Jan 072015
 

Beyond chickpeas to embrace beans, chickpeas, groundnuts and pigeonpeas

Paul_w2As a scientist who comes from the dessicated drylands of the unforgiving Kerio Valley, where severe drought can mean loss of life through loss of food and animals, what comes first is food security… I could start to give something back to the community… It’s been a dream finally coming true.” – Paul Kimurto, Senior Lecturer and Professor in Crop Physiology and Breeding, Egerton University, Kenya

As a son of peasant farmers growing up in a humble home in the Rift Valley of Kenya, agriculture was, for Paul Kimurto (pictured above), not merely a vocation but a way of life: “Coming from a pastoral community, I used to take care of the cattle and other animals for my father. In my community livestock is key, as is farming of food crops such as maize, beans and finger millet.”

Covering some six kilometres each day by foot to bolster this invaluable home education with rural school, an affiliation and ever-blossoming passion for agriculture soon led him to Kenya’s Egerton University.

There, Paul excelled throughout his undergraduate course in Agricultural Sciences, and was thus hand-picked by his professors to proceed to a Master’s degree in Crop Sciences at the self-same university, before going on to obtain a German Academic Exchange Service (DAAD) scholarship to undertake a ‘sandwich’ PhD in Plant Physiology and Crop Breeding at Egerton University and the Leibniz Institute for AgriculturalEngineering (ATB) in Berlin, Germany.

… what comes first is food security… offering alternative drought-tolerant crops… is a dream finally coming true!…  GCP turned out to be one of the best and biggest relationships and collaborations we’ve had.”

Local action, global interaction
With his freshly minted PhD, Paul returned to Egerton’s faculty staff and steadily climbed the ranks to his current position as Professor and Senior Lecturer in Crop Physiology and Breeding at Egerton’s Crop Sciences Department. Yet for Paul, motivating this professional ascent throughout has been one fundamental factor:  “As a scientist who comes from a dryland area of Kerio valley, where severe drought can mean loss of food and animals, what comes first is food security,” Paul explains. “Throughout the course of my time at Egerton, as I began to understand how to develop and evaluate core crop varieties, I could start to give something back to the community, by offering alternative drought-tolerant crops like chickpeas, pigeonpeas, groundnuts and finger millet that provide farmers and their families with food security. It’s been a dream finally coming true.”

And thus one of academia’s true young-guns was forged: with an insatiable thirst for moving his discipline forward by seeking out innovative solutions to real problems on the ground, Paul focused on casting his net wide and enhancing manpower through effective collaborations, having already established fruitful working relationships with the International Maize and Wheat Improvement Center (CIMMYT), the (then) Kenya Agricultural Research Institute (KARI) and the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in earlier collaborative projects on dryland crops in Kenya. It was this strategy that paved the way towards teaming up with GCP, when, in 2008, Paul and his team were commissioned to lead the chickpea work in Kenya for the GCP Tropical Legumes I project (TLI), with local efforts being supported by colleagues at ICRISAT, and friends down the road at KARI undertaking the bean work of the project. Climbing aboard the GCP ship, Paul reveals, was a move worth making: “Our initial engagement with GCP started out as a small idea, but in fact, GCP turned out to be one of the best and biggest relationships and collaborations we’ve had.”

…GCP is people-oriented, and people-driven” 

Power to the people!
The success behind this happy marriage, Paul believes, is really quite simple: “The big difference with GCP is that it is people-oriented, and people-driven,” Paul observes, continuing: “GCP is building individuals: people with ideas become equipped to develop professionally.” Paul elaborates further: “I wasn’t very good at molecular breeding before, but now, my colleagues and I have been trained in molecular tools, genotyping, data management, and in the application of molecular tools in the improvement of chickpeas through GCP’s Integrated Breeding Multiyear Course. This has opened up opportunities for our local chickpea research community and beyond, which, without GCP’s support, would not have been possible for us as a developing-country institution.”

Inspecting maturity, Koibatek FTC, Bomet_R Mulwa_Sep'12_w

Inspecting pod maturity with farmers at Koibatek Farmers Training Centre in Eldama Ravine Division, Baringo County, Kenya, in September 2012. Paul is on the extreme right.

Passionate about his teaching and research work, it’s a journey of discovery Paul is excited to have shares with others: “My co-workers and PhD students have all benefitted. Technicians have been trained abroad. All my colleagues have a story to tell,” he says. And whilst these stories may range from examples of access to training, infrastructure or genomic resources, the common thread throughout is one of self-empowerment and the new-found ability to move forward as a team: “Thanks to our involvement with the GCP’s Genotyping Support Service, we now know how to send plant DNA to the some of the world’s best labs and to analyse the results, as well as to plan for the costs. With training in how to prepare the fields, and infrastructure such as irrigation systems and resources such as tablets, which help us to take data in the field more precisely, we are now generating accurate research results leading to high-quality data.”

The links we’ve established have been tremendous, and we think many of them should be long-lasting too: even without GCP

Teamwork, international connections and science with a strong sense of mission
Teaming up with other like-minded colleagues from crème de la crème institutions worldwide has also been vital, he explains: “The links we’ve established have been tremendous, and we think many of them should be long-lasting too: even without GCP, we should be able to sustain collaboration with KBioscience [now LGC Genomics] or ICRISAT for example, for genotyping or analysing our data.” He holds similar views towards GCP’s Integrated Breeding Platform (IBP): “IBP is one of the ideas which we think, even after GCP’s exit in December 2014, will continue to support our breeding programmes. My colleagues and I consult IBP regularly for a range of aspects, from markers to protocols to germplasm and the helpdesk, as well as for contacts and content available via the IBP Communities of Practice.” Paul’s colleagues are Richard Mulwa, Alice Kosgei, Serah Songok, Moses Oyier, Paul Korir, Bernard Towett, Nancy Njogu and Lilian Samoei. Paul continues: “We’ve also been encouraging our regional partners to register on IBP – I believe colleagues across Eastern and Central Africa could benefit from this one-stop shop.”

Yet whilst talking animatedly about the greater sophistication and accuracy in his work granted as a result of new infrastructure and the wealth of molecular tools and techniques now available to him and his team, at no point do Paul’s attentions stray from the all-important bigger picture of food security and sustainable livelihoods for his local community: “When we started in 2008, chickpeas were known as a minor crop, with little economic value, and in the unfavoured cluster termed ‘orphan crops’ in research. Since intensifying our work on the crop through TLI, we have gradually seen chickpeas become, thanks to their relative resilience against drought, an important rotational crop after maize and wheat during the short rains in dry highlands of Rift valley and also in the harsh environments of the Kerio Valley and swathes of Eastern Kenya.”

This GCP-funded weather station is at Koibatek Farmers Training Centre, Longisa Division, Bomet County.

This GCP-funded weather station is at Koibatek Farmers Training Centre.

Having such a back-up in place can prove a vital lifeline to farmers, Paul explains, particularly during moments of crisis, citing the 2011–2012 outbreak of the maize lethal necrosis (MLN) disease which wiped out all the maize throughout Kenya’s  Bomet County, where Paul, Richard, Bernard and their team had been working on the chickpea reference set. Those farmers who had planted chickpeas – Paul recalls Toroto and Absalom as two such fortunate souls – were food-secure. Moreover, GCP support for infrastructure such as a weather station have helped farmers in Koibatek County to predict weather patterns and anticipate rainfall, whilst an irrigation system in the area is being used by the Kenyan Ministry of Agriculture to develop improved seed varieties and pasture for farmers.

The science behind the scenes and the resultant products are of course not to be underestimated: in collaboration with ICRISAT, Paul and his team released four drought-resistant chickpea varieties in Kenya in 2012, with the self-same collaboration leading to the integration of at least four varieties of the crop using marker-assisted backcrossing, one of which is in the final stages and soon to be released for field testing. With GCP having contributed to the recent sequencing of the chickpea genome, Paul and his colleagues are now looking to up their game by possibly moving into work on biotic stresses in the crop such as diseases, an ambitious step which Paul feels confident can be realised through effective collaboration, with potential contenders for the mission including ICRISAT (for molecular markers), Ethiopia and Spain (for germplasm) and researchers at the International Center for Agricultural Research in the Dry Areas (ICARDA) for germplasm. Paul first established contact with all of these partners during GCP meetings.

By coming together, pooling skills from biotechnology, agronomy, breeding, statistics and other disciplines, we are stronger as a unit and better equipped to offer solutions to African agriculture and to the current challenges we face.”

Links that flower, a roving eye, and the heat is on!
In the meantime, the fruits of other links established since joining the GCP family are already starting to blossom. For example, TLI products such as certified seeds of chickpea varieties being released in Kenya – and in particular the yet-to-be-released marker-assisted breeding chickpea lines which are currently under evaluation – caught the eye of George Birigwa, Senior Programme Officer at the Program for Africa’s Seed Systems (PASS) initiative of the Alliance for a Green Revolution in Africa (AGRA), which is now supporting the work being undertaken by Paul and his team through the Egerton Seed Unit and Variety Development Centre (of which Paul is currently Director) at the Agro-Based Science Park.

Yet whilst Paul’s love affair with chickpeas has evidently been going from strength to strength, he has also enjoyed a healthy courtship with research in other legumes: by engaging in a Pan-African Bean Research Alliance (PABRA) bean project coordinated by the International Center for Tropical Agriculture (CIAT), Paul and his team were able to release and commercialise three bean varieties which are currently in farmers’ fields in Kenya.

20140124_150637

Paul (left) in the field. The crop is chickpeas of course!

With so many pots on the boil, the heat is certainly on in Paul’s research kitchen, yet he continues to navigate such daily challenges with characteristic aplomb. As a proven leader of change in his community and a ‘ can-do, make-it-happen’ kind of guy, he is driving research forward to ensure that both his school and discipline remain fresh and relevant – and he’s taking his colleagues, students and local community along with him every step of  the way.

Indeed, rallying the troops for the greater good is an achievement he values dearly: “By coming together, pooling skills from biotechnology, agronomy, breeding, statistics and other disciplines, we are stronger as a unit and better equipped to offer solutions to African agriculture and to the current challenges we face,” he affirms. This is a crusade he has no plans to abandon any time soon, as revealed when quizzed on his future aspirations and career plans: “My aim is to continue nurturing my current achievements, and to work harder to improve my abilities and provide opportunities for my institution, colleagues, students, friends and people within the region.”

With the chickpea research community thriving, resulting in concrete food-security alternatives, we raise a toast to Paul Kimurto and his chickpea champions!

