Aug 292014
 
One of the greatest challenges of our time is growing more crops to feed more people, but using less water

Sorghum is one of the most ‘efficient’ crops in terms of needing less water and nutrients to grow. And although it is naturally well-adapted to sun-scorched drylands, there is still a need to improve its yield and broad adaptability in these harsh environments. In West Africa, for example, while sorghum production has doubled in the last 20 years, its yield has remained stagnant – and low.

The GCP Sorghum Research Initiative comprises several projects, which are exploring ways to use molecular-breeding techniques to improve sorghum yields, particularly in drylands. All projects are interdisciplinary international collaborations with an original focus on Mali, where sorghum-growing areas are large and rainfall is getting more erratic and variable. Through the stay-green project, the research has since broadened to also cover Burkina Faso, Ethiopia, Kenya, Niger and Sudan.

Using molecular markers is new and exciting for us as it will speed up the breeding process. With molecular markers, you can easily see if the plant you’ve bred has the desired characteristics without having to grow the plant and or risk missing the trait through visual inspection.”

What’s MARS got to do with it?

Niaba Témé is a local plant breeder and researcher at Mali’s L’Institut d’économie rurale (IER). He grew up in a farming community on the southern edge of the Sahara Desert, where crops would constantly fail during drier-than-normal seasons.

Niaba Teme

Niaba Témé

Niaba says these crop failures were in part his inspiration for a career where he could help farmers like his parents and siblings protect themselves from the risks of drought and extreme temperatures.

For the past four years, Niaba and his team at IER have been collaborating with Jean-François Rami and his team at France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), to improve sorghum grain yield and quality for West African farmers. The work is funded by the Syngenta Foundation for Sustainable Agriculture.

“With the help of CIRAD and Syngenta, we have been learning how to use molecular markers to improve breeding efficiency of sorghum varieties more adapted to the variable environment of Mali and surrounding areas which receive less than 600 millimetres of rainfall per year,” he says.

Jean-François Rami

Jean-François Rami

“Using molecular markers is new and exciting for us as it will speed up the breeding process. With molecular markers, you can easily see if the plant you’ve bred has the desired characteristics without having to grow the plant and or risk missing the trait through visual inspection.”

Jean-François Rami, who is the project’s Principal Investigator, has been impressed by the progress made so far. Jean-François is also GCP’s Product Delivery Coordinator for sorghum.

“Since its inception, the project has progressed very well,” says Jean-François. “With the help of the IER team, we’ve been able to develop two bi-parental populations from elite local varieties, targeting two different environments of sorghum cropping areas in Mali. We’ve then been able to use molecular markers through a process called marker-assisted recurrent selection [MARS] to identify and monitor key regions of the genome in consecutive breeding generations.”

The collaboration with Syngenta came from a common perspective and understanding of what approach could be effectively deployed to rapidly deliver varieties with the desired characteristics.

“Syngenta came with their long experience in implementing MARS in maize. They advised on how to execute the programme and avoid critical pitfalls. They offered to us the software they have developed for the analysis of data which allowed the project team to start the programme immediately,” says Jean-François.

Like all GCP projects, capacity building is a large part of the MARS project. Jean-François says GCP has invested a lot to strengthen IER’s infrastructure and train field technicians, researchers and young scientists. But GCP is not the only player in this: “CIRAD has had a long collaboration in sorghum research in Mali and training young scientists has always been part of our mission. We’ve hosted several IER students here in France and we are interacting with our colleagues in Mali either over the phone or travelling to Mali to give technical workshops in molecular breeding. The Integrated Breeding Platform [IBP] has also been a breakthrough for the project, providing to the project team breeding services, data management tools, and a training programme – the Integrated Breeding Multiyear Course [IB–MYC].”

We don’t have these types of molecular-breeding resources available in Mali, so it’s really exciting to be a part of this project… the approach has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to drought… one of the great successes of the project has been to bring together sorghum research groups in Mali in a common effort to develop new genetic resources for sorghum breeding.”

Back-to-back: more for Mali’s national breeding programme

On the back of the MARS project, Niaba successfully obtained GCP funding in 2010 to carry out similar research with CIRAD and collaborators in Africa at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).

“In this project, we are trying to enhance sorghum grain yield and quality for the Sudano-Sahelian zone of West Africa using the backcross nested association mapping (BCNAM) approach,” explains Niaba, who is the Principal Investigator of the BCNAM project. “This involves using an elite recurrent parent that is already adapted to local drought conditions. The benefit of this approach is that it can lead to detecting elite varieties much faster.”

