Jan 122015
 
James profile

James Gethi and one of the crops closest to his heart – maize. He also has a soft spot for hardy crop varieties that survive harsh and unforgiving drylands, such as Machakos, Kenya, where this June 2011 photo of him with drought-tolerant KARI maize was taken.

As we tell our closing stories on our Sunset Blog, in parallel, we’re also catching up on the backlog of stories still in our store from the time GCP was a going concern. Our next stop is Kenya, and the narrative below is from 2012, but don’t go away as it is an evergreen – a tale that can be told at any time, as it remains fresh as ever. At that time, and for the duration of the partnership with GCP, the Food Crops Research Institute of the Kenya Agricultural and Livestock Research Organisation (KALRO) was then known as the Kenya Agricultural Research Institute (KARI), and we shall therefore stay with this previous name in the story. KARI was also the the name of the Kenyan institute at the time when James Gethi (pictured) left for a sabbatical at the International Maize and Wheat Improvement Center (CIMMYT by its Spanish acronym). On to the story then, and please remember we’re travelling back in time to the year 2012. 

“I got into science by chance, for the fun of it,” muses James, maize breeder and former GCP scientist “With agricultural school promising a flight to overfly the country’s agricultural areas– this was an interesting prospect for a village guy. ‘This could be fun’, I thought!”

And it turned out to be a chance well worth taking.  His first step was getting the requisite education. And so he armed himself with a BSc in Agriculture from the University of Nairobi, Kenya, topped with a Master’s and PhD in Plant Breeding from the University of Alberta (Canada) and Cornell University (USA), respectively. Beyond academics, in the course of his crop science career, James has developed 13 crop varieties, that included maize and cassava, published papers in numerous peer-reviewed papers (including the 2003 prize for Best paper in the field of crop science in the prestigious Crop Science journal. And in leadership, James headed the national maize research programme in his native Kenya. These are just a few of the achievements James has garnered in the course of his career, traversing  and transcending not only the geographical frontiers initially in his sights, but also scientific ones, reaching professional heights that perhaps his younger self might never have dreamt possible.

As a Research Officer at KARI, a typical day sees James juggling his time between hands-on research (developing maize varieties resistant to drought, field and storage pests) and project administration, coordinating public–private partnerships and the maize research programme at both institutional and country level. What motivates the man shouldering much of the responsibility for the buoyancy of his nation’s staple crop? James explains, “Making a difference by providing solutions to farmers. That’s my passion and that’s what makes me get up in the morning and go to work. It’s hugely satisfying!”

Without GCP, I would not be where I am today as a scientist… [it] gave me a chance to work with the best of the best worldwide… You develop bonds and understanding that last well beyond the life of the projects.”

Rapid transitions: trainee to trainer to leader
It was this passion and unequivocal dedication to his vocation – not to mention a healthy dollop of talent – that GCP was quick to recognise back in 2004, when James first climbed aboard the GCP ship. Like a duck to water, he proceeded to engage in all manner of GCP projects and related activities, steadily climbing the ranks from project collaborator to co-Principal Investigator and, finally, Principal Investigator in his own right, leading a maize drought phenotyping project. Along the way, he also secured GCP Capacity building à la carte and Genotyping Support Service grants to further the maize research he and his team were conducting.

Combo1

FLASHBACK: At a GCP drought phenotyping course in mid-2006 at Montpellier, France. (1) James (left) pays keen attention during one of the practical sessions. (2) In the spirit of “All work and no play, etc”, taking a break from the course to take in some of the sights with colleagues. Clearly, James, “the guy from the village” is anything but a dull boy! Next to James, second left, is BM Prasanna, currently leader of CIMMYT’s maize programme.

DSC00606_w

From trainee to trainer and knowledge-sharer: James (behind the camera) training KARI staff on drought phenotyping in June 2009 at Machakos, in Kenya’s drylands.

The GCP experience, James reveals, has been immensely rewarding: “Without GCP, I would not be where I am today as a scientist,” he asserts. And on the opportunity to work with a capable crew beyond national borders, as opposed to operating as a solo traveller, he says: “GCP gave me a chance to work with the best of the best worldwide, and has opened up new opportunities and avenues for collaboration between developing-country researchers and advanced research institutes, creating and cementing links that were not so concrete before. This has shown that we don’t have to compete with one another; we can work together as partners to derive mutual benefits, finding solutions to problems much faster than we would have done working alone and apart from each other.”

The links James has in mind are not only tangible but also sustainable: “You develop bonds and understanding that last well beyond the life of the projects,” James enthuses, citing additional professional engagements (the African Centre for Crop Improvement in KwaZulu-Natal, South Africa, and the West Africa Centre for Crop Improvement, have both welcomed James and his team into their fold), as well as firm friendships with former GCP project colleagues as two key take-home benefits of his interaction with the Programme. These new personal and professional circles have fostered a happy home for dynamic debates on the latest news and views from the crop-science world, and the resultant healthy cross-fertilisation of ideas, James affirms.

Reflecting on what he describes as a ‘mentor’ role of GCP, and on the vital importance of capacity building in general, he continues: “By enhancing the ability of a scientist to collect germplasm, or to analyse that germplasm, or by providing training and tips on how to write a winning project proposal to get that far in the first place, you’re empowering scientists to make decisions on their own – decisions which make a difference in the lives of farmers. This is tremendous empowerment.”

Another potent tool, says James, is the software made available to him through GCP’s Integrated Breeding Platform (IBP), which is a handy resource package to dip into for – among other things – analysing data and selecting the right varieties at the right time. The next step for IBP, he feels, should be scaling up and aiming for outreach to the wider scientific community, forecasting that such a step could bring nothing but success: “The impacts could be enormous!” he projects, with a palpable and infectious enthusiasm.

People… don’t eat publications, they eat food… I’m not belittling knowledge, but we can do both”

Fast but not loose on the R&D continuum: double agent about?
For James, outreach and impacts are not limited to science alone. In parallel with his activities in upstream genetic science, James’ efforts are equally devoted to the needs of his other client base-–the development community and farmers. For this group, James’ focus is on putting tangible products on the table that will translate into higher crop yields and incomes for farmers. Yet whilst products from any highly complex scientific research project worth its salt are typically late bloomers, often years in the making on a slow burner as demanded by the classic linear R&D view that research must always precede development, adaptation and final adoption, James has been quick to recognise that actors in the world of development and the vulnerable communities they serve do not necessarily have this luxury of time.

 August 2008: a huge handful, and more where that came from in Kwale, Kenya. This farmer's healthy harvest came from KARI hybrids.

August 2008: a huge handful, and more where that came from in Kwale, Kenya. This farmer’s healthy harvest came from KARI hybrids.

His solution for this challenge? “Sitting where I sit, I realised from very early on that if I followed the traditional linear scientific approach, my development clients would not take it kindly if I still had no products for them within the three-year lifespan of the project. The challenge then was to deliver results for farmers without compromising or jeopardising their integrity or the science behind the product,” he recalls. In the project he refers to – a GCP-funded project to combat drought and disease in maize and rice – James applied a novel double-pronged approach to get around this seeming conundrum of the need for sound science on the one hand, and the need for rapid results for development on the other hand. Essentially, he simultaneously walked on both tracks of the research–development continuum.

The project – led by Rebecca Nelson of Cornell University and with collaborators including James’ team at KARI (leading the maize component), the International Rice Research Institute (IRRI), researchers in Asia, as well as other universities in USA – initially set out with the long-term goal of dissecting quantitative trait loci (QTLs) for rice and maize with a view to combating drought and disease in these crops. Once QTLs were dissected and gene crosses done, James and his team went about backcrossing these new lines to local parental lines, generating useful products in the short term. The results, particularly given the limited resources and time invested, have been impressive, with seven hybrid varieties developed for drylands and coastal regions having been released in Kenya by 2009, and commercialised from 2010.

James and his colleagues have applied the same innovative approach to other GCP projects, grappling to get a good grasp of the genetic basis of drought tolerance, whilst also generating intermediate products for practical use by farmers along the way. James believes this dual approach paves the way for a win-win situation: “People on the ground don’t eat publications, they eat food,” he says. “As we speak now, there are people out there who don’t know where their next meal will come from. I’m not belittling knowledge, but we can do both – boiled maize on the cob and publications on the boil. But let’s not stop at crop science  and knowledge dissemination – let’s move it to the next level, which means products,” he challenges, adding: “With GCP support, we were able do this, and reach our intended beneficiaries.”

It is perhaps this kind of vision and inherent instinct to play the long game that has taken James this far professionally, and that will no doubt also serve him well in the future.

As our conversation comes to a close, we ask James for a few pearls of wisdom for other young budding crop researchers eager to carve out an equally successful career path for themselves, James offers “Form positive links and collaborations with colleagues and peers. Never give up; never let challenges discourage you. Look for organisations where you can explore the limits of your imagination. Stay focused and aim high, and you’ll reach your goal.”

Upon completion of his ongoing sabbatical at CIMMYT in Zimbabwe, where he is currently working on seed systems, James plans to return to KARI, armed with fresh knowledge and ready to seize – with both hands – any promising collaborative opportunities that may come his way .

Certainly, prospects look plentiful for this ‘village lad’ in full flight, and who doesn’t look set to land any time soon!

DSC03659_w

In full flight – Montpellier, Brazil, Benoni, Bangkok, Bamako, Hyderabad… our boy voyaged from the village to Brazil and back, and far beyond that. Sporting the t-shirt from GCP’s Annual Research Meeting in Brazil in 2006, which James attended, he also attended the same meeting the following year, in Benoni, South Africa, in 2007, when this photo was taken. James is a regular at these meetings which are the pinnacle on  GCP’s calendar (http://bit.ly/I9VfP4). But he always sings for his supper and is practically part of the ‘kitchen crew’, but just as comfortable in high company. For example, he was one of the keynote speakers at the 2011 General Research Meeting (see below).

Links:

 

 

Jan 072015
 

Beyond chickpeas to embrace beans, chickpeas, groundnuts and pigeonpeas

Paul_w2As a scientist who comes from the dessicated drylands of the unforgiving Kerio Valley, where severe drought can mean loss of life through loss of food and animals, what comes first is food security… I could start to give something back to the community… It’s been a dream finally coming true.” – Paul Kimurto, Senior Lecturer and Professor in Crop Physiology and Breeding, Egerton University, Kenya

As a son of peasant farmers growing up in a humble home in the Rift Valley of Kenya, agriculture was, for Paul Kimurto (pictured above), not merely a vocation but a way of life: “Coming from a pastoral community, I used to take care of the cattle and other animals for my father. In my community livestock is key, as is farming of food crops such as maize, beans and finger millet.”