Links

 

Oct 242014
 

OAweek2014By Eloise Phipps

Imagine the scene: it is the dead of night, and you are engaged on a dangerous mission. You are tense, alert for any noise. You must complete your task without being seen, or risk the shame and humiliation of failure… but it is not a pleasant undertaking!

Your mission? A critical matter of honour. To dispose of your family’s cassava peelings – not with the rest of your household waste, but smuggled into the murky depths of the pit latrine. Why?

“The stigma about cassava is mostly among the Kikuyu people of central Kenya,” explains Henry Ngugi, Kenyan scientist and former Maize Pathologist for Latin America at the International Maize and Wheat Improvement Center (CIMMYT). “Traditionally, the Kikuyu are very proud, and self-sufficiency in basic needs such as food is an important factor in this. That is, you cannot be proud if you cannot feed yourself and your family. Now, the other part of the equation regarding cassava is that, traditionally, cassava was eaten during seasons of severe food shortages. It is a hardy and drought-tolerant crop so it would be available when the ‘good food’ was not. This also meant that it was associated with hunger and poverty – inability to feed oneself.”

“Another factor that may have played a role in the way the Kikuyu view cassava is that some of the traditional cultivars produced high levels of cyanide and were toxic [if not properly cooked], so as a crop it was not very highly regarded to start with. Improved cultivars have been bred to remove this problem. But because of these issues, many people would not want their neighbours to know they were so hungry they had to rely on cassava, and would go to great lengths to conceal any evidence!”

The story is not the same everywhere: graceful and strong, this farmer tends her field of cassava, in the village of Tiniu, near Mwanza, northern Tanzania.

Opening up for Open Access Week

This year, 20–26 October is Open Access Week, a global event celebrating, promoting and sharing ideas on open access – that is, making research results, including both publications and data, freely and publicly available for anyone to read, use and build upon. Even more exciting for us, this year’s theme is ‘Generation Open’, reflecting the importance of students and researchers as advocates for open access – a call that falls on fertile ground at the Generation Challenge Programme  (video below courtesy of UCMerced on YouTube).

We at GCP have been reflecting this week on different virtues of openness and transparency, and the perils of shame and secrecy. But before we go on, we’re sticking with cassava (carrying over from World Food Week!) but crossing the globe to China to celebrate the latest open-access publication to join the GCP parade. ‘Cassava genome from a wild ancestor to cultivated varieties’ by Wang et al is still practically a newborn, published on the 10th of October 2014.

The article presents draft genome sequences of a wild ancestor and a domesticated variety of cassava, with additional comparative analyses with other lines. It shows, for example, that genes involved in starch accumulation have been positively selected in cultivated cassava, and those involved in cyanogenic (ie, cyanide-producing) glucoside formation have been negatively selected. The authors hope that their results will contribute to better understanding of cassava biology, and provide a platform for marker-assisted breeding of better cassava varieties for farmers.

The research was carried out by a truly international team, led by scientists from the Chinese Academy of Tropical Agriculture Sciences (CATAS) and Chinese Academy of Sciences (CAS). Authors Wenquan Wang of CATAS and Bin Liu of CAS are delighted that their publication will be freely available, particularly in a journal with the prestige and high impact of the Nature family. As they observe, the open access to the paper will spread their experience and knowledge quickly to every corner of China and of the world where people have internet connections.

The work incorporated and partially built upon previous work mapping the cassava genome, which was funded by GCP in our project on Development of genomic resources for molecular breeding of drought tolerance in cassava (G3007.03), led by Pablo Rabinowicz, then with the University of Maryland, USA. This provides a perfect example of the kind of constructive collaboration and continuation that open access and sharing of research results can facilitate: by building on what has already been done, rather than re-inventing the wheel or working in isolation, we share, disseminate and amplify knowledge more rapidly and efficiently, with win–win outcomes for all involved.

Cassava farmers in Vietnam.

One thing that makes the latest research even more special is that it was published in Nature Communications, which marked Open Access Week by going 100 percent open access from the 20th of October, making it an open-access flagship within the Nature Publishing Group – a clear indicator of the ever-increasing demand for and credibility of open-access publishing. We congratulate all of our open-access authors for making their work publicly available, and Nature Communications for its bold decision!

A matter of perspective: turning shame to pride and fears to opportunities

No shame here: a little girl clutches a cassava root in Kenya.

Of course, human beings worrying about their social status is old as humanity itself and nothing new. Food has never been an exception as an indicator. Back in mediaeval Europe, food was a hugely important status symbol: the poor ate barley, oats and rye, while only the rich enjoyed expensive and prestigious wheat. Although our ideas about what is luxurious have changed – for example, sugar was considered a spice thanks to its high cost – rare imported foods were something to boast about just as they might be today.

But why are we ashamed of eating the ‘wrong foods’ – like cassava – when we could take pride in successfully feeding our families? Many of the things we tend to try to hide are really nothing to be ashamed of, and a simple change in perspective can turn what at first seem like weaknesses into sources of pride (and there are two sides to the cassava saga, as we shall see later).

Throughout its existence, GCP has been characterised by its openness and transparency. We have worked hard to be honest about our mistakes as well as our successes, so that both we and others can learn from them. The rewards of this clear-eyed approach are clearly noted in our Final External Review: “GCP has taken an open and pro-active attitude towards external reviews – commissioning their own independent reviews (the case of the current one) as well as welcoming a number of donor reviews. There have been clear benefits, such as the major governance and research reforms that followed the EPMR [External Programme and Management Review] and EC [European Commission] Reviews of 2008. These changes sharply increased the efficiency of GCP in delivering benefits to the poor.”

Transparent decision-making processes for determining choices of methods have also improved the quality of our science, while open, mutually respectful relationships – including open data-sharing – have underpinned our rich network of partnerships.

One aspect of this open approach is, of course, our commitment to open access. All of our own publications are released under Creative Commons licences, and we encourage all GCP grant recipients to do the same, or to pursue other open-access options. When exploring our research publications you will note that many are directly available to download. Our website will act as an archive for the future, ensuring that GCP publications remain online in one place after GCP’s closure in December this year. See our Global Access Policy and our policy on data-sharing.

“Open access journals are just terrific,” says Jean-Marcel Ribault, Director of GCP. “It’s great to enable access to publications, and it’s important to promote sharing of data and open up analysis too. The next big challenge is data management, and assuring the quality of that data. At the end of the day, the quality of the information that we share with others is fundamental.”

Proud in pink and polka dots: a farmer shows off a healthy cassava leaf in a plantation in Kampong Cham, Cambodia.

That’s a challenge that many other organisations are also grappling with. Richard Fulss, Head of Knowledge Management at our host CIMMYT is currently working on standards and approaches for the quality and structure of data, with the aim of implementing open access to all data within five years, meeting guidelines being put in place across CGIAR. “The issues to resolve are threefold,” he explains. “You have a licence issue, a technology issue – including building the right platform – and a cultural issue, where you need to build a culture of knowledge sharing and make open access publishing the norm rather than the exception.”

Our partners at the International Center for Tropical Agriculture (CIAT) already have a strong open-access policy, and are debunking some cherished open-access myths.

It’s good to talk: saying no to secrecy

Back to cassava, and of course not everyone feels the same way about the same crop, as there are many sides to any story. In China, demand for cassava is soaring – for food, for animal feed and most of all as a raw material for starch and biofuel production – making breeding of resilient, productive cassava varieties even more important. Even within Kenya, there are those who are quicker to see the crop’s virtues. The Luhya people of western Kenya often mix cassava with finger millet or sorghum to make flour for ugali (a stiff porridge or dough eaten as a staple food in vast swathes of Eastern and Southern Africa). As Henry explains “one reason was that such ugali ‘stayed longer in the stomach’ in literal translation from local parlance meaning it kept you full for longer – which is scientifically sound because cassava has a crude starch that takes longer to digest, and lots of fibre!”

Meanwhile, watch the delightful Chiedozie Egesi, Nigerian plant breeder and molecular geneticist, in the video below to hear all about the high potential of cassava, both as a food in itself and as a raw material to make flour and other products – something some farmers have already spotted. “Cassava can really sustain a nation… we’ve seen that it can,” he says. “You have in Nigeria now some of the Zimbabwean farmers who left Zimbabwe, got to Nigeria, and they changed from corn [maize] to cassava, because they see the potential that it has.”

The power of openness is already showing itself in the case of cassava, as well as other root, tuber and banana crops. Check out RTBMaps, an online atlas developed by the CGIAR Research Program on Roots, Tubers and Bananas (RTB), using ‘scientific crowdsourcing’ to combine data on a wide range of variables, shared by many researchers, in a single map. Putting all that information together can help people make better decisions, for example on how to target breeding, or where disease threats are likely to be strongest. And for a sweet serving, here’s our humble contribution from Phase I to a world-favourite dessert!

We leave you with one final thought. It is not just cassava that is plagued with pride and prejudice; many foods attract high or low statuses in different regions – or even just variations of the same food. People in Asia and North America, for example, tend to prefer yellow maize, while Africans like their maize white. In fact, yellow maize still carries a powerful stigma in many parts of Africa, as this was the colour of the maize that arrived as external  aid in periods of famine, oftentimes perceived in Africa as animal fodder and not human food in the countries it was sourced from. And thus yellow maize became synonymous with terrible times and the suffering and indignity of being unable to feed oneself and one’s family. Consequently, some of the famine-stricken families would only cook the yellow ‘animal-fodder’  maize in the dead of night, to avoid ‘detection’ and preserve family pride and honour.

This might at first blush appear to be a minor curiosity on colour and coloured thinking, were it not for the fact that when crops – such as sweet potato, cassava, or indeed maize – are bred to be rich in pro-vitamin A, and so provide plenty of the vitamin A that is particularly crucial for young children and pregnant women, they take on a golden yellow-orange hue. When promoting the virtues of this enriched maize in parts of Africa, it’s vital to know that as ‘yellow maize’ it would fall flat on its face, but as ‘orange maize’ or ‘golden maize’ it is a roaring success. A tiny difference in approach and label, perhaps, but one that is a quantum leap in nutritional improvement, and in ‘de-stigmatisation’ and accelerating adoption. Ample proof then that sharing details matters, and that it’s good to talk – even about the things we are a little ashamed of, thereby breathing substance into the spirit of the theme ‘Generation Open’.

Do have some of these uncomfortable but candid conversations this Open Access Week and live its spirit to the fullest every day after that! As for us here at GCP, we shall continue to sow and cultivate the seeds of Generation next for plant breeding into the future, through our Integrated Breeding Platform which will outlive GCP.