Kirsten Vom Brocke (CIRAD) Michel Vaksmann (CIRAD) Mamoutou Kouressy (IER) Eva Weltzien (ICRISAT) Jean-Francois Rami (CIRAD) Denis Lespinasse (Syngenta) Niaba Teme (IER) Ndeye Ndack Diop (GCP) Ibrahima Sissoko (Icrisat) Fred Rattunde (Icrisat)

A ‘sample’ of the rich mix of international partners in sorghum research: Left to right – Kirsten Vom Brocke (CIRAD), Michel Vaksmann (CIRAD), Mamoutou Kouressy (IER), Eva Weltzien (ICRISAT), Jean-François Rami (CIRAD), Denis Lespinasse (Syngenta), Niaba Teme (IER), Ndeye Ndack Diop (GCP Capacity Building Leader), Ibrahima Sissoko and Fred Rattunde (both from ICRISAT).

Eva Weltzien has been the Principal Scientist for ICRISAT’s sorghum breeding programme in Mali since 1998. She says the project aligned with much of the work her team had been doing, so it made sense to collaborate considering the new range of sorghum genetic diversity that this approach aims to use.

“We’ve been working with Niaba’s team to develop 100 lines for 50 populations from backcrosses carried out with 30 recurrent parents,” explains Eva. “These lines are being genotyped by CIRAD. We will then be able to use molecular markers to determine if any of these lines have the traits we want. We don’t have these types of molecular-breeding resources available in Mali, so it’s really exciting to be a part of this project.”

Eva Weltzien (holding sheet of paper) presenting to Mali's Minister of Agriculture (in white cap) a graph on the superiority of new guinea race hybrids. Also on display are panicles and seed of the huybrids and released varieties of sorghum in Mali. The occasion was an annual field day at ICRISAT's research station at Samanko, Mali.

An annual field day at ICRISAT’s research station at Samanko, Mali. Eva Weltzien (holding sheet of paper) showing Mali’s Minister of Agriculture, Tiemoko Sangare, (in white cap) a graph on the superiority of new guinea race hybrids. Also on display are panicles and seed of the hybrids and released varieties of sorghum in Mali.

Eva says that the approach has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to drought.

For Jean-François, one of the great successes of the project has been to bring together sorghum research groups in Mali in a common effort to develop new genetic resources for sorghum breeding.

“This project has strengthened the IER and ICRISAT partnerships around a common resource. The large multiparent population that has been developed is analysed collectively to decipher the genetic control of important traits for sorghum breeding in Mali,” says Jean-François.

 Plants with this ‘stay-green’ trait keep their leaves and stems green during the grain-filling period. Typically, these plants have stronger stems, higher grain yield and larger grain.”

Sorghum staying green and strong, with less water

In February 2012, Niaba and his colleague, Sidi B Coulibaly, were invited to Australia as part of another Sorghum Research Initiative project they had been collaborating on with CIRAD, Australia’s University of Queensland and the Queensland Department of Agriculture, Fisheries and Forestry (QDAFF).

“We were invited to Australia for training by Andrew Borrell and David Jordan, who are co-Principal Investigators of the GCP stay-green sorghum project,” says Niaba.

Left to right: Niaba Teme (Mali), David Jordan (Australia), Sidi Coulibaly (Mali) and Andrew Borrell (Australia) visiting an experiment at Hermitage Research Facility in Queensland, Australia.

Left to right: Niaba Témé (Mali), David Jordan (Australia), Sidi Coulibaly (Mali) and Andrew Borrell (Australia) visiting an experiment at Hermitage Research Facility in Queensland, Australia.

“We learnt about association mapping, population genetics and diversity, molecular breeding, crop modelling using climate forecasts, and sorghum physiology, plus a lot more. It was intense but rewarding – more so the fact that we understood the mechanics of these new stay-green crops we were evaluating back in Mali.”

It wasn't all work and there was clearly also time to play, as we can see her., Sidi Coulibaly and Niaba Teme visiting with the Borrell family in Queensland, Australia.

It wasn’t all work and there was clearly also time to play, as we can see here., where Sidi Coulibaly and Niaba Témé are visiting the Borrell family in Queensland, Australia.

