Jan 072015
 

Beyond chickpeas to embrace beans, chickpeas, groundnuts and pigeonpeas

Paul_w2As a scientist who comes from the dessicated drylands of the unforgiving Kerio Valley, where severe drought can mean loss of life through loss of food and animals, what comes first is food security… I could start to give something back to the community… It’s been a dream finally coming true.” – Paul Kimurto, Senior Lecturer and Professor in Crop Physiology and Breeding, Egerton University, Kenya

As a son of peasant farmers growing up in a humble home in the Rift Valley of Kenya, agriculture was, for Paul Kimurto (pictured above), not merely a vocation but a way of life: “Coming from a pastoral community, I used to take care of the cattle and other animals for my father. In my community livestock is key, as is farming of food crops such as maize, beans and finger millet.”

Covering some six kilometres each day by foot to bolster this invaluable home education with rural school, an affiliation and ever-blossoming passion for agriculture soon led him to Kenya’s Egerton University.

There, Paul excelled throughout his undergraduate course in Agricultural Sciences, and was thus hand-picked by his professors to proceed to a Master’s degree in Crop Sciences at the self-same university, before going on to obtain a German Academic Exchange Service (DAAD) scholarship to undertake a ‘sandwich’ PhD in Plant Physiology and Crop Breeding at Egerton University and the Leibniz Institute for AgriculturalEngineering (ATB) in Berlin, Germany.

… what comes first is food security… offering alternative drought-tolerant crops… is a dream finally coming true!…  GCP turned out to be one of the best and biggest relationships and collaborations we’ve had.”

Local action, global interaction
With his freshly minted PhD, Paul returned to Egerton’s faculty staff and steadily climbed the ranks to his current position as Professor and Senior Lecturer in Crop Physiology and Breeding at Egerton’s Crop Sciences Department. Yet for Paul, motivating this professional ascent throughout has been one fundamental factor:  “As a scientist who comes from a dryland area of Kerio valley, where severe drought can mean loss of food and animals, what comes first is food security,” Paul explains. “Throughout the course of my time at Egerton, as I began to understand how to develop and evaluate core crop varieties, I could start to give something back to the community, by offering alternative drought-tolerant crops like chickpeas, pigeonpeas, groundnuts and finger millet that provide farmers and their families with food security. It’s been a dream finally coming true.”

And thus one of academia’s true young-guns was forged: with an insatiable thirst for moving his discipline forward by seeking out innovative solutions to real problems on the ground, Paul focused on casting his net wide and enhancing manpower through effective collaborations, having already established fruitful working relationships with the International Maize and Wheat Improvement Center (CIMMYT), the (then) Kenya Agricultural Research Institute (KARI) and the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in earlier collaborative projects on dryland crops in Kenya. It was this strategy that paved the way towards teaming up with GCP, when, in 2008, Paul and his team were commissioned to lead the chickpea work in Kenya for the GCP Tropical Legumes I project (TLI), with local efforts being supported by colleagues at ICRISAT, and friends down the road at KARI undertaking the bean work of the project. Climbing aboard the GCP ship, Paul reveals, was a move worth making: “Our initial engagement with GCP started out as a small idea, but in fact, GCP turned out to be one of the best and biggest relationships and collaborations we’ve had.”

…GCP is people-oriented, and people-driven” 

Power to the people!
The success behind this happy marriage, Paul believes, is really quite simple: “The big difference with GCP is that it is people-oriented, and people-driven,” Paul observes, continuing: “GCP is building individuals: people with ideas become equipped to develop professionally.” Paul elaborates further: “I wasn’t very good at molecular breeding before, but now, my colleagues and I have been trained in molecular tools, genotyping, data management, and in the application of molecular tools in the improvement of chickpeas through GCP’s Integrated Breeding Multiyear Course. This has opened up opportunities for our local chickpea research community and beyond, which, without GCP’s support, would not have been possible for us as a developing-country institution.”

Inspecting maturity, Koibatek FTC, Bomet_R Mulwa_Sep'12_w

Inspecting pod maturity with farmers at Koibatek Farmers Training Centre in Eldama Ravine Division, Baringo County, Kenya, in September 2012. Paul is on the extreme right.

Passionate about his teaching and research work, it’s a journey of discovery Paul is excited to have shares with others: “My co-workers and PhD students have all benefitted. Technicians have been trained abroad. All my colleagues have a story to tell,” he says. And whilst these stories may range from examples of access to training, infrastructure or genomic resources, the common thread throughout is one of self-empowerment and the new-found ability to move forward as a team: “Thanks to our involvement with the GCP’s Genotyping Support Service, we now know how to send plant DNA to the some of the world’s best labs and to analyse the results, as well as to plan for the costs. With training in how to prepare the fields, and infrastructure such as irrigation systems and resources such as tablets, which help us to take data in the field more precisely, we are now generating accurate research results leading to high-quality data.”

The links we’ve established have been tremendous, and we think many of them should be long-lasting too: even without GCP

Teamwork, international connections and science with a strong sense of mission
Teaming up with other like-minded colleagues from crème de la crème institutions worldwide has also been vital, he explains: “The links we’ve established have been tremendous, and we think many of them should be long-lasting too: even without GCP, we should be able to sustain collaboration with KBioscience [now LGC Genomics] or ICRISAT for example, for genotyping or analysing our data.” He holds similar views towards GCP’s Integrated Breeding Platform (IBP): “IBP is one of the ideas which we think, even after GCP’s exit in December 2014, will continue to support our breeding programmes. My colleagues and I consult IBP regularly for a range of aspects, from markers to protocols to germplasm and the helpdesk, as well as for contacts and content available via the IBP Communities of Practice.” Paul’s colleagues are Richard Mulwa, Alice Kosgei, Serah Songok, Moses Oyier, Paul Korir, Bernard Towett, Nancy Njogu and Lilian Samoei. Paul continues: “We’ve also been encouraging our regional partners to register on IBP – I believe colleagues across Eastern and Central Africa could benefit from this one-stop shop.”

Yet whilst talking animatedly about the greater sophistication and accuracy in his work granted as a result of new infrastructure and the wealth of molecular tools and techniques now available to him and his team, at no point do Paul’s attentions stray from the all-important bigger picture of food security and sustainable livelihoods for his local community: “When we started in 2008, chickpeas were known as a minor crop, with little economic value, and in the unfavoured cluster termed ‘orphan crops’ in research. Since intensifying our work on the crop through TLI, we have gradually seen chickpeas become, thanks to their relative resilience against drought, an important rotational crop after maize and wheat during the short rains in dry highlands of Rift valley and also in the harsh environments of the Kerio Valley and swathes of Eastern Kenya.”

This GCP-funded weather station is at Koibatek Farmers Training Centre, Longisa Division, Bomet County.

This GCP-funded weather station is at Koibatek Farmers Training Centre.

Having such a back-up in place can prove a vital lifeline to farmers, Paul explains, particularly during moments of crisis, citing the 2011–2012 outbreak of the maize lethal necrosis (MLN) disease which wiped out all the maize throughout Kenya’s  Bomet County, where Paul, Richard, Bernard and their team had been working on the chickpea reference set. Those farmers who had planted chickpeas – Paul recalls Toroto and Absalom as two such fortunate souls – were food-secure. Moreover, GCP support for infrastructure such as a weather station have helped farmers in Koibatek County to predict weather patterns and anticipate rainfall, whilst an irrigation system in the area is being used by the Kenyan Ministry of Agriculture to develop improved seed varieties and pasture for farmers.

The science behind the scenes and the resultant products are of course not to be underestimated: in collaboration with ICRISAT, Paul and his team released four drought-resistant chickpea varieties in Kenya in 2012, with the self-same collaboration leading to the integration of at least four varieties of the crop using marker-assisted backcrossing, one of which is in the final stages and soon to be released for field testing. With GCP having contributed to the recent sequencing of the chickpea genome, Paul and his colleagues are now looking to up their game by possibly moving into work on biotic stresses in the crop such as diseases, an ambitious step which Paul feels confident can be realised through effective collaboration, with potential contenders for the mission including ICRISAT (for molecular markers), Ethiopia and Spain (for germplasm) and researchers at the International Center for Agricultural Research in the Dry Areas (ICARDA) for germplasm. Paul first established contact with all of these partners during GCP meetings.

By coming together, pooling skills from biotechnology, agronomy, breeding, statistics and other disciplines, we are stronger as a unit and better equipped to offer solutions to African agriculture and to the current challenges we face.”

Links that flower, a roving eye, and the heat is on!
In the meantime, the fruits of other links established since joining the GCP family are already starting to blossom. For example, TLI products such as certified seeds of chickpea varieties being released in Kenya – and in particular the yet-to-be-released marker-assisted breeding chickpea lines which are currently under evaluation – caught the eye of George Birigwa, Senior Programme Officer at the Program for Africa’s Seed Systems (PASS) initiative of the Alliance for a Green Revolution in Africa (AGRA), which is now supporting the work being undertaken by Paul and his team through the Egerton Seed Unit and Variety Development Centre (of which Paul is currently Director) at the Agro-Based Science Park.

Yet whilst Paul’s love affair with chickpeas has evidently been going from strength to strength, he has also enjoyed a healthy courtship with research in other legumes: by engaging in a Pan-African Bean Research Alliance (PABRA) bean project coordinated by the International Center for Tropical Agriculture (CIAT), Paul and his team were able to release and commercialise three bean varieties which are currently in farmers’ fields in Kenya.

20140124_150637

Paul (left) in the field. The crop is chickpeas of course!

With so many pots on the boil, the heat is certainly on in Paul’s research kitchen, yet he continues to navigate such daily challenges with characteristic aplomb. As a proven leader of change in his community and a ‘ can-do, make-it-happen’ kind of guy, he is driving research forward to ensure that both his school and discipline remain fresh and relevant – and he’s taking his colleagues, students and local community along with him every step of  the way.

Indeed, rallying the troops for the greater good is an achievement he values dearly: “By coming together, pooling skills from biotechnology, agronomy, breeding, statistics and other disciplines, we are stronger as a unit and better equipped to offer solutions to African agriculture and to the current challenges we face,” he affirms. This is a crusade he has no plans to abandon any time soon, as revealed when quizzed on his future aspirations and career plans: “My aim is to continue nurturing my current achievements, and to work harder to improve my abilities and provide opportunities for my institution, colleagues, students, friends and people within the region.”

With the chickpea research community thriving, resulting in concrete food-security alternatives, we raise a toast to Paul Kimurto and his chickpea champions!

Links

 

Jan 022015
 

Friendship and trust at the heart of sorghum research

…benefits to humanity are the real driver of the work.”