A little girl in Zambia gets a valuable dose of vitamin A as she eats her orange maize.

Eyes dancing with past, present or future mischief, two cheeky young chappies from Mozambique enjoy the sweet taste of orange sweet potato enriched with pro-vitamin A.

Links:

May 122014
 

 

Omari Mponda

Omari Mponda

After getting a good grounding on the realities of groundnut research from Vincent, our next stop is East Africa, Tanzania, where we meet Omari Mponda (pictured). Omari is a Principal Agricultural Officer and plant breeder at Tanzania’s Agricultural Research Institute (ARI), Naliendele, and country groundnut research leader for the Tropical Legumes I (TLI) project, implemented through our Legumes Research Initiative.  Groundnut production in Tanzania is hampered by drought in the central region and by rosette and other foliar diseases in all regions. But all is not bleak, and there is a ray of hope: “We’ve been able to identify good groundnut-breeding material for Tanzania for both drought tolerance as well as disease resistance,” says Omari. Omari’s team are also now carrying their own crosses, and happy about it. Read on to find out why they are not labouring under the weight of the crosses they carry…

…we have already released five varieties…TLI’s major investment in Tanzania’s groundnut breeding has been the irrigation system… Frankly, we were not used to being so well-equipped!”

Q: How  did you go about identifying appropriate groundnut-breeding material for Tanzania?
A: We received 300 reference-set lines from ICRISAT [International Crops Research Institute for the Semi-Arid Tropics], which we then genotyped over three years [2008– 2010] for both drought tolerance and disease resistance. After we identified the best varieties, these were advanced to TLII [TLI’s sister project] for participatory variety selection with farmers in 2011–2012, followed by seed multiplication. From our work with ICRISAT, we have already released five varieties.

Harvesting ref set collection at Naliendele_w

Harvesting the groundnut reference-set collection at Naliendele. A ‘reference set’ is a sub-sample of existing germplasm collections that facilitates and enables access to existing crop diversity for desired traits, such as drought tolerance or resistance to disease or pests.

ARI–Naliendele has also benefitted from both human and infrastructure capacity building. Our scientists and technicians were trained in drought phenotyping at ICRISAT Headquarters in India. One of our research assistants, Mashamba Philipo, benefitted from six-month training, following which he advanced to an MSc specialising in drought phenotpying using molecular breeding. In his work, he is now using drought germplasm received from ICRISAT. In terms of laboratory and field infrastructure, the station got irrigation equipment to optimise drought-phenotyping trials. Precision phenotyping and accurate phenotypic data are indispensable for effective molecular breeding. To facilitate this, ARI–Naliendele benefitted from computers, measuring scales, laboratory ware and a portable weather station, all in a bid to assure good information on phenotyping. But by far, TLI’s major investment in Tanzania’s groundnut breeding has been the irrigation system which is about to be completed. This will be very useful as we enter TLIII for drought phenotyping.

 

For us, this is a big achievement to be able to do national crosses. Previously, we relied on ICRISAT…we are advancing to a functional breeding programme in Tanzania… gains made are not only sustainable, but also give us independence and autonomy to operate..We developing-country scientists are used to applied research and conventional breeding, but we now see the value and the need for adjusting ourselves to understand the use of molecular markers in groundnut breeding.”

Omari (right), with Hannibal Muhtar (left), who was contracted by GCP to implement infrastructure improvement for ARI Naliendele. See http://bit.ly/1hriGRp

Flashback to 2010: Omari (right), with Hannibal Muhtar (left), who was contracted by GCP to implement infrastructure improvement for ARI Naliendele, and other institutes. See http://bit.ly/1hriGRp

Q: What difference has participating in TLI made?
A: Frankly, we were not used to being so well-equipped, neither with dealing with such a large volume as 300 lines! But we filtered down and selected the well-performing lines which had the desired traits, and we built on these good lines. The equipment purchased through the project not only helped us with the actual phenotyping and being able to accurately confirm selected lines, but also made it possible for us to conduct off-season trials.

We’re learning hybridisation skills so that we can use TLI donors to improve local varieties, and our technicians have been specifically trained in this area. For us, this is a big achievement to be able to do national crosses. Previously, we relied on ICRISAT doing the crosses for us, but we can now do our own crosses. The difference this makes is that we are advancing to a functional breeding programme in Tanzania, meaning the gains made are not only sustainable, but also give us independence and autonomy to operate. Consequently, we are coming up with other segregating material from what we’ve already obtained, depending on the trait of interest we are after.

Another big benefit is directly interacting with world-class scientists in the international arena through the GCP community and connections – top-rated experts not just from ICRISAT, but also from IITA, CIAT, EMBRAPA [Brazil], and China’s DNA Research Institute. We have learnt a lot from them, especially during our annual review meetings. We developing-country scientists are used to applied research and conventional breeding, but we now see the value and the need for adjusting ourselves to understand the use of molecular markers in groundnut breeding. We now look forward to TLIII where we expect to make impact by practically applying our knowledge to groundnut production in Tanzania.

Interesting! And this gets us squarely back to capacity building. What are your goals or aspirations in this area?
A: Let us not forget that TLI is implemented by the national programmes. In Africa, capacity building is critical, and people want to be trained. I would love to see fulltime scientists advance to PhD level in these areas which are a new way of doing business for us. I would love for us to have the capacity to adapt to our own environment for QTLs [quantitative trait loci], QTL mapping, and marker-assisted selection. Such capacity at national level would be very welcome. We also hope to link with advanced labs such as BecA [Biosciences eastern and southern Africa] for TLI activities, and to go beyond service provision with them so that our scientists can go to these labs and learn.

There should also be exchange visits between scientists for learning and sharing, to get up to date on the latest methods and technologies out there. For GCP’s Integrated Breeding Platform [IBP], this would help IBP developers to design reality-based tools, and also to benefit from user input in refining the tools.

Links

SLIDES by Omari on groundnut research and research data management in Tanzania

 

Mar 052014
 
Two peas in a pod, hand in hand, 

Elizabeth Parkes

In the past, the assumption was always that ‘Africa can’t do this.’ Now, people see that when given a chance to get round circumstances – as GCP has done for us through the provision of resources, motivation, encouragement and training – Africa can achieve so much!…GCP has made us visible and attractive to others; we are now setting the pace and doing science in a more refined and effective manner…Building human capacity is my greatest joy….I’ve pushed to make people recognise that women can do advanced agricultural science, and do it well. To see a talented woman researcher firmly established in her career and with her kids around her is thrilling….Rural families are held together by women, so if you are able to change their lot, you can make a real mark…” –  Elizabeth Parkes, cassava researcher, Ghana

Elizabeth’s PhD is on cassava genetic diversity, combining ability, stability and farmer preference in Ghana. But for Elizabeth, it is not the academic laurels and limelight but rather, a broader vision of social justice which really drives her: “I see African communities where poverty and hunger are seemingly huge problems with no way out; I’m fortunate to be working on a crop whereby, if I put in enough effort, I can bring some solutions. My primary target group in my research is the less privileged, and women in particular have been my friends throughout. Rural families are held together by women, so if you are able to change their lot, you can make a real mark.”

 

…agricultural research was a man’s job!”

A perennial passion for cassava, and walking with giants: Elizabeth with the pick of the crop for the 2014 cassava harvest season at  IITA, Ibadan, Nigeria.

A perennial passion for cassava, and walking with giants: Elizabeth with the pick of the crop for the 2014 cassava harvest season at IITA, Ibadan, Nigeria.

Prowess and prejudice: Breaking the mould and pioneering into pastures new
On first tentatively dipping her toe into the professional waters of crop science when growing up in her native Ghana, initial reactions from her nearest and dearest suggested that carving out a name for herself in her career of choice was never going to be a walk in the park: “As an only girl among eight  boys of whom three were half-siblings, and the youngest child, my father was not very amused; he thought agricultural research was a man’s job!” she recalls. Undeterred and ever more determined to turn this commonly held canard on its head, Elizabeth went on to bag a Bachelor’s degree in Agriculture, a diploma in Education, and an MPhil degree in Crop Science. During a stint of national service between academic degrees, she approached a scientist engaged in root and tuber projects at Ghana’s Council for Scientific and Industrial Research (CSIR) Crops Research Institute (CRI), offering to carry out some research on cassava, and soon establishing the institute’s first trials in Techiman, in the Brong Ahafo Region,where she was doing her national service. Recognising all the hallmarks of a great scientist, nurturer and leader, her CRI colleagues were quick to welcome this fresh talent into the fold as an Assistant Research Officer, with the full treasure trove of root tuber crops – from cassava to sweet potato to yam and cocoyam, among others – all falling under her remit. Not a bad start for the first woman to be assigned to the project!

Quickly proving herself as a fiercely cerebral researcher with a natural knack for the plant sciences, Elizabeth was encouraged by seasoned (then) GCP scientist, Martin Fregene (their paths had crossed during Elizabeth’s master’s degree thanks to research collaboration with the International Institute of Tropical Agriculture – IITA), to embark on a PhD degree with a focus on cassava. Coinciding with an era when links between Martin’s then home institute, the International Center for Tropical Agriculture (CIAT) and GCP were beginning to really take off the ground, it was a move that proved timely, and a path which Elizabeth pursued with her characteristic vigour and aplomb, climbing the GCP research ranks from multiple travel-grant recipient to a research fellow, and, more recently, to Lead Researcher for GCP’s cassava work in Ghana. Now a well established cassava connoisseur who regularly rubs shoulders with the crème de la crème of the global crop science community, Elizabeth specialises in drought tolerance and disease resistance in the GCP-related aspects of her work, whilst also turning her hand to biofortification research for GCP sister CGIAR Challenge Programme, HarvestPlus.

