed and excited when they first saw the tablets. They initially had trouble using them and I thought it was going to be a very difficult workshop, but by the end they all felt confident enough to use them by themselves and were sad to have to give them back!”

They … go back to their research institutes and train their colleagues, who are more likely to listen and learn from them than from someone else.”

Providing extra support, cultivating trust
Yemi recounts that attendees were particularly pleased when they received a step-by-step ‘how-to’ manual to help them train other breeders in their institutes, with additional support to be provided by the IBP or Yemi’s team in Nigeria. “They were worried about post-training support,” says Yemi. “We told them if they had any challenges, they could call us and we would help them. I feel this extra support is a good thing for the future of this project, as it will build confidence in the people we teach. They can then go back to their research institutes and train their colleagues, who are more likely to listen and learn from them than from someone else.”

In developing nations, it is important that we share data, because we don’t all have the capacity to carry out molecular breeding at this time, and data sharing would facilitate the dissemination of the benefits to a wider group”

Sharing data to utilise molecular breeding
Yemi asserts that incorporating elements of molecular breeding has helped NRCRI a great deal. With conventional breeding, it would take six to 10 years to develop a variety before release, but with integrated breeding (conventional breeding that incorporates molecular breeding elements) it is possible to develop and release new varieties in three to four years ‒ half the time. Farmers would hence be getting new varieties of cassava that will yield 20‒30 percent more than the lines they are currently using in a much shorter time.

“In developing nations, it is important that we share data, because we don’t all have the capacity to carry out molecular breeding at this time, and data sharing would facilitate the dissemination of the benefits to a wider group,” says Yemi. “I enjoy helping people with this technology because I know how much it will make their job easier.”

Links

cheap ghd australia