Andy1_wAndrew Borrell (pictured) is a man who loves his work – a search for a holy grail of sorts for the grain of his choice  sorghum.

Based at the University of Queensland, Australia, Andrew is co-Principal Investigator with David Jordan for a GCP-funded project developing drought-adapted sorghum for Africa and Australia. And Andrew is passionate not just about the potential of sorghum, but also about the cross-continental relationships that underpin his research team. These friendships, says Andrew, are the glue that hold his team together and make it work better.

The year 2013 was particularly exciting. After almost five years working with African plant breeders to improve genetic material, field trials were up and running at 12 sites across East and West Africa.  Fastforward to 2015 and  glad tidings for the New Year! Andrew and his team now have preliminary evidence that the drought-tolerant ‘stay-green’ trait enhances grain size and yield  in some of the target countries in  Africa for which data have already been analysed.

What Andrew hopes to see is more genetic diversity, not just for diversity’s sake but put to use in farmers’ fields  to enhance yield during drought. This means more food, fodder and other sorghum by-products such as stems for construction. These benefits to humanity are, he says, the real driver of the work his team does.

So what are the wonders of ‘stay-green’? Waxing lyrical…

The sought-after  ‘stay-green’ trait that Andrew and his team are so interested in describes the phenotype – what the plant looks like. It simply means that when drought strikes, sorghum plants with this trait remain leafy and green during the grain-filling period – a critical time when the plant’s water is channelled to developing healthy panicles of grain.

So, what makes these plants remain healthy when others are losing their leaves? Why do they wax while others wane? The answer, says Andrew, is twofold, and is all to do with water supply and demand, and more and less. Firstly, there is some evidence that the roots of the stay-green plants penetrate deeper into the soil, tapping into more water supply. Secondly, plants with the stay-green trait have a smaller leaf canopy which means less water demand by the plant before flowering, leaving more water for grain-filling after flowering.

Staying power and stover are also part of the story. According to Andrew, “Plants with the stay-green trait produce more grain in dry conditions, have stronger stems so they don’t fall over, and often have larger grains. And it’s not just about grain alone: stay-green also improves the quality of the stover left in the field after harvest, which serves as animal feed.”

Another key feature of the stay-green trait in sorghum is that it is not just a fair-weather friend: it works well in wet as well as dry conditions. “All the evidence we’ve got suggests that you get a benefit under tough conditions but very little penalty under good conditions,” says Andrew.

…the process is synergistic and we do something that’s better than any of us could do alone.”

Safari from Down Under to Africa: East and West, and home are all best

For Andrew and his co-Principal Investigator, David Jordan, the GCP project is the first time they have been involved in improving sorghum in Africa. The two scientists work with sorghum improvement teams in six African countries: Mali, Burkina Faso and Niger in the west, and, Ethiopia, Kenya and Sudan in the east. By crossing African and Australian sorghum, the teams have developed the lines now being field-tested  in all the six countries.

A sampling of some of stay-green sorghum partnerships in Africa. (1)  Asfaw Adugna assessing the genetic diversity of  sorghum panicles produced from the GCP collaboration at Melkassa, Ethiopia. (2)  Clarisse Barro-Kondombo (Burkina Faso) and Andrew Borrell (Australia) visiting a lysimeter facility in Hyderabad, India, as part of GCP training. (3) Clement Kamau (Kenya, left) and  Andrew Borrell (Australia, right) visiting the seed store at the Kenya Agricultural Research Institute (KARI) in Katumani, Kenya.

A sampling of some of stay-green sorghum partnerships in Africa. (1) Asfaw Adugna (Ethiopian Agricultural Research Institute) assessing the genetic diversity of sorghum panicles produced from the GCP collaboration at Melkassa, Ethiopia. (2) Clarisse Barro-Kondombo (Institut de l’environnement et de recherches agricoles, Burkina Faso) and Andrew Borrell (Australia) visiting a lysimeter facility at ICRISAT in Hyderabad, India, as part of GCP training. (3) Clement Kamau (Kenya, left) and Andrew Borrell (Australia, right) visiting the seed store at the Kenya Agricultural Research Institute (KARI) in Katumani, Kenya.

According to Andrew, the collaboration with African scientists is “a bit like a group of friends using science to combat hunger. That’s probably been the biggest advantage of GCP,” adds Andrew. “Bringing people together for something we are all passionate about.”

There’s another collaborative element to the project too. As well as improving and testing plant material, the Australian contingent hosts African scientists on three-week training sessions. “We span a whole range of research topics and techniques,” explains Andrew. “We learn a lot from them too – their local expertise on soil, crops and climate. Hopefully the process is synergistic and we do something that’s better than any of us could do alone.”

Andrew says that working personally with plant breeders from Africa has made all the difference to the project. “Once colleagues from overseas come into your country, you develop real friendships. They know your families, they know what you do, and that’s very important in building relationships and trust that make the whole thing work.”

It wasn't all work and there was clearly also time to play, as we can see her., Sidi Coulibaly and Niaba Teme visiting with the Borrell family in Queensland, Australia.

It wasn’t all work and there was clearly also time to play, as we can see here, Sidi Coulibaly and Niaba Teme from Mali visit the Borrell family in Queensland, Australia.

Golden sunsets, iridescent rainbows and perpetual evergreen partnerships

As Andrew and his team wait to see how their field experiments in Africa turn out, they know that this is not the end of the story. In fact, it is only the beginning. Once tested, the germplasm will provide genetic diversity for future breeding programmes in Africa.

And the research collaboration between Australia and Africa won’t end when GCP funding runs out and GCP sunsets. For example, in addition to the GCP project, David Jordan has secured significant funding from the Bill & Melinda Gates Foundation for another four years’ sorghum research in Ethiopia. Plus, Andrew and Kassahun Banttea, a colleague from Jimma University, have also just been awarded a PEARL grant from the Foundation to assess the sorghum germplasm collection in Ethiopia for drought-adaptation traits.

We wish this ‘stay-evergreen’ team well in their current and future ventures. More sorghum ‘stickability’ and staying power to them! May they find the proverbial pot of gold at the end of the rainbow.

This enchanted rainbow-rings-and-sorghum photo is from Andy Borrell, and, contrary to the magical song, please continue under the rainbow for links to more information.

Sorghum rainbow_A Borrello

Links

 

 

 

Aug 302014
 

In ancient Europe, Timbuktu, in Northern Mali, gained fame as a fabled city of knowledge and learning at a far end of the world – snuggled in the Sahara Desert, and almost impossible to get to. And so, then as in our times, the phrase ‘As far as Timbuktu’ came to mean a place that is unimaginably far away, is completely foreign, or is unreachable – at the other end of the earth. Sitting on the left bank of the River Niger on the southern edge of the Sahara, it was not only a seat of learning in the ancient world, but also an important trade and travel stop for merchants as they sought refuge from the desert.

Niaba Teme

Niaba Témé

Timbuktu ticks on today. And if you strike out south and travel 450km from Timbuktu, you would come to the village of Yendouma-Sogol. This is where Niaba Témé, a plant breeder at Mali’s L’Institut d’économie rurale (IER), was born and grew up on the family farm, and where his saga with sorghum began.

“We grew dryland crops like millet, sorghum, cowpeas, groundnuts, Bambara nuts, sesame and dah,” says Niaba. “I used to love harvesting the millet and helping my mother with her groundnut crops.”

Niaba describes the geography and climate of the region as being very harsh. Sandstone cliffs soar from the dusty sun-scorched lower plains where temperatures are only slightly lower than the plateaus, which bake in the intense heat – the daily temperature rarely falls below 30oC. As there is no major river, every single drop of the 500 millimetres of rainfall received each wet season is used for drinking, cropping and livestock husbandry.

“The rains during July and August make farming possible for our people,” says Niaba.“If we did not receive those rains, our crops would suffer and in some years, we were not able to harvest anything.”

Niaba says these crop failures contributed in part to his choosing a career where he could help farmers, like his parents and siblings, protect themselves from the risks of drought and extreme temperatures.

With molecular markers, you can easily see if the plant you’ve bred has the gene related to drought tolerance without having to grow the plant and or risk missing the trait through visual inspection.”

Breeding more sorghum with less water
For the past four years, Niaba and his team at IER have been collaborating with Jean-François Rami and his team at France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), with support from Syngenta complemented by other GCP funding on a project to improve sorghum grain yield and quality for West African farmers.

A sorghum farmer in Mali.

A sorghum farmer in Mali.

Sorghum is an important staple crop for Mali. It is used to make to (a thick porridge), couscous, as well as malted and local beer beverages. “Anytime I talk with farmers, they are always asking for higher-yielding lines and lines that can produce sustainable yields during drought, or do so with less water,” says Niaba. “Since 2008, with the help of CIRAD and Syngenta, we have been learning how to use molecular markers to identify parental lines which are more tolerant and better adapted to the arable and volatile environment of Mali and surrounding areas which receive between 600 and 800 millimetres of rainfall per year. Using molecular markers is new and exciting for us as it will speed up the breeding process. With molecular markers, you can easily see if the plant you’ve bred has the gene related to drought tolerance without having to grow the plant and or risk missing the trait through visual inspection.”

In 2010, Niaba obtained GCP funding to carry out similar research with CIRAD and collaborators at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in Africa. “In this project, we are trying to enhance sorghum grain yield and quality for the Sudano-Sahelian zone of West Africa using the backcross nested association mapping [BCNAM] approach. This involves using an elite recurrent parent that is already adapted to local drought conditions, then crossing it with several different specific or donor parents to build up larger breeding populations. The benefit of this approach is it can lead to detecting elite varieties much faster.”

AB_Mali 2009 (3) 243_w

Niaba (foreground) examining a sorghum panicle at trials in Mali in 2009.

I spent eight months in Hyderabad. It was the first time I had to speak English every day… I spent almost 11 years at the University of Texas Tech, and enjoyed every moment… We have been collaborating with researchers…  in Australia “

Traversing the world seeking knowledge
But to backtrack a bit and find out how Niaba got to where he is today, let’s return to the family farm where he grew up, and where his career inspiration was forged and fired.

With a family background in farming now coupled with a keen interest in science, young Niaba enrolled at L’Institut Polytechnique Rural de Formation et de Recherche Appliquée (IPR/IFRA) at Katiboutou, in Eastern Bamako, Mali to study agronomy. He then went to IER, where, after two years there, he was offered a scholarship to study plant breeding in India.

“I spent eight months in Hyderabad. It was the first time I had to speak English every day so I was enrolled for an intensive English course at the University of Ousmania, Hyderabad, India, for the first two months. I then went on to do six months intensive training in the ICRISAT labs, learning how to set up experiments and collect and analyse data.”