… it [biotechnology] was a breakthrough which Elizabeth spearheaded…”

Up, up and away! How a helping hand has led Elizabeth & Co to new professional and research heights
Life aboard the GCP ship, Elizabeth reveals, has offered a wealth of professional opportunities, both on personal and institutional levels. GCP-funded infrastructure, such as weather stations and irrigation systems, has helped to boost yields and enhance the efficiency of CRI trials, she observes. Professional development for herself and her team, she says, has been multifold: “Through our GCP work, we were able to build a lab and kick-start marker-assisted breeding – that ignited the beginning of biotechnology activities in CRI,” Elizabeth asserts.  It was a breakthrough which Elizabeth spearheaded, and which, happily, has since become run-of-the mill practice for the institute: “Now CRI scientists are regularly using molecular tools to do their work and are making cassava crosses on their own.” The positive domino effect of this change in tide cannot be underestimated: “Our once small biotechnology laboratory has evolved into a Centre of Excellence under the West Africa Agricultural Productivity Programme. Its first-class facilities, training courses and guiding hand in finding solutions have attracted countless visiting scientists, both from Ghana and internationally – this means that the subregion is also benefitting enormously.” The GCP’s Genotyping Support Service (GSS), Elizabeth affirms, has also proved an invaluable sidekick to these developments: “Through the GSS, our team learnt how to extract DNA as a first step, and later to re-enact all the activities that were initially done for us externally – data sequencing, interpretation and analysis for example – on a smaller scale in our own lab.” The collection and crunching of data has also become a breeze: “Thanks to GCP’s support, we have become a pace-setter for electronic data gathering using tablets, field notebooks and hand-held devices,” she adds.

….GCP gives you the keys to solving your own problems, and puts structures in place so that knowledge learnt abroad can be transferred and applied at home – it’s been an amazing journey!”

Ruth Prempeh, one of Elizabeth's charges, collecting data for her GCP-funded PhD on cassava post-harvest physiological deterioration. Ruth is one of those whose work–family balance Elizabeth celebrates. Ruth has since submitted her thesis awaiting results. As you'll hear in the accompanying podcast, both of Ruth's young children have each, er, sort of 'attended' two big  GCP events!

Ruth Prempeh, one of Elizabeth’s charges, collecting data for her GCP-funded PhD on cassava post-harvest physiological deterioration. Ruth is one of those whose work–family balance Elizabeth celebrates. Ruth has since submitted her thesis awaiting results. As you’ll hear in the podcast below, both of Ruth’s young children have each, er, sort of ‘attended’ two big GCP events!

People power: capacity building and work–life balance
Elizabeth lights up most when waxing lyrical about the leaps and bounds made by her many students and charges through the years, who – in reaping some of the benefits offered by GCP, such as access to improved genetic materials; forging links with like-minded colleagues near and far, and, critically, capacity building – have gone on to become established and often internationally recognised breeders or researchers, with the impacts of their work posting visible scores in the fight against global food insecurity. On the primordial role of capacity building, she says: “GCP gives you the keys to solving your own problems, and puts structures in place so that knowledge learnt abroad can be transferred and applied at home – it’s been an amazing journey!” Of her female students who’ve surmounted the work–family pendulum challenge, she says: “I’ve pushed to make people recognise that women can do advanced agricultural science, and do it well. To see a talented woman researcher firmly established in her career and with her kids around her is thrilling.”

At IITA, Elizabeth continues to be an inspiration on work–life balance for women working on their PhDs, and more so for young women whose work is on cassava. In a male-dominated environment (global statistics report that women researchers are a meagre 30 percent), this inspiration is critical. .

No ‘I’ in team: tight-knit community a must for kick-starting real and sustainable solutions
As Elizabeth well knows, one swallow does not a summer make: as demonstrated by the GCP’s Communities of Practice (CoPs), she says, strength really does come in numbers: “The GCP Cassava CoP has brought unity amongst cassava breeders worldwide; it’s about really understanding and tackling cassava challenges together, and bringing solutions home.” Bolstering this unified spirit, Elizabeth continues, is the GCP’s Integrated Breeding Platform (IBP): “With the initial teething problems mainly behind us, IBP is now creating a global community and is an excellent way of managing limited resources, reducing duplication of efforts and allowing people to be more focused.” On helping scientists inundated with information to spot the wood from the trees, she says: “Over the years, lots of data have been generated, but you couldn’t find them! Now, thanks to IBP, you have sequencing information that you can tap into and utilise as and where you need to. It’s very laudable achievement!”

In the past, the assumption was always that ‘Africa can’t do this.’…GCP has made us visible and attractive to others; we are now setting the pace and doing science in a more refined and effective manner.” 

Clearly, keeping the company of giants is not new for Elizabeth (right). This giant cassava tuber is from a 2010 CRI trial crossing improved CIAT material with CRI landraces (traditional farmer varieties. The trial was part of Bright Boakye Peprah’s postgraduate work. Bright has since completed his GCP-funded masters on cassava breeding, and now a full time cassava breeder with CSIR–CRI. He is currently on study leave  pursuing a PhD on cassava biofortification in South Africa. On the left is Joseph Adjebeng-Danquah, a GCP-funded PhD student whose work centres on cassava drought tolerance. Our best quote from Joseph: “It is important to move away from the all too common notion that cassava is an ‘anywhere, anyhow’ crop.”

Clearly, keeping the company of giants is not new for Elizabeth (right). This giant cassava tuber is from a 2010 CRI trial crossing improved CIAT material with CRI landraces (traditional farmer varieties. The trial was part of Bright Boakye Peprah’s postgraduate work. Bright has since completed his GCP-funded master’s  degree on cassava breeding, and now a full time cassava breeder with CSIR–CRI. He is currently on study leave pursuing a PhD on cassava biofortification in South Africa. On the left is Joseph Adjebeng-Danquah, a GCP-funded PhD student whose work centres on cassava drought tolerance. Our best quote from Joseph: “It is important to move away from the all too common notion that cassava is an ‘anywhere, anyhow’ crop.”

Empowered and engaged: African cassava researchers reclaim the driving seat
The bedrock of GCP’s approach, Elizabeth suggests, is the facilitation of that magical much sought-after Holy Grail: self-empowerment. “When I first joined GCP,” she recalls, “I saw myself as somebody from a country programme being given a place at the table; my inputs were recognised and what I said would carry weight in decision-making.” It’s a switch she has seen gain traction at national and indeed regional levels: “In the past, the assumption was always that ‘Africa can’t do this.’ Now, people see that when given a chance to get round circumstances – as GCP has done for us through the provision of resources, motivation, encouragement and training – Africa can achieve so much!” Reflecting on the knock-on effect for African cassava researchers particularly, she concludes: “GCP has made us visible and attractive to others; we are now setting the pace and doing science in a more refined and effective manner.”

Paying it forward and sharing: Helping women, and thereby, communities
Armed with bundles of knowledge as she is, Elizabeth is a firm believer in paying it forward and sharing: “Building human capacity is my greatest joy,” she affirms, citing farmers, breeders, and a Ghanaian private-sector company as just a few of the fortunate beneficiaries of her expertise over recent years. And on sources of motivation, it is not the academic laurels or limelight but rather a broader vision of social justice which really drives her: “I see African communities where poverty and hunger are seemingly huge problems with no way out; I’m fortunate to be working on a crop whereby, if I put in enough effort, I can bring some solutions.” They are solutions which she hopes will be of lasting service to those closest to her heart: “My primary target group in my research is the less privileged, and women in particular have been my friends throughout. Rural families are held together by women, so if you are able to change their lot, you can make a real mark.”

We’re in a blessed and privileged era where cassava, an ancient and once orphan crop, is now receiving lots of attention… I encourage young scientists to come on board!”

Inspired, and inspiring: nurturing budding cassava converts, and seizing opportunities for impact
In terms of future horizons, Elizabeth – who after more than two decades of service at CRI is currently on leave of absence at IITA where she’s working on biofortification of cassava – hopes to thereby further advance her work on cassava biofortification, and perhaps later move into a management role, focusing on decision-making and leading agricultural research leaders with monitoring and evaluation specifically to “ensure that the right people are being equipped with skills and knowledge, and that those people are in turn teaching others.” She is also confident that any young, gifted researcher with an eye on the prize would be foolhardy to overlook what Elizabeth views as a golden opportunity for creating meaningful and lasting impacts: “We’re in a blessed and privileged era where cassava, an ancient and once orphan crop, is now receiving lots of attention. Every agricultural research lead we have in Africa is there to be seized – I encourage young scientists to come on board!” A clear and convincing clarion call to budding breeders or potential cassava converts if ever there was one…. who wants in, in this love-match where cassava and capacity building are truly two peas in a pod?

Like meets like in a fair match: Our cassava champion in a male-dominated environment, Elizabeth, meets her match in Farmer Beatrice who refused to take no for an answer, and beat Elizabeth hands down. Listen to this! 

 

Links

Mar 042014
 
‘Made (up) in Ghana’

In the world of crop research as in the fashion industry, there are super-models, mere models, spectators and rank outsiders. Make no bones about it, trusty old cassava (Manihot esculenta) is a crop of very modest beginnings, but now finally strutting the research catwalk alongside the biggest and the best.

Elizabeth Parkes

Elizabeth Parkes

An ancient crop thought to have been first domesticated in Latin America more than 10,000 years ago, it was exported by Portuguese slave traders from Brazil to Africa in the 16th century as a cheap source of carbohydrates. From there, today we travel half a millennium forward in time – and in space, on to Ghana – to catch up with the latest on cassava in the 21st century.

Come on a guided tour with Elizabeth Parkes (pictured), of Ghana’s Crops Research Institute (CRI, of the Council for Scientific and Industrial Research, CSIR), currently on leave of absence at the International Institute of Tropical Agriculture (IITA).

A hard-knock life, but still going strong
In keeping with its humble heritage, cassava is a crop which has long been reputed for being more than a little worn through at the elbows, commonly known as a “poor man’s crop” according to GCP cassava breeder and researcher, Elizabeth Parkes. However, much like a dishevelled duffle coat, what the crop lacks in shimmer and shine, it makes up for in sturdiness and dependability, rising to the occasion time and again by filling a critical gap – that of putting food in bellies – with a readiness and ease that its more sophisticated crop relatives have often struggled to keep up with. Elizabeth explains:  “It has kept people alive over the years.” By the same token, the crop – now one of Africa’s most important staples – is fondly known in Ghana as bankye, meaning a ‘gift from the government’, thanks to its reliability and capacity to meet needs that other crops cannot. There is even a popular song in the country which pays homage to the crop as an indefatigable evergreen, conquering even the most willful and wily of weeds!