Covering some six kilometres each day by foot to bolster this invaluable home education with rural school, an affiliation and ever-blossoming passion for agriculture soon led him to Kenya’s Egerton University.

There, Paul excelled throughout his undergraduate course in Agricultural Sciences, and was thus hand-picked by his professors to proceed to a Master’s degree in Crop Sciences at the self-same university, before going on to obtain a German Academic Exchange Service (DAAD) scholarship to undertake a ‘sandwich’ PhD in Plant Physiology and Crop Breeding at Egerton University and the Leibniz Institute for AgriculturalEngineering (ATB) in Berlin, Germany.

… what comes first is food security… offering alternative drought-tolerant crops… is a dream finally coming true!…  GCP turned out to be one of the best and biggest relationships and collaborations we’ve had.”

Local action, global interaction
With his freshly minted PhD, Paul returned to Egerton’s faculty staff and steadily climbed the ranks to his current position as Professor and Senior Lecturer in Crop Physiology and Breeding at Egerton’s Crop Sciences Department. Yet for Paul, motivating this professional ascent throughout has been one fundamental factor:  “As a scientist who comes from a dryland area of Kerio valley, where severe drought can mean loss of food and animals, what comes first is food security,” Paul explains. “Throughout the course of my time at Egerton, as I began to understand how to develop and evaluate core crop varieties, I could start to give something back to the community, by offering alternative drought-tolerant crops like chickpeas, pigeonpeas, groundnuts and finger millet that provide farmers and their families with food security. It’s been a dream finally coming true.”

And thus one of academia’s true young-guns was forged: with an insatiable thirst for moving his discipline forward by seeking out innovative solutions to real problems on the ground, Paul focused on casting his net wide and enhancing manpower through effective collaborations, having already established fruitful working relationships with the International Maize and Wheat Improvement Center (CIMMYT), the (then) Kenya Agricultural Research Institute (KARI) and the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in earlier collaborative projects on dryland crops in Kenya. It was this strategy that paved the way towards teaming up with GCP, when, in 2008, Paul and his team were commissioned to lead the chickpea work in Kenya for the GCP Tropical Legumes I project (TLI), with local efforts being supported by colleagues at ICRISAT, and friends down the road at KARI undertaking the bean work of the project. Climbing aboard the GCP ship, Paul reveals, was a move worth making: “Our initial engagement with GCP started out as a small idea, but in fact, GCP turned out to be one of the best and biggest relationships and collaborations we’ve had.”

…GCP is people-oriented, and people-driven” 

Power to the people!
The success behind this happy marriage, Paul believes, is really quite simple: “The big difference with GCP is that it is people-oriented, and people-driven,” Paul observes, continuing: “GCP is building individuals: people with ideas become equipped to develop professionally.” Paul elaborates further: “I wasn’t very good at molecular breeding before, but now, my colleagues and I have been trained in molecular tools, genotyping, data management, and in the application of molecular tools in the improvement of chickpeas through GCP’s Integrated Breeding Multiyear Course. This has opened up opportunities for our local chickpea research community and beyond, which, without GCP’s support, would not have been possible for us as a developing-country institution.”

Inspecting maturity, Koibatek FTC, Bomet_R Mulwa_Sep'12_w

Inspecting pod maturity with farmers at Koibatek Farmers Training Centre in Eldama Ravine Division, Baringo County, Kenya, in September 2012. Paul is on the extreme right.

Passionate about his teaching and research work, it’s a journey of discovery Paul is excited to have shares with others: “My co-workers and PhD students have all benefitted. Technicians have been trained abroad. All my colleagues have a story to tell,” he says. And whilst these stories may range from examples of access to training, infrastructure or genomic resources, the common thread throughout is one of self-empowerment and the new-found ability to move forward as a team: “Thanks to our involvement with the GCP’s Genotyping Support Service, we now know how to send plant DNA to the some of the world’s best labs and to analyse the results, as well as to plan for the costs. With training in how to prepare the fields, and infrastructure such as irrigation systems and resources such as tablets, which help us to take data in the field more precisely, we are now generating accurate research results leading to high-quality data.”

The links we’ve established have been tremendous, and we think many of them should be long-lasting too: even without GCP

Teamwork, international connections and science with a strong sense of mission
Teaming up with other like-minded colleagues from crème de la crème institutions worldwide has also been vital, he explains: “The links we’ve established have been tremendous, and we think many of them should be long-lasting too: even without GCP, we should be able to sustain collaboration with KBioscience [now LGC Genomics] or ICRISAT for example, for genotyping or analysing our data.” He holds similar views towards GCP’s Integrated Breeding Platform (IBP): “IBP is one of the ideas which we think, even after GCP’s exit in December 2014, will continue to support our breeding programmes. My colleagues and I consult IBP regularly for a range of aspects, from markers to protocols to germplasm and the helpdesk, as well as for contacts and content available via the IBP Communities of Practice.” Paul’s colleagues are Richard Mulwa, Alice Kosgei, Serah Songok, Moses Oyier, Paul Korir, Bernard Towett, Nancy Njogu and Lilian Samoei. Paul continues: “We’ve also been encouraging our regional partners to register on IBP – I believe colleagues across Eastern and Central Africa could benefit from this one-stop shop.”

Yet whilst talking animatedly about the greater sophistication and accuracy in his work granted as a result of new infrastructure and the wealth of molecular tools and techniques now available to him and his team, at no point do Paul’s attentions stray from the all-important bigger picture of food security and sustainable livelihoods for his local community: “When we started in 2008, chickpeas were known as a minor crop, with little economic value, and in the unfavoured cluster termed ‘orphan crops’ in research. Since intensifying our work on the crop through TLI, we have gradually seen chickpeas become, thanks to their relative resilience against drought, an important rotational crop after maize and wheat during the short rains in dry highlands of Rift valley and also in the harsh environments of the Kerio Valley and swathes of Eastern Kenya.”

This GCP-funded weather station is at Koibatek Farmers Training Centre, Longisa Division, Bomet County.

This GCP-funded weather station is at Koibatek Farmers Training Centre.

Having such a back-up in place can prove a vital lifeline to farmers, Paul explains, particularly during moments of crisis, citing the 2011–2012 outbreak of the maize lethal necrosis (MLN) disease which wiped out all the maize throughout Kenya’s  Bomet County, where Paul, Richard, Bernard and their team had been working on the chickpea reference set. Those farmers who had planted chickpeas – Paul recalls Toroto and Absalom as two such fortunate souls – were food-secure. Moreover, GCP support for infrastructure such as a weather station have helped farmers in Koibatek County to predict weather patterns and anticipate rainfall, whilst an irrigation system in the area is being used by the Kenyan Ministry of Agriculture to develop improved seed varieties and pasture for farmers.

The science behind the scenes and the resultant products are of course not to be underestimated: in collaboration with ICRISAT, Paul and his team released four drought-resistant chickpea varieties in Kenya in 2012, with the self-same collaboration leading to the integration of at least four varieties of the crop using marker-assisted backcrossing, one of which is in the final stages and soon to be released for field testing. With GCP having contributed to the recent sequencing of the chickpea genome, Paul and his colleagues are now looking to up their game by possibly moving into work on biotic stresses in the crop such as diseases, an ambitious step which Paul feels confident can be realised through effective collaboration, with potential contenders for the mission including ICRISAT (for molecular markers), Ethiopia and Spain (for germplasm) and researchers at the International Center for Agricultural Research in the Dry Areas (ICARDA) for germplasm. Paul first established contact with all of these partners during GCP meetings.

By coming together, pooling skills from biotechnology, agronomy, breeding, statistics and other disciplines, we are stronger as a unit and better equipped to offer solutions to African agriculture and to the current challenges we face.”

Links that flower, a roving eye, and the heat is on!
In the meantime, the fruits of other links established since joining the GCP family are already starting to blossom. For example, TLI products such as certified seeds of chickpea varieties being released in Kenya – and in particular the yet-to-be-released marker-assisted breeding chickpea lines which are currently under evaluation – caught the eye of George Birigwa, Senior Programme Officer at the Program for Africa’s Seed Systems (PASS) initiative of the Alliance for a Green Revolution in Africa (AGRA), which is now supporting the work being undertaken by Paul and his team through the Egerton Seed Unit and Variety Development Centre (of which Paul is currently Director) at the Agro-Based Science Park.

Yet whilst Paul’s love affair with chickpeas has evidently been going from strength to strength, he has also enjoyed a healthy courtship with research in other legumes: by engaging in a Pan-African Bean Research Alliance (PABRA) bean project coordinated by the International Center for Tropical Agriculture (CIAT), Paul and his team were able to release and commercialise three bean varieties which are currently in farmers’ fields in Kenya.

20140124_150637

Paul (left) in the field. The crop is chickpeas of course!

With so many pots on the boil, the heat is certainly on in Paul’s research kitchen, yet he continues to navigate such daily challenges with characteristic aplomb. As a proven leader of change in his community and a ‘ can-do, make-it-happen’ kind of guy, he is driving research forward to ensure that both his school and discipline remain fresh and relevant – and he’s taking his colleagues, students and local community along with him every step of  the way.

Indeed, rallying the troops for the greater good is an achievement he values dearly: “By coming together, pooling skills from biotechnology, agronomy, breeding, statistics and other disciplines, we are stronger as a unit and better equipped to offer solutions to African agriculture and to the current challenges we face,” he affirms. This is a crusade he has no plans to abandon any time soon, as revealed when quizzed on his future aspirations and career plans: “My aim is to continue nurturing my current achievements, and to work harder to improve my abilities and provide opportunities for my institution, colleagues, students, friends and people within the region.”

With the chickpea research community thriving, resulting in concrete food-security alternatives, we raise a toast to Paul Kimurto and his chickpea champions!

Links

 

Jan 022015
 

Friendship and trust at the heart of sorghum research

…benefits to humanity are the real driver of the work.”

Andy1_wAndrew Borrell (pictured) is a man who loves his work – a search for a holy grail of sorts for the grain of his choice  sorghum.

Based at the University of Queensland, Australia, Andrew is co-Principal Investigator with David Jordan for a GCP-funded project developing drought-adapted sorghum for Africa and Australia. And Andrew is passionate not just about the potential of sorghum, but also about the cross-continental relationships that underpin his research team. These friendships, says Andrew, are the glue that hold his team together and make it work better.