His zest for plant breeding research and knowledge still unquenched, Niaba sought yet another intensive training course, this time in USA. During his time there, he made an impression on local researchers and it wasn’t long before he returned to complete his Bachelor’s, Master’s and PhD in Agronomy at the University of Texas Tech, Texas. “I spent almost 11 years at the University of Texas Tech, and enjoyed every moment. I love the opportunities and freedom that USA offers.”

Despite this attraction, Niaba remained true to Timbuktu and Mali. He left Texas and returned to Mali in January 2007 , where he was rapidly recruited by IER to take charge of their new biotechnology lab at Le Centre Regional de Recherche Agromique (CRRA). Shortly after, he became involved with GCP, working on three projects, one of which would take this native from near (or as far away as?) Timbuktu to yet another far-away place at the opposite end of the world known as Down Under – Australia.

“We have been collaborating with researchers at the Department of Agriculture, Fisheries and Forestry in Queensland, and the University of Queensland, Australia, since 2009, to introduce the stay-green drought-resistant gene into our local sorghum varieties.” says Niaba.

 

Left to right: Niaba Teme (Mali), David Jordan (Australia), Sidi Coulibaly (Mali) and Andrew Borrell (Australia) visiting an experiment at Hermitage Research Facility in Queensland, Australia.

Left to right: Niaba Témé (Mali), David Jordan (Australia), Sidi Coulibaly (Mali) and Andrew Borrell (Australia) visiting an experiment at Hermitage Research Facility in Queensland, Australia.

Sorghum staying-greener with less water
Stay-green is a post-flowering drought adaptation trait that has contributed significantly to sorghum yield stability in northeastern Australia and southern USA for the last two decades. The project has three objectives:

  • To evaluate the stay-green drought resistance mechanism in plant architectures and genetic backgrounds appropriate to Mali
  • To develop sorghum germplasm populations enriched for stay-green genes that also carry genes for adaptation to cropping environments in Mali.
  • To improve capacity of Mali researchers by carrying out training activities for African sorghum researchers in drought physiology and selection for drought adaptation in sorghum.

“In 2012 a colleague and myself were invited to Australia to take this training by Andrew Borrell and David Jordan,” says Niaba. “We learnt about association mapping, population genetics and diversity, molecular breeding, crop modelling using climate forecasts and sorghum physiology, plus a lot more! It was intense but rewarding, more so the fact that we have developed these new drought-tolerant crops which will enhance food security for my country.”

Thus ends today’s chapter in Niaba’s saga with sorghum. We expect to hear more on the latest from Niaba at the GCP General Research Meeting  (GRM) in October, so watch this space!

Meantime, see his slides from GRM 2013 below.

Links

 

 

Aug 292014
 
One of the greatest challenges of our time is growing more crops to feed more people, but using less water

Sorghum is one of the most ‘efficient’ crops in terms of needing less water and nutrients to grow. And although it is naturally well-adapted to sun-scorched drylands, there is still a need to improve its yield and broad adaptability in these harsh environments. In West Africa, for example, while sorghum production has doubled in the last 20 years, its yield has remained stagnant – and low.

The GCP Sorghum Research Initiative comprises several projects, which are exploring ways to use molecular-breeding techniques to improve sorghum yields, particularly in drylands. All projects are interdisciplinary international collaborations with an original focus on Mali, where sorghum-growing areas are large and rainfall is getting more erratic and variable. Through the stay-green project, the research has since broadened to also cover Burkina Faso, Ethiopia, Kenya, Niger and Sudan.

Using molecular markers is new and exciting for us as it will speed up the breeding process. With molecular markers, you can easily see if the plant you’ve bred has the desired characteristics without having to grow the plant and or risk missing the trait through visual inspection.”

What’s MARS got to do with it?

Niaba Témé is a local plant breeder and researcher at Mali’s L’Institut d’économie rurale (IER). He grew up in a farming community on the southern edge of the Sahara Desert, where crops would constantly fail during drier-than-normal seasons.

Niaba Teme

Niaba Témé

Niaba says these crop failures were in part his inspiration for a career where he could help farmers like his parents and siblings protect themselves from the risks of drought and extreme temperatures.

For the past four years, Niaba and his team at IER have been collaborating with Jean-François Rami and his team at France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), to improve sorghum grain yield and quality for West African farmers. The work is funded by the Syngenta Foundation for Sustainable Agriculture.

“With the help of CIRAD and Syngenta, we have been learning how to use molecular markers to improve breeding efficiency of sorghum varieties more adapted to the variable environment of Mali and surrounding areas which receive less than 600 millimetres of rainfall per year,” he says.

Jean-François Rami

Jean-François Rami

“Using molecular markers is new and exciting for us as it will speed up the breeding process. With molecular markers, you can easily see if the plant you’ve bred has the desired characteristics without having to grow the plant and or risk missing the trait through visual inspection.”

Jean-François Rami, who is the project’s Principal Investigator, has been impressed by the progress made so far. Jean-François is also GCP’s Product Delivery Coordinator for sorghum.

“Since its inception, the project has progressed very well,” says Jean-François. “With the help of the IER team, we’ve been able to develop two bi-parental populations from elite local varieties, targeting two different environments of sorghum cropping areas in Mali. We’ve then been able to use molecular markers through a process called marker-assisted recurrent selection [MARS] to identify and monitor key regions of the genome in consecutive breeding generations.”

The collaboration with Syngenta came from a common perspective and understanding of what approach could be effectively deployed to rapidly deliver varieties with the desired characteristics.

“Syngenta came with their long experience in implementing MARS in maize. They advised on how to execute the programme and avoid critical pitfalls. They offered to us the software they have developed for the analysis of data which allowed the project team to start the programme immediately,” says Jean-François.

Like all GCP projects, capacity building is a large part of the MARS project. Jean-François says GCP has invested a lot to strengthen IER’s infrastructure and train field technicians, researchers and young scientists. But GCP is not the only player in this: “CIRAD has had a long collaboration in sorghum research in Mali and training young scientists has always been part of our mission. We’ve hosted several IER students here in France and we are interacting with our colleagues in Mali either over the phone or travelling to Mali to give technical workshops in molecular breeding. The Integrated Breeding Platform [IBP] has also been a breakthrough for the project, providing to the project team breeding services, data management tools, and a training programme – the Integrated Breeding Multiyear Course [IB–MYC].”

We don’t have these types of molecular-breeding resources available in Mali, so it’s really exciting to be a part of this project… the approach has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to drought… one of the great successes of the project has been to bring together sorghum research groups in Mali in a common effort to develop new genetic resources for sorghum breeding.”

Back-to-back: more for Mali’s national breeding programme

On the back of the MARS project, Niaba successfully obtained GCP funding in 2010 to carry out similar research with CIRAD and collaborators in Africa at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).

“In this project, we are trying to enhance sorghum grain yield and quality for the Sudano-Sahelian zone of West Africa using the backcross nested association mapping (BCNAM) approach,” explains Niaba, who is the Principal Investigator of the BCNAM project. “This involves using an elite recurrent parent that is already adapted to local drought conditions. The benefit of this approach is that it can lead to detecting elite varieties much faster.”

Kirsten Vom Brocke (CIRAD) Michel Vaksmann (CIRAD) Mamoutou Kouressy (IER) Eva Weltzien (ICRISAT) Jean-Francois Rami (CIRAD) Denis Lespinasse (Syngenta) Niaba Teme (IER) Ndeye Ndack Diop (GCP) Ibrahima Sissoko (Icrisat) Fred Rattunde (Icrisat)

A ‘sample’ of the rich mix of international partners in sorghum research: Left to right – Kirsten Vom Brocke (CIRAD), Michel Vaksmann (CIRAD), Mamoutou Kouressy (IER), Eva Weltzien (ICRISAT), Jean-François Rami (CIRAD), Denis Lespinasse (Syngenta), Niaba Teme (IER), Ndeye Ndack Diop (GCP Capacity Building Leader), Ibrahima Sissoko and Fred Rattunde (both from ICRISAT).

Eva Weltzien has been the Principal Scientist for ICRISAT’s sorghum breeding programme in Mali since 1998. She says the project aligned with much of the work her team had been doing, so it made sense to collaborate considering the new range of sorghum genetic diversity that this approach aims to use.

“We’ve been working with Niaba’s team to develop 100 lines for 50 populations from backcrosses carried out with 30 recurrent parents,” explains Eva. “These lines are being genotyped by CIRAD. We will then be able to use molecular markers to determine if any of these lines have the traits we want. We don’t have these types of molecular-breeding resources available in Mali, so it’s really exciting to be a part of this project.”

Eva Weltzien (holding sheet of paper) presenting to Mali's Minister of Agriculture (in white cap) a graph on the superiority of new guinea race hybrids. Also on display are panicles and seed of the huybrids and released varieties of sorghum in Mali. The occasion was an annual field day at ICRISAT's research station at Samanko, Mali.

An annual field day at ICRISAT’s research station at Samanko, Mali. Eva Weltzien (holding sheet of paper) showing Mali’s Minister of Agriculture, Tiemoko Sangare, (in white cap) a graph on the superiority of new guinea race hybrids. Also on display are panicles and seed of the hybrids and released varieties of sorghum in Mali.

Eva says that the approach has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to drought.

For Jean-François, one of the great successes of the project has been to bring together sorghum research groups in Mali in a common effort to develop new genetic resources for sorghum breeding.

“This project has strengthened the IER and ICRISAT partnerships around a common resource. The large multiparent population that has been developed is analysed collectively to decipher the genetic control of important traits for sorghum breeding in Mali,” says Jean-François.

 Plants with this ‘stay-green’ trait keep their leaves and stems green during the grain-filling period. Typically, these plants have stronger stems, higher grain yield and larger grain.”

Sorghum staying green and strong, with less water

In February 2012, Niaba and his colleague, Sidi B Coulibaly, were invited to Australia as part of another Sorghum Research Initiative project they had been collaborating on with CIRAD, Australia’s University of Queensland and the Queensland Department of Agriculture, Fisheries and Forestry (QDAFF).

“We were invited to Australia for training by Andrew Borrell and David Jordan, who are co-Principal Investigators of the GCP stay-green sorghum project,” says Niaba.

Left to right: Niaba Teme (Mali), David Jordan (Australia), Sidi Coulibaly (Mali) and Andrew Borrell (Australia) visiting an experiment at Hermitage Research Facility in Queensland, Australia.