However, as cassava experts such as Elizabeth know only too well, behind this well-intentioned lyrical window dressing is the poignant story of a crop badly in need of a pressing pick-me-up. Hardy as it may seem on the surface, cassava is riddled with myriad problems of a political, physiological, environmental and socioeconomic nature, further compounded by the interactions between these. For starters, while it may be a timeless classic and a must-have item at the family table for a good part of Africa, à la mode it is not, or at least not for short-sighted policy-makers looking first and foremost to tighten their purse strings in straitened times, or for quick-fix, rapid-impact,  silver-bullet solutions: “African governments don’t invest many resources in research. Money is so meager, and funds have mostly come from external agencies looking to develop major cereals such as rice. Cassava has been ignored and has suffered a handicap as a result – it’s more or less an orphan crop now,” Elizabeth laments. Besides having to bear witness to their favourite outfit being left on the funding shelf, cassava breeders such as Elizabeth are also faced with a hotchpotch of hurdles in the field: “In addition to factors such as pests and disease, cassava is a long-season and very labour-intensive crop. It can take a whole year before you can expect to reap any rewards, and if you don’t have a strong team who can step in at different points throughout the breeding  process, you can often find unexpected results at the end of it, and then you have to start all over again,” Elizabeth reveals. Robust as it may be, then, cassava is no easy customer in the field: “After making crosses, you don’t have many seeds to move you to the next level, simply because with cassava, you just don’t get the numbers: some are not compatible, some are not flowering; it’s a real bottleneck that needs to be overcome,” she affirms.

No time for skirting the issue
And at the ready to flex their research muscles and rise to these considerable challenges was Elizabeth and her Ghanaian CRI  team, who – with GCP support and in unison with colleagues from across Africa and the wider GCP cassava community – have been working flat out to put cassava firmly back on the research runway.

Thanks to funders such as GCP, who recognised that we couldn’t afford to turn a blind eye to the plight of this struggling crop, cassava has been given a voice…cassava is no longer just a poor man’s staple” 

A cassava farmer in Northern Ghana.

A  cassava farmer in Northern Ghana.

Elizabeth walks us through the team’s game plan: “GCP socioeconomist Glenn Hyman and team undertook a study to identify the best area in Ghana for supporting cassava flowering [Editor’s note: Glenn works at the International Center for Tropical Agriculture, CIAT]. Armed with that information, we have been applying grafting techniques, using hormones to induce flowering in Ghana and beyond.” The initiative is starting to bear fruit: “At the IITA–Nigeria Ubiaja site, for example, flowering is underway at factory-like efficiency – it’s a great asset. The soil has also greatly improved – we haven’t been able to pinpoint the exact cause yet, but what we’ve seen is that all cultivars there will now flower,” she reveals. Elizabeth’s team has been making steady progress in biotechnological techniques such as DNA extraction: thanks to work led by then GCP cassava comrade Martin Fregene (then with the International Center for Tropical Agriculture, CIAT, and now with the Donald Danforth Plant Science Center) and colleagues, focusing on the development of more reliable and robust simple sequence repeat (SSR) markers, Elizabeth was able to carry out genetic diversity diagnosis work on cassava, collecting germplasm from all over Ghana for the global GCP cassava reference set. [Editor’s note: A ‘reference set’ is a sub-sample of existing germplasm collections that facilitates and enables access to existing crop diversity for desired traits, such as drought tolerance or resistance to disease or pests]

Similar work was also conducted in Nigeria and Guatemala. So has this tremendous and tenacious teamwork proved strong enough to drag cassava out of the doldrums? Elizabeth certainly seems to think so: “Thanks to funders such as GCP, who recognised that we couldn’t afford to turn a blind eye to the plight of this struggling crop, cassava has been given a voice. Having worked together to understand the peculiarities of this crop, cassava is no longer just a poor man’s staple: beyond subsistence, it is becoming a crop of high starch quality, and of real use for industry, confectionary and even biofuels,” she enthuses.

Thankfully, it’s a most welcome change of tide that shows no sign of abating any time soon.  Human capacity, Elizabeth says, is going from strength to strength, with three GCP-funded Ghanaian postgraduate students advancing well, two of them working on PhDs in what would normally be considered, according to Elizabeth, a ‘no-go area’ of cassava research – that is, cassava drought tolerance and post-harvest physiological deterioration (PPD), as well as bio-fortification. Efforts by the CRI team have resulted in the release of some 14–15 new drought-tolerant and PPD-resistant varieties in Ghana to date; all are anticipated to have a long shelf-life, and other varieties are also in the pipeline. Biofortified seeds are in the making, with a view to soon mainstream biofortification in the team’s breeding activities. The biofortification work is in collaboration with a sister CGIAR Challenge Programme, HarvestPlus.

The impact of our GCP-supported research on cassava has been remarkable. Above all, it’s been the community spirit which has moved things forward so effectively; in this respect, I think researchers working on other crops might want to borrow a leaf from the cassava book!”

Molecular masterstrokes, a leaf to lend despite cold shoulder, and a ‘challenge crop’ befitting Challenge Programmes
Forthcoming plans for Elizabeth and her cassava companions in Ghana include a GCP Cassava Challenge Initiative project which will seek to unearth new marker populations and materials which are drought-tolerant and resistant to cassava mosaic virus and cassava bacterial blight. The team has successfully introgressed materials from CIAT into their landraces, and the next step will be to gauge how best the new genes will react to these traits of interest. In terms of people power, the CRI biotechnology laboratory built with GCP support – and now a regionally accredited ‘Centre of Excellence’ – is a hive of activity for local and international scientists alike, and is consequently bolstering cassava research efforts in the wider subregion. “The impact of our GCP-supported research on cassava has been remarkable. Above all, it’s been the community spirit which has moved things forward so effectively; in this respect, I think researchers working on other crops might want to borrow a leaf from the cassava book!” Elizabeth ventures.

Reflecting back on the conspicuous cocktail of constraints which mired the crop in the early days of her research career – challenges which often resulted in a cold shoulder from many of her research peers over the years – Elizabeth recalls affectionately: “At first, people didn’t want to work on cassava since it’s truly a challenge crop: the genetics of cassava are really tricky. Colleagues from around the globe often asked me: ‘Why not go for a smooth crop which is friendly and easy?’” Her commitment, however, has been unfaltering throughout: “I’ve stuck with cassava because that’s my destiny! And now I see SNPs being developed, as well as numerous other resources. Once you clean something up it becomes more attractive, and my thanks go out to all those who’ve remained dedicated and helped us to achieve this.”

Thus, dusted down and  ‘marked-up’ with a molecular make-over well underway, all evidence now suggests that this once old-hat subsistence crop is en route to becoming the next season’s big research hit, with shiny new cassava varieties soon to be released at a field station near you! Go, Ghana, go!

Links

 

Feb 212014
 

 

Steaming rice bowl

Steaming rice bowl

What’s the latest from ‘GCP TV’? Plenty! With a world-favourite – rice – featuring high and hot on the menu.

Now serving our latest news, to tease your taste-buds with a tantalising and tingling potpourri of memorable cross-continental rice flavours, all captured on camera for our viewers…

Our brand-new series on YouTube serves up a healthy seven-course video feast inviting our viewers to sink their teeth into rice research at GCP.

First, we settle down for a tête-a-tête in the rice research kitchen with chef extraordinaire, Marie-Noëlle Ndjiondjop, Principal Investigator (PI) of GCP’s Rice Research Initiative in Africa, and Senior Molecular Scientist at Africa Rice Center. Target countries are Burkina Faso, Mali and Nigeria.

Photo: A Okono/GCP

Marie-Noëlle Ndjiondjop

Starters, palate and pocket
Marie-Noëlle opens the feast with a short but succulent starter, as she explains succinctly in 30 seconds just how rice is becoming a staple in Africa. In the second course, Marie-Noëlle chews over the questions concerning combatting constraints and boosting capacity in rice research in Africa.

The third course is pleasing to the eye, the palate and the pocket! Marie-Noëlle truly sells us the benefits of molecular breeding, as she extolls the virtues of the “beauty of the marker”. Why should you use molecular tools? They’ll save you time and money!

Rice as beautiful as the markers Marie-Noëlle uses in molecular breeding

Wherefore art thou, capacity building in rice research in Africa?
The Shakespearean language alludes to the why of capacity building in Africa, as does video episode number four, which also tackles the what of this fourth dish in our banquet. Course number five offers the viewer a light look at how capacity building in Africa is carried out.

In the 6th course, Marie-Noëlle takes us out of this world and into MARS: she teaches us that ‘two are better than three’, as she explains how the novel bi-parental marker-assisted recurrent selection (MARS) method is proving effective when it comes to duelling with drought, the tricky three-headed monster comprising physiological, genetic and environmental components.

Blooming rice in the field

Of stars and scoundrels
The 7th and final course offers us a riveting tale of heroes and villains, that is, many heroes and a single villain! Our rice raconteuse, Marie-Noëlle, praises the power of the team, as a crew from cross-continental countries come together, carefully characterise their combatant (drought), before striking with environment-specific drought-tolerant varieties! AfricaRice’s project partners are Burkina Faso’s Institut de l’environnement et de recherches agricoles (INERA); Mali’s Institut d’économie rurale (IER); and Nigeria’s National Cereals Research Institute (NCRI). Collaborators are France’s Centre de coopération internationale en recherche agronomique (CIRAD); the International Center for Tropical Agriculture (CIAT); and the International Rice Research Institute (IRRI).

We hope these tasty teasers are enough to whet your appetite – you can savour each of the courses individually à la carte, or, for those with a daring desire to try the ‘all you can eat’ buffet for true rice gourmets, all seven courses are presented as a single serving on our YouTube channel.

Jonaliza Lanceras-Siangliw

Jonaliza Lanceras-Siangliw

Tastes from Asia
To further please your palate with our rice bowl of delights, our next stop is Asia. We are  pleased to offer you the Asian flavour through a peek into the world of molecular rice breeding in the Mekong region. Our connection to this project is through a GCP-funded capacity-building project entitled A Community of Practice for strengthening rice breeding programmes by using genotyping building strategy and improving phenotyping capacity for biotic and abiotic stresses in the Mekong region led by PI Jonaliza Lanceras-Siangliw, of the National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand (see project poster, and slides on a related drought-tolerance project led by Boonrat Jongdee). BIOTEC’s partners in the Mekong rice breeding CoP are the Cambodian Agricultural Research and Development Institute (CARDI); LAO PDR’s National Agricultural and Forestry Research Institute (NAFRI);  Myanmar’s Department of Agricultural Research (DAR); and Thailand’s Kasetsart University and Ubon Ratchathani University). The video also features former GCP PI, Theerayut Toojinda (BIOTEC) whose project was similarly entitled The ‘Community of Practices’ concept applied to rice production in the Mekong region: Quick conversion of popular rice varieties with emphasis on drought, salinity and grain quality improvement.

BIOTEC

Boonrat Jongdee

Shifting gears: golden oldie
If all of this talk of eating has been a little overwhelming, we also offer you the perfect digestif: a ‘golden oldie’ in terms of GCP video history showing a 2012 BBC interview with former GCP PI, Sigrid Heuer, then at the International Rice Research Institute (IRRI), who explains how her project isolated the rice root-enhancing gene PSTOL1. Bon appétit!