The year 2013 was particularly exciting. After almost five years working with African plant breeders to improve genetic material, field trials were up and running at 12 sites across East and West Africa.  Fastforward to 2015 and  glad tidings for the New Year! Andrew and his team now have preliminary evidence that the drought-tolerant ‘stay-green’ trait enhances grain size and yield  in some of the target countries in  Africa for which data have already been analysed.

What Andrew hopes to see is more genetic diversity, not just for diversity’s sake but put to use in farmers’ fields  to enhance yield during drought. This means more food, fodder and other sorghum by-products such as stems for construction. These benefits to humanity are, he says, the real driver of the work his team does.

So what are the wonders of ‘stay-green’? Waxing lyrical…

The sought-after  ‘stay-green’ trait that Andrew and his team are so interested in describes the phenotype – what the plant looks like. It simply means that when drought strikes, sorghum plants with this trait remain leafy and green during the grain-filling period – a critical time when the plant’s water is channelled to developing healthy panicles of grain.

So, what makes these plants remain healthy when others are losing their leaves? Why do they wax while others wane? The answer, says Andrew, is twofold, and is all to do with water supply and demand, and more and less. Firstly, there is some evidence that the roots of the stay-green plants penetrate deeper into the soil, tapping into more water supply. Secondly, plants with the stay-green trait have a smaller leaf canopy which means less water demand by the plant before flowering, leaving more water for grain-filling after flowering.

Staying power and stover are also part of the story. According to Andrew, “Plants with the stay-green trait produce more grain in dry conditions, have stronger stems so they don’t fall over, and often have larger grains. And it’s not just about grain alone: stay-green also improves the quality of the stover left in the field after harvest, which serves as animal feed.”

Another key feature of the stay-green trait in sorghum is that it is not just a fair-weather friend: it works well in wet as well as dry conditions. “All the evidence we’ve got suggests that you get a benefit under tough conditions but very little penalty under good conditions,” says Andrew.

…the process is synergistic and we do something that’s better than any of us could do alone.”

Safari from Down Under to Africa: East and West, and home are all best

For Andrew and his co-Principal Investigator, David Jordan, the GCP project is the first time they have been involved in improving sorghum in Africa. The two scientists work with sorghum improvement teams in six African countries: Mali, Burkina Faso and Niger in the west, and, Ethiopia, Kenya and Sudan in the east. By crossing African and Australian sorghum, the teams have developed the lines now being field-tested  in all the six countries.

A sampling of some of stay-green sorghum partnerships in Africa. (1)  Asfaw Adugna assessing the genetic diversity of  sorghum panicles produced from the GCP collaboration at Melkassa, Ethiopia. (2)  Clarisse Barro-Kondombo (Burkina Faso) and Andrew Borrell (Australia) visiting a lysimeter facility in Hyderabad, India, as part of GCP training. (3) Clement Kamau (Kenya, left) and  Andrew Borrell (Australia, right) visiting the seed store at the Kenya Agricultural Research Institute (KARI) in Katumani, Kenya.

A sampling of some of stay-green sorghum partnerships in Africa. (1) Asfaw Adugna (Ethiopian Agricultural Research Institute) assessing the genetic diversity of sorghum panicles produced from the GCP collaboration at Melkassa, Ethiopia. (2) Clarisse Barro-Kondombo (Institut de l’environnement et de recherches agricoles, Burkina Faso) and Andrew Borrell (Australia) visiting a lysimeter facility at ICRISAT in Hyderabad, India, as part of GCP training. (3) Clement Kamau (Kenya, left) and Andrew Borrell (Australia, right) visiting the seed store at the Kenya Agricultural Research Institute (KARI) in Katumani, Kenya.

According to Andrew, the collaboration with African scientists is “a bit like a group of friends using science to combat hunger. That’s probably been the biggest advantage of GCP,” adds Andrew. “Bringing people together for something we are all passionate about.”

There’s another collaborative element to the project too. As well as improving and testing plant material, the Australian contingent hosts African scientists on three-week training sessions. “We span a whole range of research topics and techniques,” explains Andrew. “We learn a lot from them too – their local expertise on soil, crops and climate. Hopefully the process is synergistic and we do something that’s better than any of us could do alone.”

Andrew says that working personally with plant breeders from Africa has made all the difference to the project. “Once colleagues from overseas come into your country, you develop real friendships. They know your families, they know what you do, and that’s very important in building relationships and trust that make the whole thing work.”

It wasn't all work and there was clearly also time to play, as we can see her., Sidi Coulibaly and Niaba Teme visiting with the Borrell family in Queensland, Australia.

It wasn’t all work and there was clearly also time to play, as we can see here, Sidi Coulibaly and Niaba Teme from Mali visit the Borrell family in Queensland, Australia.

Golden sunsets, iridescent rainbows and perpetual evergreen partnerships

As Andrew and his team wait to see how their field experiments in Africa turn out, they know that this is not the end of the story. In fact, it is only the beginning. Once tested, the germplasm will provide genetic diversity for future breeding programmes in Africa.

And the research collaboration between Australia and Africa won’t end when GCP funding runs out and GCP sunsets. For example, in addition to the GCP project, David Jordan has secured significant funding from the Bill & Melinda Gates Foundation for another four years’ sorghum research in Ethiopia. Plus, Andrew and Kassahun Banttea, a colleague from Jimma University, have also just been awarded a PEARL grant from the Foundation to assess the sorghum germplasm collection in Ethiopia for drought-adaptation traits.

We wish this ‘stay-evergreen’ team well in their current and future ventures. More sorghum ‘stickability’ and staying power to them! May they find the proverbial pot of gold at the end of the rainbow.

This enchanted rainbow-rings-and-sorghum photo is from Andy Borrell, and, contrary to the magical song, please continue under the rainbow for links to more information.

Sorghum rainbow_A Borrello

Links

 

 

 

Oct 242014
 

OAweek2014By Eloise Phipps

Imagine the scene: it is the dead of night, and you are engaged on a dangerous mission. You are tense, alert for any noise. You must complete your task without being seen, or risk the shame and humiliation of failure… but it is not a pleasant undertaking!

Your mission? A critical matter of honour. To dispose of your family’s cassava peelings – not with the rest of your household waste, but smuggled into the murky depths of the pit latrine. Why?

“The stigma about cassava is mostly among the Kikuyu people of central Kenya,” explains Henry Ngugi, Kenyan scientist and former Maize Pathologist for Latin America at the International Maize and Wheat Improvement Center (CIMMYT). “Traditionally, the Kikuyu are very proud, and self-sufficiency in basic needs such as food is an important factor in this. That is, you cannot be proud if you cannot feed yourself and your family. Now, the other part of the equation regarding cassava is that, traditionally, cassava was eaten during seasons of severe food shortages. It is a hardy and drought-tolerant crop so it would be available when the ‘good food’ was not. This also meant that it was associated with hunger and poverty – inability to feed oneself.”

“Another factor that may have played a role in the way the Kikuyu view cassava is that some of the traditional cultivars produced high levels of cyanide and were toxic [if not properly cooked], so as a crop it was not very highly regarded to start with. Improved cultivars have been bred to remove this problem. But because of these issues, many people would not want their neighbours to know they were so hungry they had to rely on cassava, and would go to great lengths to conceal any evidence!”

The story is not the same everywhere: graceful and strong, this farmer tends her field of cassava, in the village of Tiniu, near Mwanza, northern Tanzania.

Opening up for Open Access Week

This year, 20–26 October is Open Access Week, a global event celebrating, promoting and sharing ideas on open access – that is, making research results, including both publications and data, freely and publicly available for anyone to read, use and build upon. Even more exciting for us, this year’s theme is ‘Generation Open’, reflecting the importance of students and researchers as advocates for open access – a call that falls on fertile ground at the Generation Challenge Programme  (video below courtesy of UCMerced on YouTube).

We at GCP have been reflecting this week on different virtues of openness and transparency, and the perils of shame and secrecy. But before we go on, we’re sticking with cassava (carrying over from World Food Week!) but crossing the globe to China to celebrate the latest open-access publication to join the GCP parade. ‘Cassava genome from a wild ancestor to cultivated varieties’ by Wang et al is still practically a newborn, published on the 10th of October 2014.

The article presents draft genome sequences of a wild ancestor and a domesticated variety of cassava, with additional comparative analyses with other lines. It shows, for example, that genes involved in starch accumulation have been positively selected in cultivated cassava, and those involved in cyanogenic (ie, cyanide-producing) glucoside formation have been negatively selected. The authors hope that their results will contribute to better understanding of cassava biology, and provide a platform for marker-assisted breeding of better cassava varieties for farmers.

The research was carried out by a truly international team, led by scientists from the Chinese Academy of Tropical Agriculture Sciences (CATAS) and Chinese Academy of Sciences (CAS). Authors Wenquan Wang of CATAS and Bin Liu of CAS are delighted that their publication will be freely available, particularly in a journal with the prestige and high impact of the Nature family. As they observe, the open access to the paper will spread their experience and knowledge quickly to every corner of China and of the world where people have internet connections.

The work incorporated and partially built upon previous work mapping the cassava genome, which was funded by GCP in our project on Development of genomic resources for molecular breeding of drought tolerance in cassava (G3007.03), led by Pablo Rabinowicz, then with the University of Maryland, USA. This provides a perfect example of the kind of constructive collaboration and continuation that open access and sharing of research results can facilitate: by building on what has already been done, rather than re-inventing the wheel or working in isolation, we share, disseminate and amplify knowledge more rapidly and efficiently, with win–win outcomes for all involved.

Cassava farmers in Vietnam.

One thing that makes the latest research even more special is that it was published in Nature Communications, which marked Open Access Week by going 100 percent open access from the 20th of October, making it an open-access flagship within the Nature Publishing Group – a clear indicator of the ever-increasing demand for and credibility of open-access publishing. We congratulate all of our open-access authors for making their work publicly available, and Nature Communications for its bold decision!

A matter of perspective: turning shame to pride and fears to opportunities

No shame here: a little girl clutches a cassava root in Kenya.

Of course, human beings worrying about their social status is old as humanity itself and nothing new. Food has never been an exception as an indicator. Back in mediaeval Europe, food was a hugely important status symbol: the poor ate barley, oats and rye, while only the rich enjoyed expensive and prestigious wheat. Although our ideas about what is luxurious have changed – for example, sugar was considered a spice thanks to its high cost – rare imported foods were something to boast about just as they might be today.

But why are we ashamed of eating the ‘wrong foods’ – like cassava – when we could take pride in successfully feeding our families? Many of the things we tend to try to hide are really nothing to be ashamed of, and a simple change in perspective can turn what at first seem like weaknesses into sources of pride (and there are two sides to the cassava saga, as we shall see later).