Left to right: Niaba Témé (Mali), David Jordan (Australia), Sidi Coulibaly (Mali) and Andrew Borrell (Australia) visiting an experiment at Hermitage Research Facility in Queensland, Australia.

“We learnt about association mapping, population genetics and diversity, molecular breeding, crop modelling using climate forecasts, and sorghum physiology, plus a lot more. It was intense but rewarding – more so the fact that we understood the mechanics of these new stay-green crops we were evaluating back in Mali.”

It wasn't all work and there was clearly also time to play, as we can see her., Sidi Coulibaly and Niaba Teme visiting with the Borrell family in Queensland, Australia.

It wasn’t all work and there was clearly also time to play, as we can see here., where Sidi Coulibaly and Niaba Témé are visiting the Borrell family in Queensland, Australia.

Stay-green is a post-flowering drought adaptation trait that has contributed significantly to sorghum yield stability in northeastern Australia and southern USA over the last two decades.

Andrew has been researching how the drought-resistant trait functions for almost 20 years, including gene discovery. In 2010, he and his colleague, David Jordan, successfully obtained funding from GCP to collaborate with IER and CIRAD to develop and evaluate drought-adapted stay-green sorghum germplasm for Africa and Australia.

“Stay-green sorghum grows a canopy that is about 10 per cent smaller than other lines. So it uses less water before flowering,” explains Andrew. “More water is then available during the grain-filling period. Plants with this ‘stay-green’ trait keep their leaves and stems green during the grain-filling period. Typically, these plants have stronger stems, higher grain yield and larger grain.”

Andrew says the project is not about introducing stay-green into African germplasm, but rather, enriching the pre-breeding material in Mali for this drought-adaptive trait.

The project has three objectives:

  1. To evaluate the stay-green drought-resistance mechanism in plant architecture and genetic backgrounds appropriate to Mali.
  2. To develop sorghum germplasm populations enriched for stay-green genes that also carry genes for adaptation to cropping environments in Mali.
  3. To improve the capacity of Malian researchers by carrying out training activities for African sorghum researchers in drought physiology and selection for drought adaptation in sorghum.

…we have found that the stay-green trait can improve yields by up to 30 percent in drought conditions with very little downside during a good year, so we are hoping that these new lines will display similar characteristics”

Expansion and extension:  beyond Mali to the world

Andrew explains that there are two phases to the stay-green project. The project team first focused on Mali. During this phase, the Australian team enriched Malian germplasm with stay-green, developing introgression lines, recombinant inbred lines and hybrids. Some of this material was field-tested by Sidi and his team in Mali.

“In the past, we have found that the stay-green trait can improve yields by up to 30 percent in drought conditions with very little downside during a good year, so we are hoping that these new lines will display similar characteristics,” says Andrew. “During the second phase we are also collaborating with ICRISAT in India and now expanding to five other African countries – Niger and Burkina Faso in West Africa; and Kenya, Sudan and Ethiopia in East Africa. During 2013, we grew our stay-green enriched germplasm at two sites in all these countries. We also hosted scientists from Burkina Faso, Sudan and Kenya to undertake training in Queensland in February 2014.”

 

A sampling of some of stay-green sorghum partnerships in Africa. (1)  Asfaw Adugna assessing the genetic diversity of  sorghum panicles produced from the GCP collaboration at Melkassa, Ethiopia. (2)  Clarisse Barro-Kondombo (Burkina Faso) and Andrew Borrell (Australia) visiting a lysimeter facility in Hyderabad, India, as part of GCP training. (3) Clement Kamau (Kenya, left) and  Andrew Borrell (Australia, right) visiting the seed store at the Kenya Agricultural Research Institute (KARI) in Katumani, Kenya.

A sampling of some of stay-green sorghum partnerships in Africa. (1) Asfaw Adugna of the Ethiopian Institute of Agricultural Research (EIAR)  assessing the genetic diversity of sorghum panicles produced from the GCP collaboration at Melkassa, Ethiopia. (2) Clarisse Barro-Kondombo (left, INERA – Institut de l’environnement et de recherches agricoles , Burkina Faso) and Andrew Borrell (right) visiting a lysimetre facility at ICRISAT’s headquarters in Hyderabad, India, as part of GCP training, in February 2013. (3) Clement Kamau (left, Kenya Agricultural Research Institute [KARI] ) and Andrew Borrell (right) visiting the seed store at KARI, Katumani, Kenya.

Andrew says that the collaboration with international researchers has given them a better understanding of how stay-green works in different genetic backgrounds and in different environments, and the applicability is broad. Using these trial data will help provide farmers with better information on growing sorghum, not just in Africa and Australia, but also all over the world.

“Both David and I consider it a privilege to work in this area with these international institutes. We love our science and we are really passionate to make a difference in the world with the science we are doing. GCP gives us the opportunity to expand on what we do in Australia and to have much more of a global impact.”

We’ll likely be hearing more from Andrew on the future of this work at GCP’s General Research Meeting (GRM) in October this year, so watch this space! Meantime, see slides below from GRM 2013 by the Sorghum Research Initiative team. We also invite you to visit the links below the slides for more information.

Links

Aug 292014
 

“…I wanted to contribute in a similar way” – Eva Weltzien

 

Eva Weltzien

Eva Weltzien

Learning about the work of Nobel laureate, Norman Borlaug, in high school inspired Eva Weltzien to become a plant breeder so she too could contribute to improving the living conditions in the developing world. Today, Eva is a Principal Scientist in sorghum breeding and genetic resources at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in Mali.

“Not only did Norman Borlaug revolutionise agriculture by breeding high-yielding wheat varieties, he then selflessly distributed these to the countries in the world that most needed them, saving hundreds of millions from starvation,” Eva recollects passionately, as she speaks about her scientific hero. “I remember being inspired when he won his Nobel Prize in 1970, mainly for the fact that agricultural research was actually being seen as contributing to world peace,” says Eva. “I knew then that I wanted to contribute in a similar way.”

I…wanted to take a break from… theory and instead gain an appreciation for plant breeding by working in the field”

The path to plant breeding, and pearls along the way
Eva was raised in her native Germany, as well as in Beirut, Lebanon, where she spent six years when her parents were stationed at the local university there. She credits her parents; both plant pathologists, for instilling in her a scientific mind-set from a tender age.

“They taught me to think outside the box and apply my knowledge and understanding to how I made sense of the world,” Eva recalls. “Being plant pathologists, they also encouraged me to observe the environment carefully and treat the earth with respect.”

Upon graduating from high school, Eva deferred going to university and instead worked as a seed technician for a private company in Germany. “I just wanted to take a break from studying theory and instead gain an appreciation for plant breeding by working in the field,” says Eva.

After one year with the company, Eva was ready to start university. During the decade that followed, she completed a Diploma in Agricultural Biology (University of Hohenheim, 1981) and a PhD in Agriculture (Munich University, 1986).

A year after completing her PhD, Eva accepted a postdoc position at Iowa State University, USA, where she met her future husband Fred Rattunde. After a few years, both Eva and Fred moved to India to work with ICRISAT. “I’ve been working for ICRISAT for almost 27 years now,” says Eva. “When I first started, I was working in pearl millet breeding.”

The key challenges have been improving the infrastructure of the national research facilities… as well as increasing the technical training for local researchers…this has slowly improved, particularly in the last four years with the funding and help through the GCP Sorghum Research Initiative.…we can see our work making an impact on people’s lives…”

Off to Africa, and bearing fruit
In 1998, ICRISAT offered Eva and Fred positions in Mali where they would take responsibility for the Institute’s sorghum-breeding programme in West Africa.

OLYMPUS DIGITAL CAMERA

Evaluating Eva: In Dioila district, Mali, evaluating the panicles of a new sorghum line after harvest.

“It was a great challenge that we both wanted to explore,” says Eva. “The key challenges have been improving the infrastructure of the national research facilities to do the research as well as increasing the technical training for local agronomists and researchers. Over the past 15 years, this has slowly improved, particularly in the last four years, with the funding and facilitation through the GCP Sorghum Research Initiative. Now we can see our work making an impact on people’s lives in West Africa.” (see GCP’s work on infrastructure improvement)

…we are closer to delivering more robust sorghum varieties which will help farmers and feed the ever-growing population in West Africa.”

Improving drought tolerance in sorghum for Africa
The second phase of GCP’s Sorghum Research Initiative focuses on Mali, where sorghum-growing areas are large, and distributed over a wide range of rainfall regimes.

Eva and her team are currently collaborating with local researchers at L’Institut d’économie rurale (IER), Mali and France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD) on a project to test a novel molecular-breeding approach – backcross nested association mapping (BCNAM). Eva says the approach has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to poor soil fertility conditions.

“We don’t have these type of molecular-breeding resources available in Mali, so it’s really exciting to be a part of this project.”  Still, Eva and her colleagues continue to press forwards in this new frontier in plant science, making good advances in another parallel but closely related project that Eva leads in the GCP Comparative Genomics Research Initiative.

Eva continues, “We’ve had good results in terms of field trials, despite the political situation. Overall, we feel the experience is enhancing our capacity here in Mali, and that we are closer to delivering more robust sorghum varieties which will help farmers and feed the ever-growing population in West Africa.”

Slides (with more links after the slides)

Links

Jul 232014
 

 

DNA spiral

DNA spiral

Crop researchers including plant breeders across five continents are collaborating on several GCP projects to develop local varieties of sorghum, maize and rice, which can withstand phosphorus deficiency and aluminium toxicity – two of the most widespread constraints leading to poor crop productivity in acidic soils. These soils account for nearly half the world’s arable soils, with the problem particularly pronounced in the tropics, where few smallholder farmers can afford the costly farm inputs to mitigate the problems. Fortunately, science has a solution, working with nature and the plants’ own defences, and capitalising on cereal ‘family history’ from 65 million years ago. Read on in this riveting story related by scientists, that will carry you from USA to Africa and Asia with a critical stopover in Brazil and back again, so ….

… welcome to Brazil, where there is more going than the 2014 football World Cup! Turning from sports to matters cerebral and science, drive six hours northwest from Rio de Janeiro and you’ll arrive in Sete Lagoas, nerve centre of the EMBRAPA Maize and Sorghum Research Centre. EMBRAPA stands for Empresa Brasileira de Pesquisa Agropecuária  ‒  in  English, the Brazilian Agricultural Research Corporation.

Jura_w

Jurandir Magalhães

Jurandir Magalhães (pictured), or Jura as he prefers to be called, is a cereal molecular geneticist and principal scientist who’s been at EMBRAPA since 2002.

“EMBRAPA develops projects and research to produce, adapt and diffuse knowledge and technologies in maize and sorghum production by the efficient and rational use of natural resources,” Jura explains.