 

Might you still have a corner of your mind yearning for more material on rice research? If so, check out the following:

  • Our lip-smacking selection of rice-related blogposts
  • A gorgeous gallery of PowerPoint presentations on rice research (SlideShare)
  • Check out our one-stop Rice InfoCentre for all things rice and nice, that we have online!

 

Nov 202013
 
Chiedozie Egesi

Chiedozie Egesi

Despite the social injustice around me, I always thought there was opportunity to improve people’s lives…GCP helped us to build an image for ourselves in Nigeria and in Africa, and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.”
 
– Chiedozie Egesi, a would-have-been surgeon who switched sides to biology and crop genetics, and who got acquainted with GCP through the Internet.

Backdrop: A booming economy and a wealth of natural resources may be among some of the common preconceptions of the average Jane and Joe regarding Africa’s most populous nation. Lamentably, however, Nigeria, like numerous robust economies worldwide, is still finding its feet in addressing severe inequality and ensuring that the nation’s wealth also flows to the poorest and most marginalised communities.

It’s a problem Chiedozie Egesi (pictured above), a molecular plant breeder at Nigeria’s National Root Crops Research Institute (NRCRI), understands well: “Nigeria is an oil-producing country, but you still see grinding poverty in some cases. Coming from a small town in the Southeast of the country, I grew up in an environment where you see people who are struggling, weak from disease, poor, and with no opportunities to send their children to school,” he reveals. The poverty challenge, he explains, hits smallholder farmers particularly hard: “Urban ‘development’ caught up with them in the end: some of them don’t even have access to the land that they inherited, so they’re forced to farm along the street.”

Maturing cassava fruits.

Food first! A man with a mission and fire in his belly, determined to make a difference
For this gifted and socially conscious young man, however, the seemingly bleak picture only served to ignite a fierce determination and motivation to act: “Despite the social injustice around me, I always thought there was opportunity to improve people’s lives.” And thus, galvanised by the plight of the Nigerian smallholder, plans for a career in medical surgery were promptly shelved, and traded for biological sciences and a PhD in crop genetics, a course he interspersed with training stints at USA’s Cornell University and the University of Washington, Seattle, along the way, before returning to the motherland to accept a job as head of the cassava breeding team, and – following a promotion in 2010 – Assistant Director of the Biotechnology Department, at NRCRI.

As evident from the burgeoning treasure chest of research gems to his name, it was a professional detour which paid off, and which continues to bear fruit today.

Making a marked difference, cultivating new partnerships, and looking beyond subsistence
In 2010, work by Chiedozie and his NRCRI team resulted in the official release of Africa’s first molecular-bred cassava variety which was both disease-resistant and highly nutritious – an act they followed in 2012 with the release of a high-starch molecular-bred variety. The team’s astute navigation of molecular markers resulted in breeding Latin American cassava varieties resistant to cassava mosaic disease (CMD), leading to the release of CMD-resistant cassava varieties in the African continent for the first time. Genetic maps intended to enhance breeding accuracy for cassava – the first of their kind for the crop in Africa – have been produced, and quantitative trait loci (QTLs) for cassava breeding are in the making. In 2011, the team, together with their partners at the International Institute of Tropical Agriculture (IITA) and HarvestPlus (a CGIAR Challenge Programme), released three pro-vitamin A-rich varieties of cassava, which hold the potential to provide children under five and women of reproductive age with up to 25 percent of their daily vitamin A allowance – a figure Chiedozie and his team are now ambitiously striving to increase to 50 percent.

These new and improved varieties – all generated as a direct or indirect result of his engagement in GCP projects – are, Chiedozie says, worth their weight in gold: “Through these materials, people’s livelihoods can be improved. The food people grow should be nutritious, resistant and high-yielding enough to allow them sell some of it and make money for other things in life, such as building a house, getting a motorbike, or sending their kids to school.”

Prior to my GCP work, I was more or less a plant breeder, and a conventional one at that. Whilst I’d been exposed to molecular tools during my early work on yam and other crops, I was not applying them in my work back then…GCP was not only there to provide technology but also to guide you in how to operate that technology… Now all our staff understand what is meant by good breeding, data analysis or applying genotypic data. My whole team benefitted.”

A chance ‘meeting’, with momentous manifold connections
Having first stumbled across the GCP website by chance when casually surfing the internet one day in a cyber café back in 2004, Chiedozie’s attention was caught by an announcement for a plant breeders’ training course in South Africa, an opportunity which he applied for on the off chance…and for which, hey presto!, he was accepted! Thus, his GCP ‘adventure’ began!

Chiedozie Egesi (left) and Emmanuel Okogbenin (right) in a cassava field.

Chiedozie Egesi (left) and Emmanuel Okogbenin (right) in a cassava field.

Promptly revealing an exceptional craftsmanship for all things cassava, Chiedozie soon became engaged in subsequent opportunities, including a one-year GCP fellowship at the International Centre for Tropical Agriculture (CIAT) in Colombia, a number of GCP Capacity building à la carte-facilitated projects, and, more recently, a major role as a Principal Investigator in the GCP Cassava Research Initiative (RI), teaming up with NRCRI colleague and Cassava RI Product Delivery Coordinator, Emmanuel Okogbenin. The Cassava RI is where Chiedozie’s energies are primarily invested at present, with improving and deploying markers for biotic stresses in cassava being the name of the game.

The significance of his GCP engagements was, Chiedozie affirms, momentous: “Prior to my GCP work, I was more or less a plant breeder, and a conventional one at that. Whilst I’d been exposed to molecular tools during my early work on yam and other crops, I was not applying them in my work back then.”

Collaboration in a GCP-funded project with CIAT led to the development of a new laboratory space for NRCRI, bolstered by support for basic materials as well as training. “GCP was not only there to provide technology but also to guide you in how to operate that technology,” Chiedozie comments. (For more on how it all began, see At home and to go and Molecular bonds in pp 26–29 in this e-book)

GCP’s Integrated Breeding Platform (IBP), he says, has played a vital role in this regard: “By opening the door to training, generation of data, analysis of data, and by giving support in making decisions, GCP’s IBP serves as a one-stop shop for cassava breeding.” It’s a sentiment shared by his NRCRI colleagues, he says: “GCP is providing a comprehensive full-package deal. Besides myself, several colleagues have been trained at NRCRI. Now all our staff understand what is meant by good breeding, data analysis or applying genotypic data. My whole team benefitted.”

A real deal-breaker is the facilitation of self-empowerment amongst national programmes, and the new avenues unfolding for enhanced collaboration at the local, national and regional level…What we’re seeing is a paradigm shift. In the past there was a general belief that this kind of advanced molecular science was only feasible in the hands of CGIAR Centres or developed-country research institutes – the developing-country programmes were never taken seriously. When the GCP opportunity to change this came up we seized it, and now the developing-country programmes have the boldness and capacity to do molecular breeding and accurate phenotyping for themselves.”

Growth in numbers, capital, capacity, collaboration, reach and impact
Strength in numbers, Chiedozie says, is a vital lifeline for cassava, a crop which has suffered years of financial neglect. As such, a real deal-breaker in Chiedozie’s eyes is the facilitation of self-empowerment amongst national programmes, and the new avenues unfolding, thanks to his involvement in the GCP cassava breeding Community of Practice (CoP), for enhanced collaboration at the local, national and regional level: “We now have a network of cassava breeders that you can count on and relate with in different countries. This has really widened our horizons and also made work more visible,” he offers, citing effective links formed with Ghana, Sierra Leone, Liberia, Mozambique, Malawi and Côte d’Ivoire, amongst several other cassava-breeding neighbours near and far.

Cassava leaf

Cassava leaf

The achievements amongst this mushrooming community are, he stresses, unprecedented: “Participation in the CoP means many countries can now create their own hybrids and carry out their own selection, which they could not do before,” he affirms.

And it’s a milestone Chiedozie and colleagues are justifiably proud of: “What we’re seeing is a paradigm shift. In the past there was a general belief that this kind of advanced molecular science was only feasible in the hands of CGIAR Centres or developed-country research institutes – the developing-country programmes were never taken seriously. When the GCP opportunity to change this came up we seized it, and now the developing-country programmes have the boldness and capacity to do molecular breeding and accurate phenotyping for themselves,” Chiedozie confirms.

GCP helped us to build an image for ourselves in Nigeria and in Africa, and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.” 

Building on success, going from strength to strength as the sands shift

With internal capacity now blossoming of its own accord – in no small measure due to the leading role played by NRCRI in the sensitisation of cassava plant breeders throughout Nigeria and beyond – the sands are certainly shifting: “GCP helped us to build an image for ourselves in Nigeria and in Africa, and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.”

Anthony Pariyo (left) of NaCRRI, Uganda

Visitors with working clothes on: NaCRRI Uganda’s Anthony Pariyo (left) and Williams Esuma (right) visiting NRCRI Umudike on a breeder-to-breeder visit in July 2012. Williams’ postgraduate studies were funded by GCP through the cassava CoP.

And the beauty of it, Chiedozie continues, is that the cassava crew is going from strength to strength: “Nigeria is seen as a really strong cassava-breeding team, not only within Africa but also globally. And we have not yet realised all the benefits and potential – these are still unfolding,” he enthuses.

Also yet to unfold are Chiedozie’s upcoming professional plans, which, he reveals, will soon see him engaging with the USA’s Cornell University, the Bill & Melinda Gates Foundation, the International Institute of Tropical Agriculture (IITA) and Uganda’s National Crop Resources Research Institute (NaCRRI) in an initiative which, through its focus on genomic selection in cassava breeding, promises to be, Chiedozie reveals, “at the frontier of cutting-edge technology.” Genomic selection for this initiative is already underway.

Readers intrigued by this tantalising taster of what to expect in Chiedozie’s next professional chapter are encouraged to watch this space over the coming years…Judging by his remarkable research record to date, we feel confident that future installments will not disappoint!

Meantime, here’s Chiedozie’s presentation at the GCP General Research Meeting in September 2013. We are also working on videos of Chiedozie and his work. Yet more reason to watch this space!