Stay-green is a post-flowering drought adaptation trait that has contributed significantly to sorghum yield stability in northeastern Australia and southern USA over the last two decades.

Andrew has been researching how the drought-resistant trait functions for almost 20 years, including gene discovery. In 2010, he and his colleague, David Jordan, successfully obtained funding from GCP to collaborate with IER and CIRAD to develop and evaluate drought-adapted stay-green sorghum germplasm for Africa and Australia.

“Stay-green sorghum grows a canopy that is about 10 per cent smaller than other lines. So it uses less water before flowering,” explains Andrew. “More water is then available during the grain-filling period. Plants with this ‘stay-green’ trait keep their leaves and stems green during the grain-filling period. Typically, these plants have stronger stems, higher grain yield and larger grain.”

Andrew says the project is not about introducing stay-green into African germplasm, but rather, enriching the pre-breeding material in Mali for this drought-adaptive trait.

The project has three objectives:

  1. To evaluate the stay-green drought-resistance mechanism in plant architecture and genetic backgrounds appropriate to Mali.
  2. To develop sorghum germplasm populations enriched for stay-green genes that also carry genes for adaptation to cropping environments in Mali.
  3. To improve the capacity of Malian researchers by carrying out training activities for African sorghum researchers in drought physiology and selection for drought adaptation in sorghum.

…we have found that the stay-green trait can improve yields by up to 30 percent in drought conditions with very little downside during a good year, so we are hoping that these new lines will display similar characteristics”

Expansion and extension:  beyond Mali to the world

Andrew explains that there are two phases to the stay-green project. The project team first focused on Mali. During this phase, the Australian team enriched Malian germplasm with stay-green, developing introgression lines, recombinant inbred lines and hybrids. Some of this material was field-tested by Sidi and his team in Mali.

“In the past, we have found that the stay-green trait can improve yields by up to 30 percent in drought conditions with very little downside during a good year, so we are hoping that these new lines will display similar characteristics,” says Andrew. “During the second phase we are also collaborating with ICRISAT in India and now expanding to five other African countries – Niger and Burkina Faso in West Africa; and Kenya, Sudan and Ethiopia in East Africa. During 2013, we grew our stay-green enriched germplasm at two sites in all these countries. We also hosted scientists from Burkina Faso, Sudan and Kenya to undertake training in Queensland in February 2014.”

 

A sampling of some of stay-green sorghum partnerships in Africa. (1)  Asfaw Adugna assessing the genetic diversity of  sorghum panicles produced from the GCP collaboration at Melkassa, Ethiopia. (2)  Clarisse Barro-Kondombo (Burkina Faso) and Andrew Borrell (Australia) visiting a lysimeter facility in Hyderabad, India, as part of GCP training. (3) Clement Kamau (Kenya, left) and  Andrew Borrell (Australia, right) visiting the seed store at the Kenya Agricultural Research Institute (KARI) in Katumani, Kenya.

A sampling of some of stay-green sorghum partnerships in Africa. (1) Asfaw Adugna of the Ethiopian Institute of Agricultural Research (EIAR)  assessing the genetic diversity of sorghum panicles produced from the GCP collaboration at Melkassa, Ethiopia. (2) Clarisse Barro-Kondombo (left, INERA – Institut de l’environnement et de recherches agricoles , Burkina Faso) and Andrew Borrell (right) visiting a lysimetre facility at ICRISAT’s headquarters in Hyderabad, India, as part of GCP training, in February 2013. (3) Clement Kamau (left, Kenya Agricultural Research Institute [KARI] ) and Andrew Borrell (right) visiting the seed store at KARI, Katumani, Kenya.

Andrew says that the collaboration with international researchers has given them a better understanding of how stay-green works in different genetic backgrounds and in different environments, and the applicability is broad. Using these trial data will help provide farmers with better information on growing sorghum, not just in Africa and Australia, but also all over the world.

“Both David and I consider it a privilege to work in this area with these international institutes. We love our science and we are really passionate to make a difference in the world with the science we are doing. GCP gives us the opportunity to expand on what we do in Australia and to have much more of a global impact.”

We’ll likely be hearing more from Andrew on the future of this work at GCP’s General Research Meeting (GRM) in October this year, so watch this space! Meantime, see slides below from GRM 2013 by the Sorghum Research Initiative team. We also invite you to visit the links below the slides for more information.