Throughout its existence, GCP has been characterised by its openness and transparency. We have worked hard to be honest about our mistakes as well as our successes, so that both we and others can learn from them. The rewards of this clear-eyed approach are clearly noted in our Final External Review: “GCP has taken an open and pro-active attitude towards external reviews – commissioning their own independent reviews (the case of the current one) as well as welcoming a number of donor reviews. There have been clear benefits, such as the major governance and research reforms that followed the EPMR [External Programme and Management Review] and EC [European Commission] Reviews of 2008. These changes sharply increased the efficiency of GCP in delivering benefits to the poor.”

Transparent decision-making processes for determining choices of methods have also improved the quality of our science, while open, mutually respectful relationships – including open data-sharing – have underpinned our rich network of partnerships.

One aspect of this open approach is, of course, our commitment to open access. All of our own publications are released under Creative Commons licences, and we encourage all GCP grant recipients to do the same, or to pursue other open-access options. When exploring our research publications you will note that many are directly available to download. Our website will act as an archive for the future, ensuring that GCP publications remain online in one place after GCP’s closure in December this year. See our Global Access Policy and our policy on data-sharing.

“Open access journals are just terrific,” says Jean-Marcel Ribault, Director of GCP. “It’s great to enable access to publications, and it’s important to promote sharing of data and open up analysis too. The next big challenge is data management, and assuring the quality of that data. At the end of the day, the quality of the information that we share with others is fundamental.”

Proud in pink and polka dots: a farmer shows off a healthy cassava leaf in a plantation in Kampong Cham, Cambodia.

That’s a challenge that many other organisations are also grappling with. Richard Fulss, Head of Knowledge Management at our host CIMMYT is currently working on standards and approaches for the quality and structure of data, with the aim of implementing open access to all data within five years, meeting guidelines being put in place across CGIAR. “The issues to resolve are threefold,” he explains. “You have a licence issue, a technology issue – including building the right platform – and a cultural issue, where you need to build a culture of knowledge sharing and make open access publishing the norm rather than the exception.”

Our partners at the International Center for Tropical Agriculture (CIAT) already have a strong open-access policy, and are debunking some cherished open-access myths.

It’s good to talk: saying no to secrecy

Back to cassava, and of course not everyone feels the same way about the same crop, as there are many sides to any story. In China, demand for cassava is soaring – for food, for animal feed and most of all as a raw material for starch and biofuel production – making breeding of resilient, productive cassava varieties even more important. Even within Kenya, there are those who are quicker to see the crop’s virtues. The Luhya people of western Kenya often mix cassava with finger millet or sorghum to make flour for ugali (a stiff porridge or dough eaten as a staple food in vast swathes of Eastern and Southern Africa). As Henry explains “one reason was that such ugali ‘stayed longer in the stomach’ in literal translation from local parlance meaning it kept you full for longer – which is scientifically sound because cassava has a crude starch that takes longer to digest, and lots of fibre!”

Meanwhile, watch the delightful Chiedozie Egesi, Nigerian plant breeder and molecular geneticist, in the video below to hear all about the high potential of cassava, both as a food in itself and as a raw material to make flour and other products – something some farmers have already spotted. “Cassava can really sustain a nation… we’ve seen that it can,” he says. “You have in Nigeria now some of the Zimbabwean farmers who left Zimbabwe, got to Nigeria, and they changed from corn [maize] to cassava, because they see the potential that it has.”

The power of openness is already showing itself in the case of cassava, as well as other root, tuber and banana crops. Check out RTBMaps, an online atlas developed by the CGIAR Research Program on Roots, Tubers and Bananas (RTB), using ‘scientific crowdsourcing’ to combine data on a wide range of variables, shared by many researchers, in a single map. Putting all that information together can help people make better decisions, for example on how to target breeding, or where disease threats are likely to be strongest. And for a sweet serving, here’s our humble contribution from Phase I to a world-favourite dessert!

We leave you with one final thought. It is not just cassava that is plagued with pride and prejudice; many foods attract high or low statuses in different regions – or even just variations of the same food. People in Asia and North America, for example, tend to prefer yellow maize, while Africans like their maize white. In fact, yellow maize still carries a powerful stigma in many parts of Africa, as this was the colour of the maize that arrived as external  aid in periods of famine, oftentimes perceived in Africa as animal fodder and not human food in the countries it was sourced from. And thus yellow maize became synonymous with terrible times and the suffering and indignity of being unable to feed oneself and one’s family. Consequently, some of the famine-stricken families would only cook the yellow ‘animal-fodder’  maize in the dead of night, to avoid ‘detection’ and preserve family pride and honour.

This might at first blush appear to be a minor curiosity on colour and coloured thinking, were it not for the fact that when crops – such as sweet potato, cassava, or indeed maize – are bred to be rich in pro-vitamin A, and so provide plenty of the vitamin A that is particularly crucial for young children and pregnant women, they take on a golden yellow-orange hue. When promoting the virtues of this enriched maize in parts of Africa, it’s vital to know that as ‘yellow maize’ it would fall flat on its face, but as ‘orange maize’ or ‘golden maize’ it is a roaring success. A tiny difference in approach and label, perhaps, but one that is a quantum leap in nutritional improvement, and in ‘de-stigmatisation’ and accelerating adoption. Ample proof then that sharing details matters, and that it’s good to talk – even about the things we are a little ashamed of, thereby breathing substance into the spirit of the theme ‘Generation Open’.

Do have some of these uncomfortable but candid conversations this Open Access Week and live its spirit to the fullest every day after that! As for us here at GCP, we shall continue to sow and cultivate the seeds of Generation next for plant breeding into the future, through our Integrated Breeding Platform which will outlive GCP.

A little girl in Zambia gets a valuable dose of vitamin A as she eats her orange maize.

Eyes dancing with past, present or future mischief, two cheeky young chappies from Mozambique enjoy the sweet taste of orange sweet potato enriched with pro-vitamin A.

Links:

Oct 152014
 

In recognition of the International Day for the Eradication of Poverty, October 17th, we are reflecting on what poverty means, how crop breeding helps eradicate poverty and transform lives, and how we have tried to maximise and measure those impacts.

In the early days of GCP, we were largely on uncharted seas and needed to chart a course to where our efforts would have the greatest impact, a process documented in our Pathways to impact brief No 1: Where in the world do we start? Instead of using a monetary definition of poverty, since this varies so widely between places and contexts, we took a different approach. As an indicator of true poverty, we used data on the number of stunted – ie, severely malnourished – children, overlaying this on maps showing where drought was most likely to occur. Our thinking was clear and simple: poverty + drought = where GCP needed to be.

Whatever else you may think they may lack, these children in Sibi village, Burkina Faso, definitely have verve, and look full of the energy they need to play!

Whatever else you may think they may lack, these children in Sibi village, Burkina Faso, definitely have verve, and look full of the energy they need to play!

A boy plays with an improvised hoop in Lukolela, Democratic Republic of Congo.

A boy plays with an improvised hoop in Lukolela, Democratic Republic of Congo.

Drought routinely reduces harvests, and can be catastrophic. For example, nearly half (40 percent) of Africa’s maize-lands face occasional drought, reducing yields by between 10 and 25 percent, while a quarter suffers frequent drought, with overall losses of up to half the harvest – and total losses for some individual farmers. With climate change making droughts ever more common, drought was a natural priority for GCP from its inception.

Drought-tolerant crops are therefore the most important focus for the breeders of the GCP family, though not an exclusive one. Other key traits our breeders consider include resistance to pests and diseases and nutritional fortification, depending on the crop and location – and of course all varieties should yield well in good years too. Resilient improved varieties are particularly important for the poorest farmers, as they do not usually have access to measures such as irrigation or pesticides to combat environmental menaces. Typically, the poorest farmers also live in the most drought-prone drylands. Helping poor farmers to reap consistently abundant nutritious harvests means more food for their families and often a surplus to sell –reducing child malnourishment, and poverty in general.

A little girl eats fresh roti at home in the district of Dinajpur, Bangladesh.

A little girl eats fresh roti at home in the district of Dinajpur, Bangladesh.

A girl eats rice with her family in the Philippines.

A girl eats rice with her family in the Philippines.

Together we stand

The theme of the International Day for the Eradication of Poverty 2014 is Leave no one behind: think, decide and act together against extreme poverty, and it is one that echoes beautifully with the ethos of GCP. Collaboration and partnership have always been hallmarks of our approach, particularly in terms of empowering researchers in developing countries to implement – and lead – cutting-edge science. You can find a wealth of posts on our blog about our partnerships and the ‘GCP spirit’.

Collaboration is particularly important in crop breeding because one crop is often faced by all kinds of threats at once – a selection from the world’s least tasty smorgasbord of drought, heat, waterlogging pests, diseases, soil infertility, and much more. It is likely to be of no use breeding a super-crop that goes untouched by disease if it turns up its toes after a few dry days, or if no one likes the taste. That means researchers with different areas of expertise need to work together – and with farmers and extensionists too. Read the case for collective action in our Pathways to impact brief No 2: A call for collective action in agricultural research.

Girls help in the fields in Luang Prabang, Laos.

Girls help in the fields in Luang Prabang, Laos.

Eyes dancing with past, present or future mischief, two cheeky young chappies from Mozambique enjoy the sweet taste of orange sweet potato enriched with pro-vitamin A.

Eyes dancing with past, present or future mischief, two cheeky young chappies from Mozambique enjoy the sweet taste of orange sweet potato enriched with pro-vitamin A.

Impact by the numbers

GCP believes that using marker-assisted breeding (a range of efficient crop-breeding approaches that use genetic information to work out which plants have useful traits) to create improved varieties faster and more effectively is worth its extra cost, and has a real impact on farmers’ incomes. This cannot be taken for granted however, so get an introduction to the numerical approach in our Pathways to impact brief No 3: Molecular and conventional breeding through an economic lens. Our study found that women in Nigeria reported increased household incomes from growing improved cassava varieties, but also more time spent on cassava-related tasks – emphasising the need for researchers to be aware of the characteristics farmers – in this case predominantly women – value.

Hard at work, a boy helps to peel a mountain of cassava in Nigeria.

Hard at work, a boy helps to peel a mountain of cassava in Nigeria.

As we mark this year’s International Day for the Eradication of Poverty, we at GCP are proud to be contributing to the eradication of poverty by creating partnerships, expertise, and ultimately crop varieties that promise abundant harvests for the world’s poorest farmers and their families – helping their children grow up big, strong and free from poverty.

At play: children of the Sao Felix community in the Brazilian Amazon.