Links
  • For a picture of Chiedozie’s work near the beginning in 2006, see pp 26–29 here (At home and to go and Molecular bonds)
  • More recent updates are on the Cassava InfoCentre

 

Feb 282013
 

Drought stalks, some die
Despite the widespread cultivation of beans in Africa, yields are low, stagnating at between 20 and 30 percent of their potential. Drought brought about by climate change is the main culprit, afflicting 70 percent of Africa’s major bean-producing regions in Southern and Eastern Africa.Bean plant by R Okono

Today we turn the spotlight on Zimbabwe, where drought is a serious and recurrent problem. Crop failure is common at altitudes below 800 meters, and livestock death from shortage of fodder and water are all too common. In recent history, nearly every year is a drought year in these low-lying regions frequently plagued by delayed rains, as well as by intermittent and terminal drought.

The ‘battleground’ and ‘blend’
Zimbabwe is divided into five Natural Regions or agroecological zones. More than 70 percent of smallholder farmers live in Natural Region 3, 4 and 5, which jointly account for 65 percent of Zimbabwe’s total land area (293,000 km2). It is also here that the searing dual forces of drought and heat combine to ‘sizzle’  and whittle bean production.

The rains are insufficient for staple foods such as maize, and some of their complementary legumes such as groundnuts. In some areas where temperatures do not soar too high (less than 30oC), beans blend perfectly into the reduced rainfall regime that reigns during the growing season.

A deeper dig: the root of the matter

Godwill Makunde

Godwill Makunde

Research from Phase I of the Tropical Legumes I (TLI) project under GCP’s Legume Research Initiative showed that deep rooting is one of the ways to confer drought tolerance in common beans. High plant biomass at pod-filling stage also confers drought tolerance. “These important findings from TLI refined our breeding objectives, as we now focus on developing varieties combining deep roots and high plant biomass,” reveals Godwill Makunde (pictured), a bean breeder at Zimbabwe’s Crop Breeding Institute (CBI), which falls under the under the country’s Department of Research & Specialist Services. Zimbabwe is one the four target countries in Eastern and Southern Africa for GCP’s bean research (the other three being Ethiopia, Kenya and Malawi).

From America to Africa…the heat is on, so is the battle…

The battle is on to beat the heat: through the project, CBI received 202 Mesoamerican and Andean bean breeding lines from the reference set collection held by the International Center for Tropical Agriculture (CIAT, by its Spanish acronym). A ‘reference set’ is a sub-sample of existing germplasm collections that facilitates and enables access to existing crop diversity for desired traits, such as drought tolerance or resistance to disease or pests. The Institute also embarked on bringing in more techniques to breed for heat tolerance.

Kennedy Simango

Kennedy Simango

Drought, pests and disease
“We embraced mutation breeding in collaboration with the International Atomic Energy Agency, and we primarily look for heat tolerance in small-seeded beans,” says Kennedy Simango (pictured right and below), a plant breeder at CBI. “Preliminary results suggested that just like drought, the reproductive stages of common bean are when the crop is most sensitive to heat. Flower- and pod-drop are common. Yield components and yields are severely reduced. In addition, we also focus on developing pest- and disease-resistant varieties.”

 

Kennedy Simango at work a the Crop Breeding Institute.
Kennedy Simango at work a the Crop Breeding Institute.

The CBI project’s primary diseases and pests of focus are angular leaf spot (ALS), common bacterial blight (CBB), rust and bean stem maggot, and aphids. “This came from our realisation that drought co-exists with heat, diseases and pests,” Kennedy adds. “So, a variety combining drought, heat, disease and pest tolerance all together would increase common bean productivity under harsh environments or drought-prone areas.”

At first glance, piling up all these vital survival traits may appear insurmountable, but it is all feasible, thanks to advances in plant science. “Breeding methods are changing rapidly, and it is vital that we keep up with the technology,” says Kennedy.

The CBI team is using molecular breeding to identify drought-tolerant parents, and then cross them into preferred bean varieties to confer to the ‘offspring’ the best of both worlds – drought tolerance and market appeal.

All-round capacity and competence
GCP’s support does not stop at enabling access to breeding lines alone, or introduction to molecular breeding. “We got a lyophiliser, which is specialised equipment that enables us to extract DNA and send it for genotyping,” says Kennedy. “From the genotyping exercise, we hope to be able to trace the relationships among breeding lines so that we design better crossing programmes, and thereby maximise the diversity of our breeding lines. In addition, we hope to select recombinants carrying desirable genes in a short period of time, and at times without even needing to test them in the target environment.” GCP assists with genotyping through its Genotyping Support Service offered through the Integrated Breeding Platform.

For phenotyping, CBI has benefitted from a mobile weather station, a SPAD meter (for measuring chlorophyll content), a leaf porometer (for measuring leaf stomatal conductance) and water-marks (probes for measuring soil moisture).

Human resources have not been forgotten either. Godwill Makunde, a CBI bean breeder, is studying for a TLII-funded PhD in Plant Breeding at the University of the Free State, South Africa. A group of four scientists (Godwill and Kenedy,  plus Charles Mutimaamba, and Munyaradzi Mativavarira) are in GCP’s three-year Integrated Breeding Multi-Year Course (IB–MYC). The curriculum includes design of experiments, data collection, analysis and interpretation, molecular breeding and data management techniques. In addition, GCP also trains research technicians. For CBI, Clever Zvarova, Anthony Kaseke, Mudzamiri and Chikambure have attended this training. Their course also includes phenotyping protocols (data collection and use of electronic tablets in designing field-books). To date, CBI has received five tablets for digital data collection , of which two are outstanding.

Photo: CBI

Godwill doing what he does best: bean breeding.

Bringing it all together, and on to farms
But how relevant are all these breeder-focused R&D efforts to the farmer? Let’s review this in proper context: in the words of Mr Denis Mwashita, a small-scale farmer at the Chinyika Resettlement Scheme in Bingaguru, Zimbabwe, “Beans have always carried disease, but from the little we harvest and eat, we and our children have developed stomachs.”

“What Mr Mwashita means is that despite the meagre harvests, farm families fare better in terms of health and nutrition for having grown beans,” explains Godwill.

With this solid all-round support in science, working partnerships, skills and infrastructure, the CBI bean team is well-geared to breed beans that beat both heat and disease, thereby boosting yields, while also meeting farmer and market needs. Trials are currently underway to select lines that match these critical needs which are the clincher for food security.

“The Zimbabwe market is used to the sugar type, which is however susceptible to drought. We hope to popularise other more drought-tolerant types,” says Kennedy. “We plan to selected a few lines in the coming season and test them with farmers prior to their release. Our goal is to have at the very least one variety released to farmers by mid-2013.”

A noble goal indeed, and we wish our Zimbabwe bean team well in their efforts to improve local food security.

VIDEO: The ABCs of bean breeding in Africa and South America, with particular focus on Ethiopia, Kenya, Malawi and Zimbabwe

Related blogposts

Other links

 

 

Nov 292012
 

By Gillian Summers

The TLI project lets us know about molecular breeding, so it’s exposed us to new developments in science, especially in the application of molecular techniques and plant breeding.”  Asrat Asfaw Amele, Southern Agricultural Research Institute, Ethiopia

Many a tale about Ethiopia will regale the reader with details of its contrasting landscape, numerous rivers, searing regional temperatures, the multicultural makeup of its society, its world-famous, unbeatable long-distance and high-altitude runners, its rich history and culture; a sweet producer of honey, the home of coffee, and origin of all mankind…

Seeing red… but no blood
…I found a land of incurably hospitable and kind people, proud of their country and culture; infectiously good music, incredibly strong coffee, where they love both bloody raw meat and protein-rich red beans, dubbed ‘bloodless meat’ in this part of the world.

Cool early morning departure

Cool early morning departure

Out & about
My first real taste of Ethiopia was out in the countryside where I visited the work of GCP’s Tropical Legumes I (TLI) project in the field, on a trip to the bean fields at the Southern Agricultural Research Institute’s (SARI) research stations at Areka and Hawassa, which took us on a 600-km round tour, out of the capital Addis Ababa and into the Great Rift Valley beyond.

We set off early that cool morning, and as we headed into the countryside, I glimpsed many a local taking their first breath of morning air as they stepped outside from their decoratively-painted, round, thatched-roof homes, and shook the night’s sleep from their shoulders.

Traditional thatched living rooms

Traditional thatched living rooms

So their day began – already there was smoke coming from the chimneys, and I imagined the lady of the house beginning to prepare for the first coffee ceremony of the day. Coffee is often accompanied by a dish of boiled red beans. Or maybe she was warming the pan for the morning injera – a kind of ‘teff tortilla’: a sour-dough thin pancake made of the local cereal, teff. Injera is an iconic ubiquitous component of Ethiopian cuisine, with which diners take all manner of wat, or stew made from a rich variety of ingredients – from legumes to raw meat, carefully rolling the spongy crepe around the filling twice, making sure no food falls onto the fingers, for dining etiquette strictly dictates against the licking of fingers.

Ensete plantations

Ensete plantations

Living landscape

We pass score upon score of the gently-smoking thatched round huts – the traditional ‘living rooms’ in these parts; most dwellings are accompanied by modest smallholdings, with maybe a grazing goat or two, and many more with plantations of ensete – a banana-like plant, which, in spite of its inedible fruit, has long been a staple in Ethiopia. It is used for its root, which is mashed to make a tasty, stodgy, bread-like food called kocho, used to accompany meals, a denser cousin of the favourite injera. These smallholdings would also be the perfect size for cultivating beans, as they are not an acre-hungry crop, but grow happily on small plots of land, and in some areas are intercropped with ensete to maximise the space.

Dromedaries, drought and beans

Our common legume: the bean, Phaseolus vulgaris L

Our common legume: the bean, Phaseolus vulgaris L

Into this landscape we pass the incongruous addition of a herd or two of camels with their owners…significantly peculiar as these aren’t desert lands, but the edge of the Ethiopian highlands, gradually and graciously giving way to the majestic Great Rift Valley below. I ask my guide about the addition of camel hands to this highland scenery: he explains their strange presence is due to a growing food shortage which has forced these nomadic peoples further afield to find their fare. The appearance of these dromedaries and their human partners brings harshly to mind Ethiopia’s most notorious claim to fame – especially for anyone who recalls the mid-1980s – for whom Ethiopia will always be indelibly synonymous with famine. It also throws the work of GCP, and specifically TLI, sharply into the spotlight, for the over-arching objective of this project is to improve legume productivity in environments considered marginal for agriculture, due to heat and other stresses. Somehow, it seems that more of the world’s environment is becoming ‘stressed’ by the day, though luckily the giant beanstalk of our story is a hardy crop which can be grown on the poor soils and fragmented plots of these challenged lands.