Such business is also GCP’s bread and butter. So when in 2004, Jura and his former PhD supervisor at Cornell University, Leon Kochian, submitted their first GCP project proposal to clone a major aluminium tolerance gene in sorghum they had been searching for, GCP approved the proposal.

“We were already in the process of cloning the AltSB gene,” remembers Jura, “So when this opportunity came along from GCP, we thought it would provide us with the appropriate conditions to carry this out and complete the work.”

Cloning the AltSB gene would prove to be one of the first steps in GCP’s foundation sorghum and maize projects, both of which seek to provide farmers in the developing world with crops that will not only survive but thrive in the acidic soils that make up more than half of the world’s arable soils (see map below).

More than half of world’s potentially arable soils are highly acidic.

More than half of world’s potentially arable soils are highly acidic.

… identifying the AltSB gene was a significant achievement which brought the project closer to their final objective, which is to breed aluminium-tolerant crops that will improve yields in harsh environments, in turn improving the quality of life for farmers.”

A star is born: identifying and cloning AltSB
For 30 years, Leon Kochian (pictured below) has combined lecturing and supervising duties at Cornell University and the United States Department of Agriculture, with his quest to understand the genetic and physiological mechanisms behind the ability of some cereals to withstand acidic soils. Leon is also the Product Delivery Coordinator for GCP’s Comparative Genomics Research Initiative.

Leon Kochian

Leon Kochian

Aluminium toxicity is associated with acidic soils and is the primary limitation on crop production for more than 30 percent of farmland in Southeast Asia and Latin America, and approximately 20 percent in East Asia, sub-Saharan Africa and North America. Aluminium ions damage roots and impair their growth and function. This results in reduced nutrient and water uptake, which in turn depresses yield.

“These effects can be limited by applying lime to increase the soil’s pH. However, this isn’t a viable option for farmers in developing countries,” says Leon, who was the Principal Investigator for the premier AltSB project and is currently involved in several off-shoot projects.

Working on the understanding that grasses like barley and wheat use membrane transporters to insulate themselves against subsoil aluminium, Leon and Jura searched for a similar transporter in sorghum varieties that were known to tolerate aluminium.

“In wheat, when aluminium levels are high, these membrane transporters prompt organic acid release from the tip of the root,” explains Leon. “The organic acid binds with the aluminium ion, preventing it from entering the root. We found that in certain sorghum varieties, AltSB is the gene that encodes a specialised organic acid transport protein – SbMATE*  –  which mediates the release of citric acid. From cloning the gene, we found it is highly expressed in aluminium-tolerant sorghum varieties. We also found that the expression increases the longer the plant is exposed to high levels of aluminium.”

[*Editor’s note: different from the gene with the same name, hence not in italics]

Leon says identifying the AltSB gene and then cloning it was a significant achievement and it brought the project closer to their final objective, which he says is “to breed aluminium-tolerant crops that will improve yields in harsh environments, in turn improving the quality of life for farmers.”

This research was long and intensive, but it set a firm foundation for the work in GCP Phase II, which seeks to use what we have learnt in the laboratory and apply it to breed crops that are tolerant to biotic or abiotic stress such as aluminium toxicity and phosphorus deficiency.”

Comparative genomics: finding similar genes in different crops
Wheat, maize, sorghum and rice are all part of the Poaceae (grasses) family, evolving from a common grass ancestor 65 million years ago. Over this time they have become very different from each other. However, at a genetic level they still have a lot in common.

Over the last 20 years, genetic researchers all over the world have been mapping these cereals’ genomes. These maps are now being used by geneticists and plant breeders to identify similarities and differences between the genes of different cereal species. This process is termed comparative genomics and is a fundamental research theme for GCP research as part of its second phase.

rajeev-varshney_1332450938

Rajeev Varshney

“The objective during GCP Phase I was to study the genomes of important crops and identify genes conferring resistance or tolerance to biotic or abiotic stresses,” says Rajeev Varshney (pictured), Director, Center of Excellence in Genomics and Principal Scientist in applied genomics at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). “This research was long and intensive, but it set a firm foundation for the work in GCP Phase II, which seeks to use what we have learnt in the laboratory and apply it to breed crops that are tolerant to biotic or abiotic stress such as aluminium toxicity and phosphorus deficiency.”

Until August 2013, Rajeev had oversight on GCP’s comparative genomics research projects on aluminium tolerance and phosphorus deficiency is sorghum, maize and rice, as part of his GCP role as Leader of the Comparative and Applied Genomics Theme.

“Phosphorus deficiency and aluminium toxicity are soil problems that typically coincide in acidic soils,” says Rajeev. “They are two of the most critical constraints responsible for low crop productivity on acid soils worldwide. These projects are combining the aluminium tolerance work done by EMBRAPA and Cornell University with the phosphorus efficiency work done by IRRI [International Rice Research Institute] and JIRCAS [Japan International Research Centre for Agricultural Sciences] to first identify and validate similar aluminium-tolerance and phosphorus-efficient genes in sorghum, maize and rice, and then, secondly, breed crops with these combined improvements.”

These collaborations are really exciting! They make it possible to answer questions that we could not answer ourselves, or that we would have overlooked, were it not for the partnerships.”

When AltSB met Pup1
Having spent more than a decade identifying and cloning AltSB, Jura and Leon have recently turned their attention to identifying and cloning the genes responsible for phosphorus efficiency in sorghum. Luckily, they weren’t starting from scratch this time, as another GCP project on the other side of the world was well on the way to identifying a phosphorus-efficiency gene in rice.

Led by Matthias Wissuwa at JIRCAS and Sigrid Heuer at IRRI, the Asian base GCP project had identified a gene locus, which encoded a particular protein kinase that allowed varieties with this gene to grow successfully in low-phosphorous conditions. They termed the region of the rice genome where this gene resides as ‘phosphorus uptake 1’ or Pup1 as it is commonly referred to in short.

“In phosphorus-poor soils, this protein kinase instructs the plant to grow larger, longer roots, which are able to forage through more soil to absorb and store more nutrients,” explains Sigrid. “By having a larger root surface area, plants can explore a greater area in the soil and find more phosphorus than usual. It’s like having a larger sponge to absorb more water!”

Read more about the mechanics of Pup-1 and the evolution of the project.

Jura and Leon are working on the same theory as IRRI and JIRCAS, that larger and longer roots enhance phosphorus efficiency. They are identifying sorghum with these traits, using comparative genomics to identify a locus similar to Pup1 in these low-phosphorus-tolerant varieties, and then verify whether the genes at this locus are responsible for the trait.

“So far, the results are promising and we have evidence that Pup1 homologues may underlie a major QTL for phosphorous uptake in sorghum,” says Jura who is leading the project to identify and validate Pup1 and other phosphorus-efficiency QTLs in sorghum.  QTL stands for ‘quantitative trait locus’ which refers to stretches of DNA containing ‒ or linked to ‒ the genes responsible for a quantitative trait  “What we have to do now is to see if this carries over in the field, leading to enhanced phosphorus uptake and grain yield in low-phosphorus soils,” he adds.

Jura and Leon are also returning the favour to IRRI and JIRCAS and are collaborating with both institutes to identify and clone in rice similar genes to the AltSB gene in sorghum.

“These collaborations are really exciting! They make it possible to answer questions that we could not answer ourselves, or that we would have overlooked, were it not for the partnerships,” says Sigrid.

To make a difference in rural development, to truly contribute to improved food security through crop improvement and incomes for poor farmers, we knew that capacity development had to be a continuing cornerstone in our strategy.”

Building capacity in Africa
In GCP Phase II which is more application oriented, projects must have objectives that deliver products and build capacity in developing-world breeding programmes.

Jean-Marcel Ribaut

Jean-Marcel Ribaut

“The thought behind the latter requirement is that GCP is not going to be around after 2014 so we need to facilitate these country breeding programmes to take ownership of the science and products so they can continue it locally,” says Jean-Marcel Ribaut, GCP Director (pictured). “To make a difference in rural development, to truly contribute to improved food security through crop improvement and incomes for poor farmers, we knew that capacity development had to be a continuing cornerstone in our strategy.”

Back to Brazil: Jura says this requirement is not uncommon for EMBRAPA projects as the Brazilian government seeks to become a world leader in science and agriculture. “Before GCP started, we had been working with African partners for five to six years through the McKnight Project. It was great when GCP came along as we were able to continue these collaborations.”

Samuel Gudu

Samuel Gudu

One collaboration Jura was most pleased to continue was with his colleague and friend, Sam Gudu (pictured), from Moi University, Kenya. Sam has been collaborating with Jura and Leon on several GCP projects and is the only African Principal Investigator in the Comparative Genomics Research Initiative.

“Our relationship with EMBRAPA and Cornell University has been very fruitful,” says Sam. “We wouldn’t have been able to do as much as we have done without these collaborations or without our other international collaborators at IRRI, JIRCAS, ICRISAT or Niger’s National Institute of Agricultural Research [INRAN].”

Sam is currently working on several projects with these partners looking at validating the genes underlying major aluminium-tolerance and phosphorus-efficiency traits in local sorghum and maize varieties in Kenya, as well as establishing a molecular breeding programme.

“The molecular-marker work has been very interesting. We have selected the best phosphorus-efficient lines from Brazil and Kenya, and have crossed them with local varieties to produce several really good hybrids which we are currently field-testing in Kenya,” explains Sam. “Learning and using these new breeding techniques will enable us to select for and breed new varieties faster.”

Sam is also grateful to both EMBRAPA and Cornell University for hosting several PhD students as part of the project. “This has been a significant outcome as these PhD students are returning to Kenya with a far greater understanding of molecular breeding which they are sharing with us to advance our national breeding programme.”

We’ve used the knowledge that Jura’s and Leon’s AltSB projects have produced to discover and validate similar genes in maize…We identified Kenyan lines carrying the superior allele of ZmMATE …This work will also improve our understanding of what other mechanisms may be working in the Brazilian lines too.” 

‘Everyone’ benefits! Applying the AltSB gene to maize
Claudia Guimarães (pictured) is a maize geneticist at EMBRAPA. But unlike Jura, her interest lies in maize.

Claudia

Claudia Guimarães

Working on the same comparative genomics principle used to identify Pup1 in sorghum, Claudia has been leading a GCP project replicating the sorghum aluminium tolerance work in maize.

“We’ve used the knowledge that Jura’s and Leon’s AltSBprojects have produced to discover and validate similar genes in maize,” explains Claudia. “From our mapping work we identified ZmMATE as the gene underlying a major aluminium tolerance QTL in maize. It has a similar sequence as the gene found in sorghum and it encodes a similar protein membrane transporter that is responsible for citrate extradition.”