At play: children of the Sao Felix community in the Brazilian Amazon.

Enjoy the game, but keep off the plants! Boys play football next to maize fields in Khulungira, central Malawi.

Enjoy the game, but keep off the plants! Boys play football next to maize fields in Khulungira, central Malawi.

Sep 012014
 

Scouring the planet for breeding solutions

Bindiganavile Vivek

Bindiganavile Vivek

Bindiganavile Vivek (pictured) is a maize breeder working at the International Maize and Wheat Improvement Center (CIMMYT), based in Hyderabad, India. For the past five years, Vivek and his team have been developing drought-tolerant germplasm for Asia using relatively new molecular-breeding approaches – marker-assisted recurrent selection (MARS), applied in a genomewide selection (GWS) mode. Their work in the Asian Maize Drought-Tolerance (AMDROUT) project is implemented through GCP’s Maize Research Initiative, with Vivek as the AMDROUT Principal Investigator.

Driven by consumer demand for drought-tolerant maize varieties in Asia, the AMDROUT research team has focussed on finding suitable drought-tolerant donors from Africa and Mexico. Most of these donors are white-seeded, yet in Asia, market and consumer preferences predominantly favour yellow-seeded maize. Moreover, maize varieties are very site-specific and this poses yet another challenge. Clearly, breeding is needed for any new target environments, all the while also with an eye on pronounced market and consumer preferences.

(1) Amazing maize and its maze of colour. Maize comes in many colours, hues and shapes. (2) Steeped in saffron: from this marvellous maize mix and mosaic, the Asian market favours yellow maize.

(1) Amazing maize and its maze of colour. Maize comes in many colours and hues. (2) Steeped in saffron: from this marvellous maize mix and mosaic, the flavour in Asia favours yellow maize.

Stalked by drought, tough to catch, but still the next big thing

Around 80 per cent of the 19 million hectares of maize in South and Southeast Asia is grown under rainfed conditions, and is therefore susceptible to drought, when rains fail. Tackling drought can therefore provide excellent returns to rainfed maize research and development investments. As we shall see later, Vivek and his team have already made significant progress in developing drought-tolerant maize.

Drough in Asia_Vivek slide_GRM 2013_w

The stark reality of drought is illustrated in this warning sign on a desiccated drought-scorched landscape, showing the severity of drought in Asia

But they are after a tough target: drought tolerance is dodgy since it is a highly polygenic trait, making it difficult for plant scientists to pinpoint genes for the trait (see this video with an example from rice in Africa). In other words, to make a plant drought-tolerant, many genes have to be incorporated into a new variety. As one would expect, the degree of difficulty is directly proportional to the number of genes involved. In the private-sector seed industry, MARS  (PDF) has been successfully used in achieving rapid progress towards high grain yield under optimal growth conditions. Therefore, a similar approach could be used to speed up the process of introducing drought tolerance into Asian crops – the reason why the technique is now being used by this project.

AMDROUT Meeting Penang Dec2010_w

More than India: the AMDROUT project also comprises research teams in China, Indonesia, Thailand, The Philippines and Vietnam. In this photo taken during the December 2010 annual project meeting in Penang, Malaysia, the AMDROUT team assessed the progress made by each country team, and  team members were trained in data management and drought phenotyping. They also realised that there was a need for more training in genomic selection, and did something about it, as we shall see in the next photo. Pictured here, left to right: Luo Liming, Tan jing Li, Villamor Ladia, V Vengadessan, Muhammad Adnan, Le Quy Kha, Pichet Grudloyma, Vivek, IS Singh, Dan Jeffers (back), Eureka Ocampo (front), Amara Traisiri and Van Vuong.

The rise of maize: clear chicken-and-egg sequence…

Vivek says that the area used for growing maize in India has expanded rapidly in recent years. In some areas, maize is in fact displacing sorghum and rice. And the maize juggernaut rolls beyond India to South and Southeast Asia. In Vietnam, for example, the government is actively promoting the expansion of  maize acreage, again displacing rice. Other countries involved in the push for maize include China, Indonesia and The Philippines.

So what’s driving this shift in cropping to modern drought-tolerant maize? The curious answer to this question lies in food-chain dynamics. According to Vivek, the dramatic increase in demand for meat – particularly poultry – is the driver, with 70 percent of maize produced going to animal feed, and 70 percent of that going into the poultry sector alone.

GCP gave us a good start… the AMDROUT project laid the foundation for other CIMMYT projects”

 Show and tell: posting and sharing dividends

As GCP approaches its sunset in December 2014, Vivek reports that all the AMDROUT milestones have been achieved. Good progress has been made in developing early-generation yellow drought-tolerant inbred lines. The use of MARS by the team – something of a first in the public sector – has proved to be useful. In addition, regional scientists have benefitted from broad training from experts on breeding trial evaluation and genomic selection (photo-story on continuous capacity-building). “GCP gave us a good start. We now need to expand and build on this,” says Vivek.

AMDROUT trainees at Cambridge_w

AMDROUT calls in on Cambridge for capacity building. AMDROUT country partners were at Cambridge University, UK, in March 2013, for training in quantitative genetics, genomic selection and association mapping. This was a second training session for the team, the first having been September 2012 in India.
Pictured here, left to right – front row: Sri Sunarti, Neni Iriany, Hongmei Chen;
middle row: Ian Mackay (Cambridge), Muhammad Azrai, Le Quy Kha, Artemio Salazar;
back row: Roy Efendy, Alison Bentley (who helped organise, run and teach on the course, alongside Ian) and Suriphat Thaitad.AMDROUT country partners are from China’s Yunnan Academy of Agricultural Sciences (YAAS); the Indonesian Cereals Research Institute (ICERI); the Institute of Plant Breeding at the Unversity of Philppines at Los Baños (UPLB); Thailand’s Nakhon Sawan Field Crops Research Center (NSFCRC); Vietnam’s National Maize Research Institute (NMRI); and private-sector seed companies in India, such as Krishidhan Seeds.Curious on who proposed to whom for this AMDROUT–Cambridge get-together? We have the answer: a Cambridge callout announced the training, and AMDROUT answered by calling in, since course topics were directly relevant to AMDROUT’s research approach. 

 

 

According to Vivek, the AMDROUT project laid the foundation for other CIMMYT projects  such as the Affordable, Accessible, Asian (AAA) Drought-Tolerant Maize (popularly known as the ‘Triple-A project’) funded by the Syngenta Foundation for Sustainable Agriculture. This Triple-A project is building on the success of AMDROUT, developing yet more germplasm for drought tolerance, and going further down the road to develop hybrids.

 

Outputs from the AMDROUT project will be further refined, tested and deployed through other projects”

Increasing connections, and further into the future

Partly through GCP’s Integrated Breeding Platform (IBP), another area of success has been in informatics. Several systems such as the Integrated Breeding FieldBook, the database Maize Finder and the International Maize Information System (IMIS) now complement each other, and allow for an integrated data system.

There is now also an International Maize Consortium for Asia (IMIC–Asia), coordinated by CIMMYT, comprising a group of 30 commercial companies (ranging from small to large; local to transnational). Through this consortium, CIMMYT is developing maize hybrids for specific environmental conditions, including drought. IMIC–Asia will channel and deploy the germplasms produced by AMDROUT and other projects, with a view to assuring impact in farmers’ fields.

Overall, Vivek’s experience with GCP has been very positive, with the funding allowing him to focus on the agreed milestones, but with adaptations along the way when need arose: Vivek says that GCP was open and flexible regarding necessary mid-course corrections that the team needed to make in their research.

But what next with GCP coming to a close? Outputs from the AMDROUT project will be further refined, tested and deployed through other projects such as Triple A, thus assuring product  sustainability and delivery after GCP winds up.

Links

As our Maize Research Initiative does not have a Product Delivery Coordinator, Vivek graciously stepped in to coordinate the maize research group at our General Research Meeting in 2013, for which we thank him yet again. Below are slides summing up the products from this research, and the status of the projects then.

Aug 302014
 

In ancient Europe, Timbuktu, in Northern Mali, gained fame as a fabled city of knowledge and learning at a far end of the world – snuggled in the Sahara Desert, and almost impossible to get to. And so, then as in our times, the phrase ‘As far as Timbuktu’ came to mean a place that is unimaginably far away, is completely foreign, or is unreachable – at the other end of the earth. Sitting on the left bank of the River Niger on the southern edge of the Sahara, it was not only a seat of learning in the ancient world, but also an important trade and travel stop for merchants as they sought refuge from the desert.

Niaba Teme

Niaba Témé

Timbuktu ticks on today. And if you strike out south and travel 450km from Timbuktu, you would come to the village of Yendouma-Sogol. This is where Niaba Témé, a plant breeder at Mali’s L’Institut d’économie rurale (IER), was born and grew up on the family farm, and where his saga with sorghum began.

“We grew dryland crops like millet, sorghum, cowpeas, groundnuts, Bambara nuts, sesame and dah,” says Niaba. “I used to love harvesting the millet and helping my mother with her groundnut crops.”

Niaba describes the geography and climate of the region as being very harsh. Sandstone cliffs soar from the dusty sun-scorched lower plains where temperatures are only slightly lower than the plateaus, which bake in the intense heat – the daily temperature rarely falls below 30oC. As there is no major river, every single drop of the 500 millimetres of rainfall received each wet season is used for drinking, cropping and livestock husbandry.

“The rains during July and August make farming possible for our people,” says Niaba.“If we did not receive those rains, our crops would suffer and in some years, we were not able to harvest anything.”

Niaba says these crop failures contributed in part to his choosing a career where he could help farmers, like his parents and siblings, protect themselves from the risks of drought and extreme temperatures.

With molecular markers, you can easily see if the plant you’ve bred has the gene related to drought tolerance without having to grow the plant and or risk missing the trait through visual inspection.”

Breeding more sorghum with less water
For the past four years, Niaba and his team at IER have been collaborating with Jean-François Rami and his team at France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), with support from Syngenta complemented by other GCP funding on a project to improve sorghum grain yield and quality for West African farmers.

A sorghum farmer in Mali.

A sorghum farmer in Mali.

Sorghum is an important staple crop for Mali. It is used to make to (a thick porridge), couscous, as well as malted and local beer beverages. “Anytime I talk with farmers, they are always asking for higher-yielding lines and lines that can produce sustainable yields during drought, or do so with less water,” says Niaba. “Since 2008, with the help of CIRAD and Syngenta, we have been learning how to use molecular markers to identify parental lines which are more tolerant and better adapted to the arable and volatile environment of Mali and surrounding areas which receive between 600 and 800 millimetres of rainfall per year. Using molecular markers is new and exciting for us as it will speed up the breeding process. With molecular markers, you can easily see if the plant you’ve bred has the gene related to drought tolerance without having to grow the plant and or risk missing the trait through visual inspection.”