Links

Apr 042014
 

 

Phil Roberts

Phil Roberts

Like its legume relatives, cowpeas belong to a cluster of crops that are still referred to in some spheres of the crop-breeding world as ‘orphan crops’. This, because they have largely been bypassed by the unprecedented advances that have propelled ‘bigger’ crops into the world of molecular breeding, endowed as they are with the genomic resources necessary. But as we shall hear from Phil Roberts (pictured), of the University of California–Riverside, USA, and also the cowpea research leader for the Tropical Legumes I Project (TLI), despite the prefix in the  name, this ‘little kid’ in the ‘breeding block’ called cowpeas is uncowed and unbowed, confidently striding into the world of modern crop breeding, right alongside the ‘big boys’! What more on this new kid on the block of modern molecular breeding? Phil’s at hand to fill us in…

Vigna the VIP that shrinks with the violets
But is no shrinking violet, by any means, as we shall see. Also known  as niébé in francophone Africa, and in USA as black-eyed peas (no relation to the musical group, however, hence no capitals!), this drought-tolerant ancient crop (Vigna unguiculata [L] Walp) originated in West Africa. It is highly efficient in fixing nitrogen in the unforgiving and dry sandy soils of the drier tropics. And that is not all. This modest VIP is not addicted to the limelight and is in fact outright lowly and ultra-social: like their fetching African counterpart in the flower family, the African violet, cowpeas will contentedly thrive under the canopy of others, blooming in the shade and growing alongside various cereal and root crops, without going suicidal for lack of limelight and being in the crowd. With such an easy-going personality, added to their adaptability, cowpeas have sprinted ahead to become the most important grain legume in sub-Saharan Africa for both subsistence and cash. But – as always – there are two sides to every story, and sadly, not all about cowpeas is stellar…

Improved varieties are urgently needed to narrow the gap between actual and potential yields… modern breeding techniques… can play a vital role”

A cowpea experimental plot at IITA.

A cowpea experimental plot at IITA.

What could be, and what molecular breeding has to do with it
Yields are low, only reaching a mere 10 to 30 percent of their potential, primarily because of insect- and disease-attack, sometimes further compounded by chronic drought in the desiccated drylands cowpeas generally call home. “Improved varieties are urgently needed to narrow the gap between actual and potential yields,” says Phil. The cowpea project he leads in TLI is implemented through GCP’s Legume Research Initiative. Phil adds, “Such varieties are particularly valuable on small farms, where costly agricultural inputs are not an option. Modern breeding techniques, resulting from the genomics revolution, can play a vital role in improving cowpea materials.”

He and his research team are therefore developing genomic resources that country-based breeding programmes can use. Target-country partners are Institut de l’Environnement et de Recherches Agricoles (INERA) in Burkina Faso; Universidade Eduardo Mondlane in Mozambique; and Institut Sénégalais de Recherches Agricoles (ISRA) in Senegal. Other partners are the International Institute of Tropical Agriculture (IITA) headquartered in Nigeria and USA’s Feed the Future Innovation Labs for Collaborative Research on Grain Legumes and for Climate Resilient Cowpeas.

It’s a lot easier and quicker, and certainly less hit-or-miss than traditional methods!… By eliminating some phenotyping steps and identifying plants carrying positive-trait alleles for use in crossing, they will also shorten the time needed to breed better-adapted cowpea varieties preferred by farmers and markets.”

Cowpea seller at Bodija Market, Ibadan, Nigeria.

Cowpea seller at Bodija Market, Ibadan, Nigeria.

 

On target, and multiplying the score
[First, a rapid lesson on plant-genetics jargon so we can continue our story uninterrupted: ‘QTLs’ stands for quantitative trait loci, a technical term in quantitative genetics to describe the locations where genetic variation is associated with variation in a quantitative trait. QTL analysis estimates how many genes control a particular trait. ‘Allele’ means an alternative form of a the same gene. Continuing with the story…]

The curved shape means that these cowpea pods are mature and ready for harvesting.

Culinary curves and curls: the curved shape means that these cowpea pods are mature and ripe for harvesting.