A maize field at EMBRAPA. Maize on the left is aluminum-tolerant while the maize on the right is not.

A maize field at EMBRAPA. Maize on the left is aluminium-tolerant while the maize on the right is not.

Using molecular markers, Claudia and her team of researchers from EMBRAPA, Cornell University and Moi University have developed near-isogenic lines from Brazilian and Kenyan maize varieties that show aluminium tolerance, with ZmMATE present. From preliminary field tests, the Brazilian lines have had improved yields in acidic soils.

“We identified a few Kenyan lines carrying the superior allele of ZmMATE that can be used as donors to develop maize varieties with improved aluminium tolerance,” says Claudia.  “This work will also improve our understanding of what other mechanisms may be working in the Brazilian lines too.”

What has pleased Jura and other Principal Investigators the most is the leadership that African partners have taken in GCP projects.

Cherry on the cereal cake
With GCP coming to an end in December 2014, Jura is hopeful that his and other offshoot projects dealing with aluminium tolerance and phosphorus efficiency will deliver on what they set out to do.

“For me, the cherry on the cake for the aluminium-tolerance projects would be if we show that AltSB improves tolerance in acidic soils in Africa. If everything goes well, I think this will be possible as we have already developed molecular markers for AltSB.”

What has pleased Jura and other Principal Investigators the most is the leadership that African partners have taken in GCP projects.

“This has been a credit to them and all those involved to help build their capacity and encourage them to take the lead. I feel this will help sustain the projects into the future and one day help these developing countries produce varieties of sorghum and maize for their farmers that are able to yield just as well in acidic soils as they do in non-acidic soils.”

In the foreground, left to right, Leon, Jura and Sam in a maize field in Kenya.

In the foreground, left to right, Leon, Jura and Sam in a maize field at the Kenya Agricultural Research Institute (KARI), Kitale, in May 2010. They are examining crosses between Kenyan and Brazilian maize germplasm.

Links

 

 

May 122014
 

 

Omari Mponda

Omari Mponda

After getting a good grounding on the realities of groundnut research from Vincent, our next stop is East Africa, Tanzania, where we meet Omari Mponda (pictured). Omari is a Principal Agricultural Officer and plant breeder at Tanzania’s Agricultural Research Institute (ARI), Naliendele, and country groundnut research leader for the Tropical Legumes I (TLI) project, implemented through our Legumes Research Initiative.  Groundnut production in Tanzania is hampered by drought in the central region and by rosette and other foliar diseases in all regions. But all is not bleak, and there is a ray of hope: “We’ve been able to identify good groundnut-breeding material for Tanzania for both drought tolerance as well as disease resistance,” says Omari. Omari’s team are also now carrying their own crosses, and happy about it. Read on to find out why they are not labouring under the weight of the crosses they carry…

…we have already released five varieties…TLI’s major investment in Tanzania’s groundnut breeding has been the irrigation system… Frankly, we were not used to being so well-equipped!”

Q: How  did you go about identifying appropriate groundnut-breeding material for Tanzania?
A: We received 300 reference-set lines from ICRISAT [International Crops Research Institute for the Semi-Arid Tropics], which we then genotyped over three years [2008– 2010] for both drought tolerance and disease resistance. After we identified the best varieties, these were advanced to TLII [TLI’s sister project] for participatory variety selection with farmers in 2011–2012, followed by seed multiplication. From our work with ICRISAT, we have already released five varieties.

Harvesting ref set collection at Naliendele_w

Harvesting the groundnut reference-set collection at Naliendele. A ‘reference set’ is a sub-sample of existing germplasm collections that facilitates and enables access to existing crop diversity for desired traits, such as drought tolerance or resistance to disease or pests.

ARI–Naliendele has also benefitted from both human and infrastructure capacity building. Our scientists and technicians were trained in drought phenotyping at ICRISAT Headquarters in India. One of our research assistants, Mashamba Philipo, benefitted from six-month training, following which he advanced to an MSc specialising in drought phenotpying using molecular breeding. In his work, he is now using drought germplasm received from ICRISAT. In terms of laboratory and field infrastructure, the station got irrigation equipment to optimise drought-phenotyping trials. Precision phenotyping and accurate phenotypic data are indispensable for effective molecular breeding. To facilitate this, ARI–Naliendele benefitted from computers, measuring scales, laboratory ware and a portable weather station, all in a bid to assure good information on phenotyping. But by far, TLI’s major investment in Tanzania’s groundnut breeding has been the irrigation system which is about to be completed. This will be very useful as we enter TLIII for drought phenotyping.

 

For us, this is a big achievement to be able to do national crosses. Previously, we relied on ICRISAT…we are advancing to a functional breeding programme in Tanzania… gains made are not only sustainable, but also give us independence and autonomy to operate..We developing-country scientists are used to applied research and conventional breeding, but we now see the value and the need for adjusting ourselves to understand the use of molecular markers in groundnut breeding.”

Omari (right), with Hannibal Muhtar (left), who was contracted by GCP to implement infrastructure improvement for ARI Naliendele. See http://bit.ly/1hriGRp

Flashback to 2010: Omari (right), with Hannibal Muhtar (left), who was contracted by GCP to implement infrastructure improvement for ARI Naliendele, and other institutes. See http://bit.ly/1hriGRp

Q: What difference has participating in TLI made?
A: Frankly, we were not used to being so well-equipped, neither with dealing with such a large volume as 300 lines! But we filtered down and selected the well-performing lines which had the desired traits, and we built on these good lines. The equipment purchased through the project not only helped us with the actual phenotyping and being able to accurately confirm selected lines, but also made it possible for us to conduct off-season trials.

We’re learning hybridisation skills so that we can use TLI donors to improve local varieties, and our technicians have been specifically trained in this area. For us, this is a big achievement to be able to do national crosses. Previously, we relied on ICRISAT doing the crosses for us, but we can now do our own crosses. The difference this makes is that we are advancing to a functional breeding programme in Tanzania, meaning the gains made are not only sustainable, but also give us independence and autonomy to operate. Consequently, we are coming up with other segregating material from what we’ve already obtained, depending on the trait of interest we are after.

Another big benefit is directly interacting with world-class scientists in the international arena through the GCP community and connections – top-rated experts not just from ICRISAT, but also from IITA, CIAT, EMBRAPA [Brazil], and China’s DNA Research Institute. We have learnt a lot from them, especially during our annual review meetings. We developing-country scientists are used to applied research and conventional breeding, but we now see the value and the need for adjusting ourselves to understand the use of molecular markers in groundnut breeding. We now look forward to TLIII where we expect to make impact by practically applying our knowledge to groundnut production in Tanzania.

Interesting! And this gets us squarely back to capacity building. What are your goals or aspirations in this area?
A: Let us not forget that TLI is implemented by the national programmes. In Africa, capacity building is critical, and people want to be trained. I would love to see fulltime scientists advance to PhD level in these areas which are a new way of doing business for us. I would love for us to have the capacity to adapt to our own environment for QTLs [quantitative trait loci], QTL mapping, and marker-assisted selection. Such capacity at national level would be very welcome. We also hope to link with advanced labs such as BecA [Biosciences eastern and southern Africa] for TLI activities, and to go beyond service provision with them so that our scientists can go to these labs and learn.

There should also be exchange visits between scientists for learning and sharing, to get up to date on the latest methods and technologies out there. For GCP’s Integrated Breeding Platform [IBP], this would help IBP developers to design reality-based tools, and also to benefit from user input in refining the tools.

Links

SLIDES by Omari on groundnut research and research data management in Tanzania

 

Mar 312014
 
Vincent Vadez

Vincent Vadez

Today, we travel to yet another sun-kissed spot, leaving California behind but keeping it legumes. We land in Africa for some ground truths on groundnuts with Vincent Vadez (pictured), groundnut research leader for the Tropical Legumes I (TLI) Project. Vincent fills us in on facts and figures on groundnuts and Africa – a tale of ups and downs, triumphs and trials, but also of  ‘family’ alliances not feuds, and of problems, yes,  but also their present or potential solutions. On to the story then! Read on to find out why groundnuts are…

….A very mixed bag in Africa
Groundnuts (Arachis hypogaea L), also called peanuts, are a significant subsistence and food crop in sub-Saharan Africa. There, groundnuts are grown in practically every country, with the continent accounting for roughly a quarter of the world’s production. Despite this rosy African statistic, problems abound: for example, nearly half (40 percent) of the of the world’s total acreage for groundnuts is in Africa, which dramatically dims the 25 percent global production quota.

In Africa, groundnuts are typically cultivated in moderate rainfall areas across the continent, usually by women.

In Africa, groundnuts are typically cultivated in moderate rainfall areas across the continent, usually by women. (See editorial note* at the end of the story)

Clearly then, Africa’s yields are low, borne out by telling statistics which show African production at 950 kilos per hectare, in acute contrast to 1.8 tonnes per hectare in Asia.

…every year, yields worth about USD 500 million are lost”

What ails Africa’s production?
The main constraints hampering higher yields and quality in Africa are intermittent drought due to erratic rainfall, as well as terminal drought during maturation. And that is not all, because foliar (leaf) diseases such as the late leaf spot (LLS) or groundnut rosette are also taking their toll.  Economically speaking, every year, yields worth about USD 500 million are lost to drought, diseases and pests. Plus, the seeding rates for predominantly bushy groundnut types are low, and therefore insufficient to achieve optimal ground cover. Thus, genetic limitations meet and mingle with major agronomic shortcomings in the cultivation of groundnuts, making it…

…. A tough nut to crack
Groundnuts are mostly cultivated by impoverished farmers living in the semi-arid tropics where rainfall is both low and erratic.

Tough it may be for crop scientists, but clearly not too tough for these two youngsters shelling groundnuts at Mhperembe Market, Malawi.

. Tough it may be for crop scientists, but clearly not too tough for these two youngsters shelling groundnuts at Mhperembe Market, Malawi.

“To help double the productivity of this crop over the next 10 years, we need to improve groundnuts’ ability to resist drought and diseases without farmers needing to purchase costly agricultural inputs,” says Vincent.

But the crop’s genetic structure is complex, plus, for resistance to these stresses, its genetic diversity is narrow. “Groundnuts are therefore difficult and slow to breed using conventional methods,” says Vincent. And yet, as we shall see later, groundnuts are distinctly disadvantaged when it comes to molecular breeding. But first, the good news!