In 2010, Niaba obtained GCP funding to carry out similar research with CIRAD and collaborators at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in Africa. “In this project, we are trying to enhance sorghum grain yield and quality for the Sudano-Sahelian zone of West Africa using the backcross nested association mapping [BCNAM] approach. This involves using an elite recurrent parent that is already adapted to local drought conditions, then crossing it with several different specific or donor parents to build up larger breeding populations. The benefit of this approach is it can lead to detecting elite varieties much faster.”

AB_Mali 2009 (3) 243_w

Niaba (foreground) examining a sorghum panicle at trials in Mali in 2009.

I spent eight months in Hyderabad. It was the first time I had to speak English every day… I spent almost 11 years at the University of Texas Tech, and enjoyed every moment… We have been collaborating with researchers…  in Australia “

Traversing the world seeking knowledge
But to backtrack a bit and find out how Niaba got to where he is today, let’s return to the family farm where he grew up, and where his career inspiration was forged and fired.

With a family background in farming now coupled with a keen interest in science, young Niaba enrolled at L’Institut Polytechnique Rural de Formation et de Recherche Appliquée (IPR/IFRA) at Katiboutou, in Eastern Bamako, Mali to study agronomy. He then went to IER, where, after two years there, he was offered a scholarship to study plant breeding in India.

“I spent eight months in Hyderabad. It was the first time I had to speak English every day so I was enrolled for an intensive English course at the University of Ousmania, Hyderabad, India, for the first two months. I then went on to do six months intensive training in the ICRISAT labs, learning how to set up experiments and collect and analyse data.”

His zest for plant breeding research and knowledge still unquenched, Niaba sought yet another intensive training course, this time in USA. During his time there, he made an impression on local researchers and it wasn’t long before he returned to complete his Bachelor’s, Master’s and PhD in Agronomy at the University of Texas Tech, Texas. “I spent almost 11 years at the University of Texas Tech, and enjoyed every moment. I love the opportunities and freedom that USA offers.”

Despite this attraction, Niaba remained true to Timbuktu and Mali. He left Texas and returned to Mali in January 2007 , where he was rapidly recruited by IER to take charge of their new biotechnology lab at Le Centre Regional de Recherche Agromique (CRRA). Shortly after, he became involved with GCP, working on three projects, one of which would take this native from near (or as far away as?) Timbuktu to yet another far-away place at the opposite end of the world known as Down Under – Australia.

“We have been collaborating with researchers at the Department of Agriculture, Fisheries and Forestry in Queensland, and the University of Queensland, Australia, since 2009, to introduce the stay-green drought-resistant gene into our local sorghum varieties.” says Niaba.

 

Left to right: Niaba Teme (Mali), David Jordan (Australia), Sidi Coulibaly (Mali) and Andrew Borrell (Australia) visiting an experiment at Hermitage Research Facility in Queensland, Australia.

Left to right: Niaba Témé (Mali), David Jordan (Australia), Sidi Coulibaly (Mali) and Andrew Borrell (Australia) visiting an experiment at Hermitage Research Facility in Queensland, Australia.

Sorghum staying-greener with less water
Stay-green is a post-flowering drought adaptation trait that has contributed significantly to sorghum yield stability in northeastern Australia and southern USA for the last two decades. The project has three objectives:

  • To evaluate the stay-green drought resistance mechanism in plant architectures and genetic backgrounds appropriate to Mali
  • To develop sorghum germplasm populations enriched for stay-green genes that also carry genes for adaptation to cropping environments in Mali.
  • To improve capacity of Mali researchers by carrying out training activities for African sorghum researchers in drought physiology and selection for drought adaptation in sorghum.

“In 2012 a colleague and myself were invited to Australia to take this training by Andrew Borrell and David Jordan,” says Niaba. “We learnt about association mapping, population genetics and diversity, molecular breeding, crop modelling using climate forecasts and sorghum physiology, plus a lot more! It was intense but rewarding, more so the fact that we have developed these new drought-tolerant crops which will enhance food security for my country.”

Thus ends today’s chapter in Niaba’s saga with sorghum. We expect to hear more on the latest from Niaba at the GCP General Research Meeting  (GRM) in October, so watch this space!

Meantime, see his slides from GRM 2013 below.

Links

 

 

Aug 292014
 
One of the greatest challenges of our time is growing more crops to feed more people, but using less water

Sorghum is one of the most ‘efficient’ crops in terms of needing less water and nutrients to grow. And although it is naturally well-adapted to sun-scorched drylands, there is still a need to improve its yield and broad adaptability in these harsh environments. In West Africa, for example, while sorghum production has doubled in the last 20 years, its yield has remained stagnant – and low.

The GCP Sorghum Research Initiative comprises several projects, which are exploring ways to use molecular-breeding techniques to improve sorghum yields, particularly in drylands. All projects are interdisciplinary international collaborations with an original focus on Mali, where sorghum-growing areas are large and rainfall is getting more erratic and variable. Through the stay-green project, the research has since broadened to also cover Burkina Faso, Ethiopia, Kenya, Niger and Sudan.

Using molecular markers is new and exciting for us as it will speed up the breeding process. With molecular markers, you can easily see if the plant you’ve bred has the desired characteristics without having to grow the plant and or risk missing the trait through visual inspection.”

What’s MARS got to do with it?

Niaba Témé is a local plant breeder and researcher at Mali’s L’Institut d’économie rurale (IER). He grew up in a farming community on the southern edge of the Sahara Desert, where crops would constantly fail during drier-than-normal seasons.

Niaba Teme

Niaba Témé

Niaba says these crop failures were in part his inspiration for a career where he could help farmers like his parents and siblings protect themselves from the risks of drought and extreme temperatures.

For the past four years, Niaba and his team at IER have been collaborating with Jean-François Rami and his team at France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), to improve sorghum grain yield and quality for West African farmers. The work is funded by the Syngenta Foundation for Sustainable Agriculture.

“With the help of CIRAD and Syngenta, we have been learning how to use molecular markers to improve breeding efficiency of sorghum varieties more adapted to the variable environment of Mali and surrounding areas which receive less than 600 millimetres of rainfall per year,” he says.

Jean-François Rami

Jean-François Rami

“Using molecular markers is new and exciting for us as it will speed up the breeding process. With molecular markers, you can easily see if the plant you’ve bred has the desired characteristics without having to grow the plant and or risk missing the trait through visual inspection.”

Jean-François Rami, who is the project’s Principal Investigator, has been impressed by the progress made so far. Jean-François is also GCP’s Product Delivery Coordinator for sorghum.

“Since its inception, the project has progressed very well,” says Jean-François. “With the help of the IER team, we’ve been able to develop two bi-parental populations from elite local varieties, targeting two different environments of sorghum cropping areas in Mali. We’ve then been able to use molecular markers through a process called marker-assisted recurrent selection [MARS] to identify and monitor key regions of the genome in consecutive breeding generations.”

The collaboration with Syngenta came from a common perspective and understanding of what approach could be effectively deployed to rapidly deliver varieties with the desired characteristics.

“Syngenta came with their long experience in implementing MARS in maize. They advised on how to execute the programme and avoid critical pitfalls. They offered to us the software they have developed for the analysis of data which allowed the project team to start the programme immediately,” says Jean-François.

Like all GCP projects, capacity building is a large part of the MARS project. Jean-François says GCP has invested a lot to strengthen IER’s infrastructure and train field technicians, researchers and young scientists. But GCP is not the only player in this: “CIRAD has had a long collaboration in sorghum research in Mali and training young scientists has always been part of our mission. We’ve hosted several IER students here in France and we are interacting with our colleagues in Mali either over the phone or travelling to Mali to give technical workshops in molecular breeding. The Integrated Breeding Platform [IBP] has also been a breakthrough for the project, providing to the project team breeding services, data management tools, and a training programme – the Integrated Breeding Multiyear Course [IB–MYC].”

We don’t have these types of molecular-breeding resources available in Mali, so it’s really exciting to be a part of this project… the approach has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to drought… one of the great successes of the project has been to bring together sorghum research groups in Mali in a common effort to develop new genetic resources for sorghum breeding.”

Back-to-back: more for Mali’s national breeding programme

On the back of the MARS project, Niaba successfully obtained GCP funding in 2010 to carry out similar research with CIRAD and collaborators in Africa at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).

“In this project, we are trying to enhance sorghum grain yield and quality for the Sudano-Sahelian zone of West Africa using the backcross nested association mapping (BCNAM) approach,” explains Niaba, who is the Principal Investigator of the BCNAM project. “This involves using an elite recurrent parent that is already adapted to local drought conditions. The benefit of this approach is that it can lead to detecting elite varieties much faster.”

Kirsten Vom Brocke (CIRAD) Michel Vaksmann (CIRAD) Mamoutou Kouressy (IER) Eva Weltzien (ICRISAT) Jean-Francois Rami (CIRAD) Denis Lespinasse (Syngenta) Niaba Teme (IER) Ndeye Ndack Diop (GCP) Ibrahima Sissoko (Icrisat) Fred Rattunde (Icrisat)

A ‘sample’ of the rich mix of international partners in sorghum research: Left to right – Kirsten Vom Brocke (CIRAD), Michel Vaksmann (CIRAD), Mamoutou Kouressy (IER), Eva Weltzien (ICRISAT), Jean-François Rami (CIRAD), Denis Lespinasse (Syngenta), Niaba Teme (IER), Ndeye Ndack Diop (GCP Capacity Building Leader), Ibrahima Sissoko and Fred Rattunde (both from ICRISAT).

Eva Weltzien has been the Principal Scientist for ICRISAT’s sorghum breeding programme in Mali since 1998. She says the project aligned with much of the work her team had been doing, so it made sense to collaborate considering the new range of sorghum genetic diversity that this approach aims to use.

“We’ve been working with Niaba’s team to develop 100 lines for 50 populations from backcrosses carried out with 30 recurrent parents,” explains Eva. “These lines are being genotyped by CIRAD. We will then be able to use molecular markers to determine if any of these lines have the traits we want. We don’t have these types of molecular-breeding resources available in Mali, so it’s really exciting to be a part of this project.”

Eva Weltzien (holding sheet of paper) presenting to Mali's Minister of Agriculture (in white cap) a graph on the superiority of new guinea race hybrids. Also on display are panicles and seed of the huybrids and released varieties of sorghum in Mali. The occasion was an annual field day at ICRISAT's research station at Samanko, Mali.