“We first verified 30 cowpea lines as sources of drought tolerance and pest resistance,” Phil recalls. “Using molecular markers, we can identify the genomic regions of the QTLs that are responsible for the desired target phenotype, and stack those QTLs to improve germplasm resistance to drought or pests. It’s a lot easier and quicker, and certainly less hit-or-miss than traditional methods! However, standing alone, QTLs are not the silver bullet in plant breeding. What happens is that QTL information complements visual selection. Moreover, QTL discovery must be based on accurate phenotyping information, which is the starting point, providing pointers on where to look within the cowpea genome. Molecular breeding can improve varieties for several traits in tandem,” suggests Phil. “Hence, farmers can expect a more rapid delivery of cowpea varieties that are not only higher-yielding, but also resistant to several stresses at once.”

And what are Phil and team doing to contribute to making this happen?

The genomic resources from Phase I – especially genotyping platforms and QTL knowledge – are being used in Phase II of the TLI Project to establish breeding paradigms, using molecular breeding approaches,” Phil reveals. He adds that these approaches include marker-assisted recurrent selection (MARS) and marker assisted back-crossing (MABC). “These paradigms were tested in the cowpea target countries in Africa,” Phil continues. “By eliminating some phenotyping steps and identifying plants carrying positive-trait alleles for use in crossing, they will also shorten the time needed to breed better-adapted cowpea varieties preferred by farmers and markets.”

… best-yielding lines will be released as improved varieties… others will be used…as elite parents…”

Future work
What of the future? Phil fills us in: “The advanced breeding lines developed in TLI Phase II are now entering multi-location performance testing in the target African countries. It is expected that best-yielding lines will be released as improved varieties, while others will be used in the breeding programmes as elite parents for generating new breeding lines for cowpeas.”

Clearly then, the job is not yet done, as the ultimate goal is to deliver better cowpeas to farmers. But while this goal is yet to be attained and – realistically – can only be some more years down the road, it is also equally clear that Phil and his team have already chalked up remarkable achievements in the quest to improve cowpeas. They hope to continue pressing onwards and upwards in the proposed Tropical Legumes III Project, the anticipated successor to TLI and its twin project TLII – Tropical Legumes II.

Links

Mar 312014
 
Vincent Vadez

Vincent Vadez

Today, we travel to yet another sun-kissed spot, leaving California behind but keeping it legumes. We land in Africa for some ground truths on groundnuts with Vincent Vadez (pictured), groundnut research leader for the Tropical Legumes I (TLI) Project. Vincent fills us in on facts and figures on groundnuts and Africa – a tale of ups and downs, triumphs and trials, but also of  ‘family’ alliances not feuds, and of problems, yes,  but also their present or potential solutions. On to the story then! Read on to find out why groundnuts are…

….A very mixed bag in Africa
Groundnuts (Arachis hypogaea L), also called peanuts, are a significant subsistence and food crop in sub-Saharan Africa. There, groundnuts are grown in practically every country, with the continent accounting for roughly a quarter of the world’s production. Despite this rosy African statistic, problems abound: for example, nearly half (40 percent) of the of the world’s total acreage for groundnuts is in Africa, which dramatically dims the 25 percent global production quota.

In Africa, groundnuts are typically cultivated in moderate rainfall areas across the continent, usually by women.

In Africa, groundnuts are typically cultivated in moderate rainfall areas across the continent, usually by women. (See editorial note* at the end of the story)

Clearly then, Africa’s yields are low, borne out by telling statistics which show African production at 950 kilos per hectare, in acute contrast to 1.8 tonnes per hectare in Asia.

…every year, yields worth about USD 500 million are lost”

What ails Africa’s production?
The main constraints hampering higher yields and quality in Africa are intermittent drought due to erratic rainfall, as well as terminal drought during maturation. And that is not all, because foliar (leaf) diseases such as the late leaf spot (LLS) or groundnut rosette are also taking their toll.  Economically speaking, every year, yields worth about USD 500 million are lost to drought, diseases and pests. Plus, the seeding rates for predominantly bushy groundnut types are low, and therefore insufficient to achieve optimal ground cover. Thus, genetic limitations meet and mingle with major agronomic shortcomings in the cultivation of groundnuts, making it…

…. A tough nut to crack
Groundnuts are mostly cultivated by impoverished farmers living in the semi-arid tropics where rainfall is both low and erratic.

Tough it may be for crop scientists, but clearly not too tough for these two youngsters shelling groundnuts at Mhperembe Market, Malawi.

. Tough it may be for crop scientists, but clearly not too tough for these two youngsters shelling groundnuts at Mhperembe Market, Malawi.