…wild relatives have genes for resisting the stresses… molecular markers can play a critical role”

Why blood is thicker than water, and family black sheep are valued
Kith and kin are key in groundnut science. Vincent points out that groundnuts have several wild relatives that carry the necessary genes for resisting the stresses – especially leaf diseases – to which the crop is susceptible. These genes can be transferred from the wild cousins to the cultivated crop by blending conventional and molecular breeding techniques. But that is easier said than done, because cultivated groundnuts can’t cross naturally with their wild relatives owing to chromosomic differences.

Groundnut flower

Groundnut flower

“In modern breeding, molecular markers can play a critical role,” says Vincent. “Using markers, one can know the locations of genes of interest from an agronomic perspective, and we can then transfer these genes from the wild relatives into the groundnut varieties preferred by farmers and their markets.”

[The] ‘variegated’ partnership has been essential for unlocking wild groundnut diversity…”

Partnerships in and out of Africa, core capacities
“Partners are key to this work,” says Vincent. The groundnut work is led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), with collaborators in the target countries, which are Malawi (Chitedze Agricultural Research Centre), Senegal (Institut sénégalais de recherches agricoles ‒ ISRA) and Tanzania (Agricultural Research Institute, Naliendele), Moving forward together, continuous capacity building for partners in Africa is part and parcel of the project. To this end, there have been several training workshops in core areas such as molecular breeding and phenotyping, farmer field days in the context of participatory varietal selection, as well as longer-term training on more complex topics such as drought, in addition to equipping the partners with the critical infrastructure needed for effective phenotyping.

Freshly dug-up groundnuts.

Freshly dug-up groundnuts.

Further afield out of Africa, Vincent’s team also collaborates with the Brazilian Agricultural Research Corporation (EMBRAPA), France’s Centre de coopération internationale en recherche agronomique pour le développement ‒ CIRAD, and USA’s University of Georgia.

This ‘variegated’ partnership has been essential for unlocking the wild groundnut diversity when about 12 years ago the EMBRAPA team successfully generated a number of ‘synthetic’ groundnuts from their wild relatives. Unlike the wild groundnuts, these synthetic groundnuts can be crossed to the cultivated type, bringing with them treasure troves of beneficial genes pertaining to the wild that would be otherwise unreachable for the cultivated varieties. Taking this one step further, the CIRAD‒ISRA team, in a close North‒South partnership, has used one of the synthetics from the Brazilian programme to generate new genetic diversity in the groundnut cultivar Fleur11. They are using additional synthetics from ICRISAT to further enlarge this genetic diversity in cultivated groundnuts.

These techniques and tools provide signposts on the genome of varieties for characteristics of importance”

A world first for an ‘orphan’, goals achieved, and what next
Among other goals, the team notably achieved a world first: “To produce the first SSR-based genetic linkage map for cultivated groundnuts!” declares Vincent. SSR stands for simple sequence repeat. The map was published in 2009,  followed later on by a groundnut consensus map in 2012.

Youngster bearing fresh groundnuts along River Gambia in Senegal.

Youngster bearing fresh groundnuts along River Gambia in Senegal.

But what do these maps and their publication mean for groundnut production? Vincent explains: “These techniques and tools provide signposts on the genome of varieties for characteristics of importance ‒ for instance, resistance to a disease ‒ and these are used in combination to speed up the development of groundnut varieties that are more resistant to the stresses found in the harsh environments where most of the tropical world’s poor farmers live. Accelerating development means quicker delivery to farmers who are at high risk of going hungry. TLI Phase I produced synthetic groundnuts with new genes for disease resistance.”

In Phase II of the TLI Project which terminates in mid-2014, the team has continued to identify new genetic and genomic resources, for instance new sources of drought resistance from the germplasm and which are currently being used in the development of new breeding stocks. What is significant about this is that groundnuts ‒ like most other members of the legume family ‒ do not have much in the way of genomic and molecular-genetic resources, and are in fact consequently referred to in some circles as ‘orphans’ of the genome revolution. The focus has also been on resistance to rust, early and late leaf spot, and rosette – all economically critical diseases – by tapping the resilience of GBPD4, a cultivar resistant to rust and leaf spot, and introducing its dual resistance to fortify the most popular varieties against these diseases. The team also hopes to scale up these promising examples.

We believe this team is firmly on the way to fulfilling their two-fold project objectives which were: (1) to develop genomic resources and produce the first molecular-breeding products of the crop by injecting  disease resistance (from TLI Phase I work) into farmer- and market-preferred varieties; and, (2)  to lay the foundation for future marker-assisted recurrent selection (MARS) breeding by tapping on newly identified sources of drought tolerance.

 the genetic stocks that hold the most promise to overcome leaf disease are found in the wild relatives… A thorough reflection is needed to combine good genetics with sound agronomic management”

The future
But the team is not resting on their laurels, as the work will not stop with the fulfillment of project objectives. In many ways, their achievements are in fact just the beginning. The new breeding stocks developed during TLI Phase II need to be evaluated further for their drought tolerance and disease resistance prior to their deployment in breeding programmes, and this activity ‒ among others ‒ is included for the next phase of the work in the proposed Tropical Legumes III project. In particular, the genetic stocks that hold the most promise to overcome leaf disease are found in the wild relatives. Thus, the existing materials need to be fully exploited and more need to be produced to cover the full breadth of potential stresses. Vincent adds “Of course an increasing part of the efforts will be about assuring quality evaluation data, meaning we must continue to significantly enhance the capacity ‒ both human and physical ‒ of our partners in target countries. Last but not least, the good wheat and rice cultivars that directly arose from the green revolution would have been nothing without nitrogen fertiliser and irrigation.” Vincent adds that the same applies to groundnuts: they are cultivated in infertile soil, at seeding rates that are unlikely to optimise productivity.

Groundnut drawing

Groundnut drawing

For this reason, and others explained above, “A thorough reflection is needed to combine good genetics with sound agronomic management,” Vincent concludes, stressing the importance of what he terms as ‘looking beyond  the fence’. Vincent’s parting shot, as our conversation draws to close: “In fact, I have grown increasingly convinced over the past year that we probably overlook those agronomic aspects in our genetic improvements at our peril, and we clearly need a re-think of how to better combine genetic improvement with the  most suitable and farmer-acceptable agronomic management of the crop.”

Much food for thought there! And probably the beginnings of an animated conversation to which a groundnut crop model, on which Vincent and team are currently working, could soon yield some interesting answers on the most suitable genetic-by-management packages, and therefore guide the most adequate targets for crop improvement.

Links

*Editorial note: Erratum – Photo changed on April 8 2014, as the previous one depicted chickpeas, not groundnuts. We  apologise to our readers for the error.

Nov 122013
 

 

 

Participants at the 2013 GRM. High-resolution version on Flickr: http://bit.ly/1fxhkmQ

Participants at the 2013 GRM. High-resolution version on our Flickr account.

The General Research Meeting (GRM) is by far the largest and most important event on our calendar. This year’s GRM was held on September 27‒30 2013, with 135 people from 35 countries attending (see list).

Various presentations were made on progress and next steps on research in GCP projects, including for GCP’s Integrated Breeding Platform (IBP). Focus was on GCP’s nine focus crops in Phase II – beans, cassava, chickpeas, cowpeas, groundnuts, maize, rice, sorghum and wheat, with the poster sessions adding a couple more (see ‘sixty posters’ below). You can view the presentations made on our website  (to see them in the context of the overall agenda), or on SlideShare (all gathered in one place).  We have uploaded all but one presentation, where we’re still waiting for the presenter’s permission to publish. A comprehensive update on all GCP projects is here (PDF). The meeting was a blend of plenary sessions on core topics and research updates, and ‘drill-down’ breakouts on crops, data management and capacity building (the last two, in the context of IBP’s proposed Phase II, which had its own dedicated one-day stakeholder meeting after GRM, on 1st October).DSC07162_w

Social were we…but we also did some heavy lifting
We didn’t just talk to ourselves: we made a bit of noise on social media to also bring in other voices into the GRM discourse and chit-chat, using the hashtag #GRM13, creating a good buzz of conversations. Also linking in to GRM were our LinkedIn followers. And neither was it all business, science and rigid structure: there was free-flow too, with an open afternoon where participants could take a relaxing break, organise their own meetings, or take a tour to Lisbon. Some of the scenes from the tour are posted on Flickr, as are other snapshots from the meeting. We’ve since gathered up some of the social media posts on Storify.

GRM was far from its grim-sounding  abbreviation and hashtag on social media:  exemplifying the best of the ‘GCP spirit’,  the sessions were engaging, relaxed, conversational and spiced with humour and a light touch, despite the ‘heavy’ topics under discussion (see agenda). But the topic at hand was grim, since the situation is dire – drought affects almost all crops and all regions worldwide. As drought tolerance is our key focus since inception, most of the discussions naturally centred on this topic. Equally important is the scourge wrought by pests and disease, which afflict some crops more than others. For example, under most circumstance, cassava is naturally very drought-tolerant, but what good will this do if cassava survives drought only to succumb to the deadly pests and diseases that stalk this drought champion?

Sunset and ‘moon-rise’
GRM was also a time for both stocktaking and mapping the future  given GCP’s sunset in 2014.  A central and recurring theme was GCP’s transition strategy, and how – and where – to embed GCP-initiated projects that will extend beyond the Programme’s lifetime. For this, the CGIAR Research Programs (CRPs) are a natural first choice. GRM enjoyed a very good representation of the CRPs, with all six crop CRPs represented, some at the highest level.

A few members of our Executive Board also attended. Board Chair, Andrew Bennett, set the right tone for the meeting. In his remarks at the opening session, he emphasised that this was not a time for sadness, swan songs and moping as GCP approaches sunset.  Rather, it was a time to appreciate the beauty of sunsets, in the sure knowledge that sunsets give rise to  moon-rise!

A section of Poster Session II presenters. IN the foreground, Andrew Bennett, Chair, GCP Excecutive Board.

A section of Poster Session II presenters. In the foreground, Andrew Bennett, Chair, GCP Executive Board.

“Say it succinctly in sixty seconds!”
The poster session was as lively as always, with a record of… (hold your breath!) 60 posters presented, surpassing the previous GRM in 2011 which attracted 53 posters.

Perfection!  Sixty posters for sixty seconds
Sixty was a PERFECT number for the 60-second sizzle, where each poster presenter had a maximum of 60 seconds (and not a second more!) to present at plenary, devising whichever means necessary to attract the audience to their poster. It was easy to discern the brash ‘old hands’ who had perfected their art after several GRMs; the tricksters and various reincarnations of The Artful Dodger amongst them, trying to beat the clock; new and slightly jittery presenters who were more than just a little bewildered but still proved their mettle; and the new, sassy and confident. This beautiful blend apart, the poster session brought in not only new faces to add to the familiar ones, but also refreshing new tastes to diversify and sweeten our Staple of Nine crops. To our diet of cereals, legumes and tubers, poster presenters from The Philippines added eggplants, rounded off with bananas for dessert.