An annual field day at ICRISAT’s research station at Samanko, Mali. Eva Weltzien (holding sheet of paper) showing Mali’s Minister of Agriculture, Tiemoko Sangare, (in white cap) a graph on the superiority of new guinea race hybrids. Also on display are panicles and seed of the hybrids and released varieties of sorghum in Mali.

Eva says that the approach has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to drought.

For Jean-François, one of the great successes of the project has been to bring together sorghum research groups in Mali in a common effort to develop new genetic resources for sorghum breeding.

“This project has strengthened the IER and ICRISAT partnerships around a common resource. The large multiparent population that has been developed is analysed collectively to decipher the genetic control of important traits for sorghum breeding in Mali,” says Jean-François.

 Plants with this ‘stay-green’ trait keep their leaves and stems green during the grain-filling period. Typically, these plants have stronger stems, higher grain yield and larger grain.”

Sorghum staying green and strong, with less water

In February 2012, Niaba and his colleague, Sidi B Coulibaly, were invited to Australia as part of another Sorghum Research Initiative project they had been collaborating on with CIRAD, Australia’s University of Queensland and the Queensland Department of Agriculture, Fisheries and Forestry (QDAFF).

“We were invited to Australia for training by Andrew Borrell and David Jordan, who are co-Principal Investigators of the GCP stay-green sorghum project,” says Niaba.

Left to right: Niaba Teme (Mali), David Jordan (Australia), Sidi Coulibaly (Mali) and Andrew Borrell (Australia) visiting an experiment at Hermitage Research Facility in Queensland, Australia.

Left to right: Niaba Témé (Mali), David Jordan (Australia), Sidi Coulibaly (Mali) and Andrew Borrell (Australia) visiting an experiment at Hermitage Research Facility in Queensland, Australia.

“We learnt about association mapping, population genetics and diversity, molecular breeding, crop modelling using climate forecasts, and sorghum physiology, plus a lot more. It was intense but rewarding – more so the fact that we understood the mechanics of these new stay-green crops we were evaluating back in Mali.”

It wasn't all work and there was clearly also time to play, as we can see her., Sidi Coulibaly and Niaba Teme visiting with the Borrell family in Queensland, Australia.

It wasn’t all work and there was clearly also time to play, as we can see here., where Sidi Coulibaly and Niaba Témé are visiting the Borrell family in Queensland, Australia.

Stay-green is a post-flowering drought adaptation trait that has contributed significantly to sorghum yield stability in northeastern Australia and southern USA over the last two decades.

Andrew has been researching how the drought-resistant trait functions for almost 20 years, including gene discovery. In 2010, he and his colleague, David Jordan, successfully obtained funding from GCP to collaborate with IER and CIRAD to develop and evaluate drought-adapted stay-green sorghum germplasm for Africa and Australia.

“Stay-green sorghum grows a canopy that is about 10 per cent smaller than other lines. So it uses less water before flowering,” explains Andrew. “More water is then available during the grain-filling period. Plants with this ‘stay-green’ trait keep their leaves and stems green during the grain-filling period. Typically, these plants have stronger stems, higher grain yield and larger grain.”

Andrew says the project is not about introducing stay-green into African germplasm, but rather, enriching the pre-breeding material in Mali for this drought-adaptive trait.

The project has three objectives:

  1. To evaluate the stay-green drought-resistance mechanism in plant architecture and genetic backgrounds appropriate to Mali.
  2. To develop sorghum germplasm populations enriched for stay-green genes that also carry genes for adaptation to cropping environments in Mali.
  3. To improve the capacity of Malian researchers by carrying out training activities for African sorghum researchers in drought physiology and selection for drought adaptation in sorghum.

…we have found that the stay-green trait can improve yields by up to 30 percent in drought conditions with very little downside during a good year, so we are hoping that these new lines will display similar characteristics”

Expansion and extension:  beyond Mali to the world

Andrew explains that there are two phases to the stay-green project. The project team first focused on Mali. During this phase, the Australian team enriched Malian germplasm with stay-green, developing introgression lines, recombinant inbred lines and hybrids. Some of this material was field-tested by Sidi and his team in Mali.

“In the past, we have found that the stay-green trait can improve yields by up to 30 percent in drought conditions with very little downside during a good year, so we are hoping that these new lines will display similar characteristics,” says Andrew. “During the second phase we are also collaborating with ICRISAT in India and now expanding to five other African countries – Niger and Burkina Faso in West Africa; and Kenya, Sudan and Ethiopia in East Africa. During 2013, we grew our stay-green enriched germplasm at two sites in all these countries. We also hosted scientists from Burkina Faso, Sudan and Kenya to undertake training in Queensland in February 2014.”

 

A sampling of some of stay-green sorghum partnerships in Africa. (1)  Asfaw Adugna assessing the genetic diversity of  sorghum panicles produced from the GCP collaboration at Melkassa, Ethiopia. (2)  Clarisse Barro-Kondombo (Burkina Faso) and Andrew Borrell (Australia) visiting a lysimeter facility in Hyderabad, India, as part of GCP training. (3) Clement Kamau (Kenya, left) and  Andrew Borrell (Australia, right) visiting the seed store at the Kenya Agricultural Research Institute (KARI) in Katumani, Kenya.

A sampling of some of stay-green sorghum partnerships in Africa. (1) Asfaw Adugna of the Ethiopian Institute of Agricultural Research (EIAR)  assessing the genetic diversity of sorghum panicles produced from the GCP collaboration at Melkassa, Ethiopia. (2) Clarisse Barro-Kondombo (left, INERA – Institut de l’environnement et de recherches agricoles , Burkina Faso) and Andrew Borrell (right) visiting a lysimetre facility at ICRISAT’s headquarters in Hyderabad, India, as part of GCP training, in February 2013. (3) Clement Kamau (left, Kenya Agricultural Research Institute [KARI] ) and Andrew Borrell (right) visiting the seed store at KARI, Katumani, Kenya.

Andrew says that the collaboration with international researchers has given them a better understanding of how stay-green works in different genetic backgrounds and in different environments, and the applicability is broad. Using these trial data will help provide farmers with better information on growing sorghum, not just in Africa and Australia, but also all over the world.

“Both David and I consider it a privilege to work in this area with these international institutes. We love our science and we are really passionate to make a difference in the world with the science we are doing. GCP gives us the opportunity to expand on what we do in Australia and to have much more of a global impact.”

We’ll likely be hearing more from Andrew on the future of this work at GCP’s General Research Meeting (GRM) in October this year, so watch this space! Meantime, see slides below from GRM 2013 by the Sorghum Research Initiative team. We also invite you to visit the links below the slides for more information.

Links

Aug 292014
 

“…I wanted to contribute in a similar way” – Eva Weltzien

 

Eva Weltzien

Eva Weltzien

Learning about the work of Nobel laureate, Norman Borlaug, in high school inspired Eva Weltzien to become a plant breeder so she too could contribute to improving the living conditions in the developing world. Today, Eva is a Principal Scientist in sorghum breeding and genetic resources at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in Mali.

“Not only did Norman Borlaug revolutionise agriculture by breeding high-yielding wheat varieties, he then selflessly distributed these to the countries in the world that most needed them, saving hundreds of millions from starvation,” Eva recollects passionately, as she speaks about her scientific hero. “I remember being inspired when he won his Nobel Prize in 1970, mainly for the fact that agricultural research was actually being seen as contributing to world peace,” says Eva. “I knew then that I wanted to contribute in a similar way.”

I…wanted to take a break from… theory and instead gain an appreciation for plant breeding by working in the field”

The path to plant breeding, and pearls along the way
Eva was raised in her native Germany, as well as in Beirut, Lebanon, where she spent six years when her parents were stationed at the local university there. She credits her parents; both plant pathologists, for instilling in her a scientific mind-set from a tender age.

“They taught me to think outside the box and apply my knowledge and understanding to how I made sense of the world,” Eva recalls. “Being plant pathologists, they also encouraged me to observe the environment carefully and treat the earth with respect.”

Upon graduating from high school, Eva deferred going to university and instead worked as a seed technician for a private company in Germany. “I just wanted to take a break from studying theory and instead gain an appreciation for plant breeding by working in the field,” says Eva.

After one year with the company, Eva was ready to start university. During the decade that followed, she completed a Diploma in Agricultural Biology (University of Hohenheim, 1981) and a PhD in Agriculture (Munich University, 1986).

A year after completing her PhD, Eva accepted a postdoc position at Iowa State University, USA, where she met her future husband Fred Rattunde. After a few years, both Eva and Fred moved to India to work with ICRISAT. “I’ve been working for ICRISAT for almost 27 years now,” says Eva. “When I first started, I was working in pearl millet breeding.”

The key challenges have been improving the infrastructure of the national research facilities… as well as increasing the technical training for local researchers…this has slowly improved, particularly in the last four years with the funding and help through the GCP Sorghum Research Initiative.…we can see our work making an impact on people’s lives…”

Off to Africa, and bearing fruit
In 1998, ICRISAT offered Eva and Fred positions in Mali where they would take responsibility for the Institute’s sorghum-breeding programme in West Africa.

OLYMPUS DIGITAL CAMERA

Evaluating Eva: In Dioila district, Mali, evaluating the panicles of a new sorghum line after harvest.

“It was a great challenge that we both wanted to explore,” says Eva. “The key challenges have been improving the infrastructure of the national research facilities to do the research as well as increasing the technical training for local agronomists and researchers. Over the past 15 years, this has slowly improved, particularly in the last four years, with the funding and facilitation through the GCP Sorghum Research Initiative. Now we can see our work making an impact on people’s lives in West Africa.” (see GCP’s work on infrastructure improvement)

…we are closer to delivering more robust sorghum varieties which will help farmers and feed the ever-growing population in West Africa.”

Improving drought tolerance in sorghum for Africa
The second phase of GCP’s Sorghum Research Initiative focuses on Mali, where sorghum-growing areas are large, and distributed over a wide range of rainfall regimes.

Eva and her team are currently collaborating with local researchers at L’Institut d’économie rurale (IER), Mali and France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD) on a project to test a novel molecular-breeding approach – backcross nested association mapping (BCNAM). Eva says the approach has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to poor soil fertility conditions.

“We don’t have these type of molecular-breeding resources available in Mali, so it’s really exciting to be a part of this project.”  Still, Eva and her colleagues continue to press forwards in this new frontier in plant science, making good advances in another parallel but closely related project that Eva leads in the GCP Comparative Genomics Research Initiative.