L–R: Asrat Asfaw Amele (SARI), Bodo Raatz (CIAT), Daniel A Demissie

L–R: Asrat Asfaw Amele (SARI), Bodo Raatz (CIAT) and Daniel A Demissie (Areka Research Station) discuss the A–Z of beans at Areka Research Station.

So the legume of choice for this most uncommon road trip is the common bean, Phaseolus vulgaris L, and our Ethiopian bean breeding expert is Asrat Asfaw Amele of the Southern Agricultural Research Institute (SARI), who is the Lead Scientist of the TLI beans component in Ethiopia. Asrat is our friendly guide and fount of knowledge of all things Ethiopian throughout this impassioned passage into the ‘bean valley’, and we are accompanied by Bodo Raatz of the Centro Internacional de Agricultura Tropical (CIAT), recently appointed Principal Investigator of TLI’s bean research. At Areka research station we are joined on our journey by Daniel A Demissie, who, along the way, shares his many insights on beans, diseases such as bean stem maggot (BSM), and on drought . We are chaperoned throughout by our courageous driver, Mr Abebe, who at times resembles a pilot as we seem to fly over the bumpy terrain in the plucky pick-up that is our steed for the day.

Courageous steeds

Courageous steeds: our driver, Mr Abebe (foreground and far right) and the intrepid pickup are joined by workers from Areka station

Impact

Asrat Afaw Amele

Asrat Afaw Amele

Against the scenic backdrop of the Ethiopian landscape racing by, with background music courtesy of Teddy Afro (whose politically charged songs, sweet voice and infectious rhythm have made him nothing short of a legend in his homeland), I take advantage of this long and winding road trip to interview Asrat, where his answers echo the whirlwind tour rushing by outside – from a description of the landscape he knows so well, and toils in every day – to the impact that this project has had on national scientists, the impacts on farmers’ lives, as well as impacts that are likely to come in the not-too-distant future.

We consider farmers our partners. We try to understand what farmers are looking for, what they like, and we try to include their interests in our breeding materials so that the breeding materials released by our institution start to get wider adoption.” – Asrat Asfaw Amele (pictured).

The rich Ethiopian landscape

The rich Ethiopian landscape

Revolution, alliances & partnerships

Ethiopia’s rich history, as varied as its topographical landscape, has known its fair share of extreme rulers. Now it seems the new ‘regime’ calling the shots is climate change, whose ravaging effects are seen worldwide, and no less in the bean fields of Ethiopia. Asrat even pinpoints climate change as the greatest challenge for the next generation of bean researchers, saying, “The farmers’ growing environment may be modified or a new environment may be created. That could also be a challenge – a new pest population or new disease may come; so the challenge in the future may be to breed or develop varieties which adapt to the changing environment.”

Beans line up

Beans line up at Awassa Research Station

The revolutionaries needed to overthrow this ‘tyrant’, it seems, are those of the ‘triple alliance’ partnership, comprising: Ethiopia’s national scientists, researchers from the international science community including CGIAR Centres, and farmers. Firstly, with this approach, the science sector can understand farmers’ needs, which also has a reciprocal effect, as Asrat explains, “We consider farmers our partners. We try to understand what farmers are looking for, what they like, and we try to include their interests in our breeding materials so that the breeding materials released by our institution start are widely adopted.” Secondly, national and international science systems come together to work for a common goal – in Asrat’s words: “Now we’ve got the knowledge and we can speak a common language with people from advanced laboratories. It’s also brought us closer to international institutes like CIAT and other CG Centres – we work together, so they understand our system better and we understand how they function.” He adds, “We are getting technical backstopping from CGIAR Centres, so as a national partner we are doing work, and they are supplying germplasm. That’s the partnership that will continue in the future.”

The weapon used by this ‘revolutionary army’ is GCP’s double-barrelled approach which combines both traditional and molecular breeding practices and is proving to be effective in developing new, more productive bean varieties to combat drought and disease. Specifically of the TLI project, Asrat says, “It lets us know about molecular breeding, so it’s exposed us to new developments in science, especially in the application of molecular techniques and plant breeding.”

Daniel A Demissie

Daniel A Demissie contemplates looming rain clouds across the parched terrain

The ‘monster’, climate change, rears its ugly head only to be shot down expertly by Asrat and the mighty beans as he reveals, “A lot of farmers are growing our varieties, and, because of changing weather or instability, many people are starting to grow beans; beans are now becoming a major crop, especially in our mandate area.”

Capacity building …
At this stage, the major impact of the TLI beans component in Ethiopia has been on capacity building – both in terms of human resources and physical infrastructure, as Asrat illustrates, “In our breeding programme, capacity building has been an important aspect: scientists in our national system are being exposed to new technology, information, and training; we also have a full irrigation system in about 10 hectares of land, which will revolutionise our work.”

Photo: N Palmer/CIAT

Magical bean diversity

… and on to farmers
By building on lessons learnt throughout this project, current impacts for the national science system will be translated into ‘real impacts’ in farmers’ fields in the near future. Indeed, Asrat hopes his future work will involve “getting the material into the hands of farmers, to see some impact or change, and to modernise and speed up breeding processes using markers developed by this project.”

Beanstalks. Photo: N Palmer/CIAT

Beanstalks: giant potential in Ethiopia

So the ‘magic beans’ of our story tell of a rich brew brimming with such potent ingredients as molecular breeding, capacity building, partnerships spanning continents and research systems, true teamwork with the farmers in the fields, and the drive to conquer the new challenge of a changing climate.

The impacts from the TLI project are the pot of gold at this rainbow’s end, showing that fairy tales do come true, where ‘magic beans’ put down roots and grow real shoots, and are not just ‘castles in the air’.

Links

Oct 302012
 

BREAK-TIME AND BRAKE-TIME from beans for a bit: Steve Beebe takes a pause to strike a pose in a bean field.

“These [molecular breeding] techniques, combined with conventional methods, shorten the time it takes to breed improved varieties  that simultaneoulsy combine several traits.

And this means that we also get them out to farmers more quickly compared to phenotypic selection alone.”
– Steve Beebe

THE NEAR-PERFECT FOOD: Common beans (Phaseolus vulgaris L) comprise the world’s most important food legume, feeding about 200 million people in sub-Saharan Africa alone. Their nutritional value is so high, they have been termed ‘a near-perfect food’. They are also easy to grow, adapting readily to different cropping systems and maturing quickly.

That said, this otherwise versatile, adaptable and dapper dicotyledon does have some inherent drawbacks and ailments that crop science seeks to cure….

Rains are rapidly retreating, and drought doggedly advancing
Despite the crop’s widespread cultivation in Africa, “yields are low, stagnating at between 20 and 30 percent of their potential,” remarks Steve Beebe, GCP’s Product Delivery Coordinator for beans, and a researcher at the International Center for Tropical Agriculture (CIAT, by its Spanish acronym).

“The main problem is drought, brought about by climate change,” he says. “And it’s spreading – it already affects 70 percent of Africa’s major bean-producing regions.”  Drought decimates bean harvests in most of Eastern Africa, but is particularly severe in the mid-altitudes of Ethiopia, Kenya, Tanzania, Malawi and Zimbabwe, as well as in southern Africa as a whole.

A myriad of forms and hues: bean diversity eloquently speaks for itself in this riot of colours.

Drought, doubt and duality − Diversity a double-edged sword
“Common beans can tolerate drought to some extent, using various mechanisms that differ from variety to variety,” explains Steve. But breeding for drought resistance is complicated by the thousands of bean varieties that are available. They differ considerably according to growth habit, seed colour, shape, size and cooking qualities, and cultivation characteristics.

“A variety might be fantastic in resisting drought,” says Steve, ‘but if its plant type demands extra work, the farmers won’t grow it,” he explains. “Likewise, if consumers don’t like the seed colour, or the beans take too long to cook, then they won’t buy.”

Molecular breeding deals a hand, waves a wand, and weaves a band
This is where molecular breeding techniques come in handy, deftly dealing with the complexities of breeding drought-resistant beans that also meet farmer and consumer preferences. No guesswork about it: molecular breeding rapidly and precisely gets to the heart of the matter, and helps weave all these different ‘strands’ together.

The bean research team has developed ‘genetic stocks’, or strains of beans that are crossed with the varieties favoured by farmers and consumers. The ‘crosses’ are made so that the gene or genes with the desired trait are incorporated into the preferred varieties.

The resulting new varieties are then evaluated for their performance in different environments throughout eastern and southern Africa, with particular focus on Ethiopia, Kenya, Malawi and Zimbabwe which are the target countries of the Tropical Legumes I (TLI) project.

Propping up the plant protein: a veritable tapestry of terraces of climbing beans.

GCP supported this foundation work to develop these molecular markers. This type of breeding – known in breeder parlance as marker-assisted selection (MAS) – was also successfully used to combine and aggregate resistance to drought; to pests such as bean stem maggot (BSM); and to diseases such as bean common mosaic necrosis potyvirus (BCNMV) and to bruchid or common bacterial blight (CBB). The resulting ‘combinations’ laden with all this good stuff were then bred into commercial-type bean lines.

“These techniques, combined with conventional methods, shorten the time it takes to breed improved varieties that simultaneoulsy combine several traits,” comments Steve. “This means that we also get them out to farmers more quickly compared to phenotypic selection alone.”

Informed by history and reality
Breeding new useful varieties is greatly aided by first understanding the crop’s genetic diversity, and by always staying connected with the reality on the ground: earlier foundation work facilitated by GCP surfaced the diversity in the bean varieties that farmers grow, and how that diversity could then be broadened with genes to resist drought, pests and disease.

What next?
Over the remaining two years of Phase II of the Tropical Legumes I (TLI) project, the bean team will use the genetic tools and breeding populations to incorporate drought tolerance into farmer- and market-preferred varieties. “Hence, productivity levels on smallholder farms are expected to increase significantly,” says Steve.

Partnerships
The work on beans is led by CIAT, working in partnership with Ethiopia’s South Agricultural Research Institute (SARI),  the Kenya Agricultural Research Institute (KARI),  Malawi’s Department of Agricultural Research and Technical Services (DARTS) and  Zimbabwe’s Crop Breeding Institute (CBI) of the Department of Research and Specialist Services (DR&SS).

Other close collaborators include the eastern, central and southern Africa regional bean research networks (ECABREN and SABRN, their acronyms) which are components of the Pan-African Bean Research Alliance (PABRA). Cornell University (USA) is also involved.

VIDEO: Steve talks about what has been achieved so far in bean research, and what remains to be done

Links

 

cheap ghd australia