"Definitely time for dessert, and do not disturb!" they seem to be saying. Jean-Christophe Glaszmann (left) and Hei Leung (right), who played ace roles on a multi-partner GCP project on bananas.

“Definitely time for dessert, and do not disturb!” they seem to be saying. Jean-Christophe Glaszmann (left) and Hei Leung (right), who played ace roles on a multi-partner GCP project on bananas.

♫ Welcome to the Hotel California! ♫…
As always, GRM was a mingling of old and new friends, a time for some paths to meet and for new forks to branch out, a season to reflectively look back and progressively face forwards. In keeping with Andrew’s continuity of sunsets giving way to moonrise, we said a group goodbye to Rajeev Varshney, former Genomics Theme Leader, who left the GCP Management Team in August. And we were happy to once again welcome, embrace and recognise two old friends – Jean Christophe Glaszmann (CIRAD) and Hei Leung (IRRI), who were, respectively ex-Subprogramme Leaders for genetic diversity and genomics in GCP Phase I, and continue to be involved with GCP as researchers, as will Rajeev.

In this picture, we caught up with them at a very appropriate moment: dessert during the Gala Dinner. Take it from us, these two guys are well versed in matters dessert, with a dash of science, as this blast from the past on bananas attests, also summarised in a Facebook photo-story here.

We are indeed a Hotel California of sorts – always open for check-in and checkout. As for leaving…we’re still working on the modalities of that!

And despite the fond farewell, truth is Rajeev is not going anywhere either, as far as GCP is concerned. You only needed to have been at GRM or following the conversations on Facebook and Twitter, especially the photos, to witness this. He was (delightfully!) all over the place, passing on his ‘positive epidemic’ of highly infectious enthusiasm and incredible energy. Here he is in action at the Gala Dinner in the photos below, which really need no caption. We’re sure you’ll be able to easily spot Rajeev, ‘high-fivin’ and ‘rapping’, eclipsing the GCP Director, who however appears quite pleased in his lower perch with Rajeev on the platform. But if you’re truly lost and can’t spot the super-charged high-energy guy in the photos, no worries! Here are some handy clues.

OLYMPUS DIGITAL CAMERAOLYMPUS DIGITAL CAMERA

In distinguished company
Rajeev’s energy goes beyond GRM and GCP; this year as in previous ones, he received several awards, among them, the Young Crop Scientist Award by Crop Science Society of America, and the Illumina Agriculture Greater Good Initiative Award.

Hari Upadhyaya

Hari Upadhyaya

Prior to these recognitions during the Gala Dinner, Jean-Marcel formally honoured ICRISAT’s Hari Upadhyaya (pictured) during plenary for two awards Hari had received in the course of the year, also from the Crop Science Society of America. These awards were for Hari’s notable contributions – at international level – to crop science, and to plant genetic resources.

Hari is a long-term GCP Principal Investigator, working primarily on sorghum. But that is not the only crop he works on. Hari was the lead author of the joint chickpea and pigeonpea chapter in our book on drought phenotyping.

Evaluation
Unlike other GRMs where we’ve requested participants to evaluate the meeting, we did not do so this year, since this is very likely the last meeting of its kind, and the goal of the evaluation is to use participant feedback to improve future meetings. With the help of our participants, we’ve applied the lessons we’ve learnt from them through the years to arrive at what we believe to be a winning combination, balancing the diverse interests of our participants for overall improvement of their GRM experience.

 

 

 

 

 

Jan 282013
 

Today, Nature Biotechnology published the first-ever draft genome sequence map for a chickpea variety (PDF). The map will help researchers and breeders the world over to – through molecular breeding methods – deliver to growers higher-yielding more resilient varieties of chickpeas. 

Now that we have the rewards in a nutshell, and we choose to chew the chestnut of challenges later in the story, let’s next decipher the ‘Rajeevs’ part in the title: introducing Rajeev K Varshney, our very own Leader of Comparative and Applied Genomics, who also led and coordinated the transnational collaboration that developed this map.

We had the pleasure of talking to the gently-spoken Indian, a week before the release of the paper, asking him to recount how the project began, and the challenges and success they faced along the way. We’ll soon get to what Rajeev had to say, but first, a rapid rewind for backgrounding before Rajeev tells us the rest of the story…

… we have the ‘borders’ done… a good idea of what the picture is, and where the rest of the pieces will fit.”

Rajeev in the lab.

Reality check from the Genomics Gnome of Good News: two is but the twinkling of an eye…
The sequence map of the genotype CDC Frontier – a Canadian kabuli chickpea variety – took about two years to construct.”

No, the time taken is not the challenge since we’re yet to get to that part. In fact, in the world of genomics , two years is fairly fast, compared to, say, the time taken for sequencing other grain genomes such as maize, rice and wheat.

Rajeev attributes this to the interdisciplinary expertise of his team, most of whom are world leaders in their field, and to the enthusiasm and generosity of all partner institutes who funded the collaboration.

And with that background, on to our chat with Rajeev!

Sandwiches in the Sunshine State, and a search starts for the then unattainable holy grail

Q: Is it correct that this project started over sandwiches under a sunny sky in California?
Funnily enough, yes. We had the preliminary discussion during a lunchtime break at the fifth International Congress on Legume Genetics and Genomics back in July 2010. Doug Cook, from the University of California, Davis, and I, organised the meeting for select attendees to discuss the idea.

With daughter, Nanz. Rajeev in ‘Daddy-mode’, a galaxy away from genomic research.

Many researchers at the time had, or were toying with, sequencing parts of the chickpea genome to discover genes that helped plants tolerate salinity, drought, disease, and so on. The idea of mapping the whole genome, however, was thought to be unachievable given the cost and resources required. What Doug and I proposed to the 10-odd senior researchers that day was that we form an alliance to pool together our knowledge, funds and resources.

When we returned to our home institutes, we all approached our institutes or funding agencies in respective countries, to propose they consider funding the collaborative project. To be honest, this was probably the most challenging task of the project, as it often is with other projects, as they had a hard time recognising the benefits. However, we finally got there, and with the help of more than 20 institutes from North and Central America, Asia, Australia and Europe, we have successfully assembled 74 percent of the genome within two years.

Pieces fall into place for mix-and-match combinations

Now, you may say that 74 percent doesn’t equal the whole genome, but it does provide us with a map and pointers we’d never had before. Imagine doing a jigsaw without a picture to guide you – that’s how hard it was for us at the start. Now at least we have the ‘borders’ done, and we have a good idea of what the picture is, and where the rest of the pieces will fit.

Q:Why is mapping the chickpea genome so important?
Having the genome mapped is going to benefit all chickpea breeders, researchers and growers.

Say a conventional breeder wanted to create a new breed of chickpeas with drought tolerance. They would cross a domesticated, high-yielding variety of chickpeas, with a variety that tolerates dry conditions – most likely, lower-yielding – and then grow the progeny in the field. They wait for these progenies to grow, then visually select the best lines and make crosses with these. They keep doing this process over and over again for six to seven years until they’ve generated a new variety with the desired trait.

Different breed, mould and mode

Molecular breeders do it differently: instead of selecting the lines by visual inspection, they select lines based on their genes. This means they can correctly trace whether the progeny has received the genes which help the plant tolerate drought and only grow, test and cross with these plants, almost halving the time it would take through conventional methods.

With the map, researchers will be able to more rapidly identify genes of interest, and work with breeders to select for plants that display the favourable traits of these genes, whether this be for drought tolerance, pest resistance or for any other trait they are interested in.

Q: Good for researchers and breeders, but how is that going to benefit growers though?
Knowing which plant is more tolerant of drought from the start of the breeding process is going to significantly reduce the time it takes for breeders to develop these types of chickpea cultivars. So, growers will have new breeds of higher-yielding more resilient chickpeas available sooner.

Ethiopian farmer, Temegnush, and her chickpea harvest.

Remember also that chickpeas are a very important crop for smallholders in the resource-poor harsh environments of sub-Saharan Africa, India and Southeast Asia. Not only do they grow it for food and to replenish soil nitrogen, they also export to India, the world’s largest consumer of chickpeas. Most of these farmers would be lucky to harvest one tonne per hectare, so any yield advantage means extra income.

This point is particularly relevant for GCP’s goal, which is to improve the livelihoods of such farmers.

Q: This was one of the largest collaborative projects you’ve coordinated in your relatively short career. What was the most challenging aspect?
Short answer is….many!  With it being a collaborative project, bringing together researchers from all around the world, it was always difficult to coordinate suitable times for Skype and phone meetings.

Personally though, my biggest challenge was trying to coordinate so many esteemed researchers. We all had great ideas and we all thought each of our ideas was the right one. I had to resolve all issues amicably and find a solution to move forward.

Luckily I have surrounded myself over the years with some good colleagues to whom I’ve always been able to turn to discuss any problems. Jean-Marcel Ribaut, who is the Director of GCP, was one particular colleague to whom I often turned to for advice, given his experience with coordinating all of GCP’s collaborative interdisciplinary projects. He also helped source much-needed funds and suggested several useful partnerships, which were vital in carrying out the project.

My boss at ICRISAT, William Dar, the Director General, has always been very supportive, and time and again went out of his way to make sure I had the funds, capacity and sanity to keep the project going! I am deeply indebted to him.

The future

Q: How will the research continue?
Researchers and breeders will be able to customise the genome map to fit their particular purposes. Most will be interested in using it to develop molecular markers, which breeders can use to highlight specific genes of interest for molecular breeding. As I mentioned earlier, this could realistically halve the time it takes to breed new varieties from six to10 years to four to five years.

One outcome of the project, which I’m particularly interested in exploring further, relates to chickpea diversity. When we compared the 90 chickpea genomes, we realised that that diversity in the elite varieties was very low, meaning they all had very similar alleles (form of genes).

This has come about because over the years, breeders and growers have continually chosen only a handful of chickpea varieties to continually breed with. This is because these breeds tend to produce higher yields, something which all growers want.

The drawback of this, however, is that if all the popular breeds are too similar, then they could all be susceptible to a particular disease. If this particular disease were to strike, then chickpeas could be wiped out – globally.

So this map will be a valuable tool to use to enhance genetic diversity in the elite gene pool, thus safeguarding the world’s supply of chickpeas.

 

Links

cheap ghd australia