Eva continues, “We’ve had good results in terms of field trials, despite the political situation. Overall, we feel the experience is enhancing our capacity here in Mali, and that we are closer to delivering more robust sorghum varieties which will help farmers and feed the ever-growing population in West Africa.”

Slides (with more links after the slides)

Links

Jun 242014
 

Triumphs and tragedies, pitfalls and potential of the ‘camel crop’Cassava leaf. Photo: N Palmer/CIAT

We travel through space and time, with a pair of researchers who have a pronounced passion for a plant brought to Africa by seafaring Portuguese traders in the 16th century. Fastforwarding to today, half a millennium later, the plant is widespread and deep inland, and is the staple food for Africa’s most populous nation – Nigeria.

Meet cassava, the survivor. After rice and maize, cassava is the third-largest source of carbohydrate in the tropics. Surviving, nay thriving, in poor soils and shaking off the vagaries of weather – including an exceptionally high threshold for drought – little wonder that cassava, the ‘camel’ of crops is naturally the main staple in Nigeria. And with that, it has propelled Nigeria to the very top of the cassava totem pole as the world’s leading cassava producer, and consumer: most Nigerians eat cassava in one form or another practically every day.

Great, huh? But there’s also a darker side to cassava, as we will soon find out from our two cassava experts. For starters, the undisputed global cassava giant, Nigeria, produces just enough to feed herself. Even if there were a surplus for the external demand, farming families, which make up 70 percent of the Nigerian population, have limited access to these lucrative external markets. Secondly, cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) are deadly in Africa. Plus, cassava is a late bloomer (up to two years growth cycle, typically one year), so breeding and testing improved varieties takes time. Finally, cassava is most definitely not à la mode at all in modern crop breeding: the crop is an unfashionably late entrant into the world of molecular breeding, owing to its complex genetics which denied cassava the molecular tools that open the door to this glamour world of ‘crop supermodels’.

Emmanuel Okogbenin (left) and Chiedozie Egesi (right) in  a cassava field.

Emmanuel Okogbenin (left) and Chiedozie Egesi (right) in a cassava field.

But all is not doom and gloom, which inexorably dissolve in the face of dogged determination. All the above notwithstanding, cassava’s green revolution seems to be decidedly on the way in Nigeria, ably led by born-and-bred sons of the soil: Chiedozie Egesi and Emmanuel Okogbenin (pictured right) are plant breeders and geneticists at the National Root Crops Research Institute (NRCRI). With 36 years’ collective cassava research experience between them, the two men are passionate about getting the best out of Nigeria’s main staple crop, and getting their hands into the sod while about it: “I’m a plant breeder,” says Chiedozie, with pride. “I don’t just work in a laboratory. I am also in the field to experience the realities.”

Hitting two birds with one stone…two stones are even better!
As Principal Investigators (PIs) leading three different projects in the GCP-funded Cassava Research Initiative, Chiedozie and Emmanuel, together with other colleagues from across Africa, form a formidable team. They also share a vision to enable farmers increase cassava production for cash, beyond subsistence. This means ensuring farmers have new varieties of cassava that guarantee high starch-rich yields in the face of evolving diseases and capricious weather.

Chiedozie is one of cassava’s biggest fans. His affection for, and connection to, cassava is almost personal and definitely paternal. He is determined to deploy the best plant-breeding techniques to not only enhance cassava’s commercial value, but to also protect the crop against future disease outbreaks, including ‘defensive‘ breading. But more on that later…

Emmanuel is equally committed to the cassava cause. As part of his brief, Emmanuel liaises with the Nigerian government, to develop for – and promote to – farmers high-starch cassava varieties. This ensures a carefully crafted multi-pronged strategy to revolutionise cassava: NRCRI develops and releases improved varieties, buttressed by financial incentives and marketing opportunities that encourage farmers to grow and sell more cassava, which spurs production, thereby simultaneously boosting food security while also improving livelihoods.

erect cass1_LS 4 web

Standing tall. Disease resistance and high starch and yield aside, farmers also prefer an upright architecture, which not only significantly increases the number of plants per unit, but also favours intercropping, a perennial favourite   for cassava farmers.

Cross-continental crosses and cousins, magic for making time, and clocking a first for cassava

No one has been able to manufacture time yet, so how can breeders get around cassava’s notoriously long breeding cycle? MAS (marker-assisted selection) is crop breeding’s magic key for making time. And just as humans can benefit from healthy donor organ replacement, so too does cassava, with cross-continental cousins donating genes to rescue the cousin in need. Latin American cassava is nutrient-rich, while African cassava is hardier, being more resilient to pests, disease and harsh environments.

Thanks to marker-assisted breeding, CMD resistance from African cassava can now be rapidly ‘injected’ much faster into Latin American cassava for release in Africa. Consequently, in just a three-year span (2010–2012), Chiedozie, Emmanuel, Martin Fregene of the Donald Danforth Plant Science Center (USA) and the NRCRI team, released two new cassava varieties from Latin American genetic backgrounds (CR41-10 and CR36-5). These varieties, developed with GCP funding, are the first molecular-bred cassava ever to be released, meaning they are a momentous milestone in cassava’s belated but steady march towards its own green revolution.

Marker-assisted selection is much cheaper, and more focused.” 

On the cusp of a collaborative cassava revolution: on your marks…
With GCP funding, Chiedozie and Emmanuel have been able to use the latest molecular-breeding techniques to speed up CMD resistance. Using marker-assisted selection (MAS) which is much more efficient, the scientists identified plants combining CMD resistance with desirable genetic traits.

“MAS for CMD resistance from Latin American germplasm is much cheaper, and more focused,” explains Emmanuel. “There is no longer any need to ship in tonnes of plant material to Africa. We can narrow down our search at an early stage by selecting only material that displays markers for the genetic traits we’re looking for.” Using markers, combining traits (known as ‘gene pyramiding’) for CMD resistance is faster and more efficient, as it is difficult to distinguish phenotypes with multiple resistance in the field by just observing with the naked eye. This is what makes marker-assisted breeding so effective and desirable in Africa.

GCP’s mode of doing business coupled with its community spirit has spurred the NRCRI scientists to cast their eyes further out to the wider horizon beyond their own borders.

By collaborating with research centres in other parts of the world, Emmanuel and Chiedozie have made remarkable strides in cassava breeding. According to Emmanuel, “GCP helped us make links with advanced laboratories and service providers like LGC Genomics. The outsourcing of genotyping activities for molecular breeding initiatives is very significant, as it enables us to carry out analyses not otherwise possible.”

We can’t afford to sit idle until it comes – we need to be armed and on the ready.”

‘Defensive’ breeding: partnerships to pre-empt catastrophe and combat disease
Closer home in Africa, as PI of the corollary African breeders community of practice (CoP) project, Emmanuel co-organises regular workshops with plant breeders from a dozen other countries (Côte d’Ivoire, DR Congo, Ethiopia, Ghana, Kenya,  Liberia, Malawi, Mozambique, Sierra Leone, Tanzania, Uganda and South Sudan). These events are an opportunity to share knowledge on molecular breeding and compare notes.

Of the diseases that afflict cassava, CBSD is the most devastating. Mercifully, in Nigeria, the disease is non-existent, but Chiedozie is emphatic that this is by no means cause for complacency. “If CBSD gets to Nigeria, it would be a monumental catastrophe!” he cautions. “We can’t afford to sit idle until it comes – we need to be armed and on the ready.”

Putting words to action, though this work on CBSD resistance is still in its early stages, more than 1,000 cassava genotypes (different genetic combinations) have already have been screened in the course of just one year. Chiedozie hopes that the team will be able to identify key genetic markers, and validate these in field trials in Tanzania, where CBSD is widespread. This East African stopover, Chiedozie emphasises, is a crucial checkpoint in the West African process. So the cassava CoP not only provides moral but also material support.

And Africa is not the limit. GCP-funded work on CMD resistance is more advanced than the CBSD work, though the real breakthrough in CMD only happened recently, on the international arena within which the African breeders now operate. According to Chiedozie, two entire decades of screening cassava genotypes from Latin America yielded no resistance to CMD. The reason for this is that although it is widespread in Africa, CMD is non-existent in Latin America.

Through international collaborative efforts, cassava scientists, led by Martin Fregene (now based in USA), screened plants from Nigeria and discovered markers for the CMD2 gene, indicating resistance to CMD. Once they had found these markers, the scientists were off and away! By taking the best of the Latin American material and crossing it with Nigerian genotypes that have CMD resistance, promising lines were developed from which the Nigerian team produced two new varieties. These varieties, CR41-10 and CR36-5, have already been released to farmers, and that is not all. More varieties bred using these two as parents are in the pipeline.

“GCP funding has given us the opportunity to show that a national organisation can do the job and deliver.” 

 

Delivery attracts
The success of the CGP-funded cassava research in Nigeria lies in its in-country leadership. Chiedozie, Emmanuel and Martin are native Nigerian scientists and as such are – in many ways – best placed to drive a research collaboration to benefit the country’s farmers and boost food security. “GCP funding has given us the opportunity to show that a national organisation can do the job and deliver,” says Chiedozie.

This proven expertise has helped NRCRI forge other partnerships and attract more financial support, for example from the Bill & Melinda Gates Foundation for a project on genomic selection. GCP support has also bolstered communications with the Nigerian government, which has launched financial instruments, such as a wheat tariff,* to boost cassava production and use.

[Editors note: * wheat tariff: The Nigerian government is trying to reduce wheat import bills and also boost cassava commercialisation by promoting 20 percent wheat substitution in bread-making. Tariffs are being imposed on wheat to dissuade heavy imports and encourage utilisation of high-quality cassava flour for bread.]

“The government feels that to quickly change the fortunes of farmers, cassava is the way to go,” explains Emmanuel. He clarifies, “The tariff from wheat is expected to be ploughed back to support agricultural development – especially the cassava sector – as the government seeks to increase cassava production to support flour mills. Cassava offers a huge opportunity to transform the agricultural economy and stimulate rural development, including rapid creation of employment for youth.”

The Nigerian government is right in step aiding cassava’s march towards the crop’s own green revolution, as is evident in the the Minister of Agriculture’s tweet earlier this year, and in his video interview below. See also related media story, ‘Long wait for cassava bread’.

Clearly, the ‘camel’ crop – once considered an ‘orphan’ in research  –  has travelled as far in science as in geography, and it is a precious asset to deploy for food production in a climate-change-prone world. As Emmanuel observes, cassava’s future can only be brighter!

Slides by Chiedozie and Emmanuel

 

More links

 

cheap ghd australia