“To help double the productivity of this crop over the next 10 years, we need to improve groundnuts’ ability to resist drought and diseases without farmers needing to purchase costly agricultural inputs,” says Vincent.

But the crop’s genetic structure is complex, plus, for resistance to these stresses, its genetic diversity is narrow. “Groundnuts are therefore difficult and slow to breed using conventional methods,” says Vincent. And yet, as we shall see later, groundnuts are distinctly disadvantaged when it comes to molecular breeding. But first, the good news!

…wild relatives have genes for resisting the stresses… molecular markers can play a critical role”

Why blood is thicker than water, and family black sheep are valued
Kith and kin are key in groundnut science. Vincent points out that groundnuts have several wild relatives that carry the necessary genes for resisting the stresses – especially leaf diseases – to which the crop is susceptible. These genes can be transferred from the wild cousins to the cultivated crop by blending conventional and molecular breeding techniques. But that is easier said than done, because cultivated groundnuts can’t cross naturally with their wild relatives owing to chromosomic differences.

Groundnut flower

Groundnut flower

“In modern breeding, molecular markers can play a critical role,” says Vincent. “Using markers, one can know the locations of genes of interest from an agronomic perspective, and we can then transfer these genes from the wild relatives into the groundnut varieties preferred by farmers and their markets.”

[The] ‘variegated’ partnership has been essential for unlocking wild groundnut diversity…”

Partnerships in and out of Africa, core capacities
“Partners are key to this work,” says Vincent. The groundnut work is led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), with collaborators in the target countries, which are Malawi (Chitedze Agricultural Research Centre), Senegal (Institut sénégalais de recherches agricoles ‒ ISRA) and Tanzania (Agricultural Research Institute, Naliendele), Moving forward together, continuous capacity building for partners in Africa is part and parcel of the project. To this end, there have been several training workshops in core areas such as molecular breeding and phenotyping, farmer field days in the context of participatory varietal selection, as well as longer-term training on more complex topics such as drought, in addition to equipping the partners with the critical infrastructure needed for effective phenotyping.

Freshly dug-up groundnuts.

Freshly dug-up groundnuts.

Further afield out of Africa, Vincent’s team also collaborates with the Brazilian Agricultural Research Corporation (EMBRAPA), France’s Centre de coopération internationale en recherche agronomique pour le développement ‒ CIRAD, and USA’s University of Georgia.

This ‘variegated’ partnership has been essential for unlocking the wild groundnut diversity when about 12 years ago the EMBRAPA team successfully generated a number of ‘synthetic’ groundnuts from their wild relatives. Unlike the wild groundnuts, these synthetic groundnuts can be crossed to the cultivated type, bringing with them treasure troves of beneficial genes pertaining to the wild that would be otherwise unreachable for the cultivated varieties. Taking this one step further, the CIRAD‒ISRA team, in a close North‒South partnership, has used one of the synthetics from the Brazilian programme to generate new genetic diversity in the groundnut cultivar Fleur11. They are using additional synthetics from ICRISAT to further enlarge this genetic diversity in cultivated groundnuts.

These techniques and tools provide signposts on the genome of varieties for characteristics of importance”

A world first for an ‘orphan’, goals achieved, and what next
Among other goals, the team notably achieved a world first: “To produce the first SSR-based genetic linkage map for cultivated groundnuts!” declares Vincent. SSR stands for simple sequence repeat. The map was published in 2009,  followed later on by a groundnut consensus map in 2012.

Youngster bearing fresh groundnuts along River Gambia in Senegal.

Youngster bearing fresh groundnuts along River Gambia in Senegal.

But what do these maps and their publication mean for groundnut production? Vincent explains: “These techniques and tools provide signposts on the genome of varieties for characteristics of importance ‒ for instance, resistance to a disease ‒ and these are used in combination to speed up the development of groundnut varieties that are more resistant to the stresses found in the harsh environments where most of the tropical world’s poor farmers live. Accelerating development means quicker delivery to farmers who are at high risk of going hungry. TLI Phase I produced synthetic groundnuts with new genes for disease resistance.”

In Phase II of the TLI Project which terminates in mid-2014, the team has continued to identify new genetic and genomic resources, for instance new sources of drought resistance from the germplasm and which are currently being used in the development of new breeding stocks. What is significant about this is that groundnuts ‒ like most other members of the legume family ‒ do not have much in the way of genomic and molecular-genetic resources, and are in fact consequently referred to in some circles as ‘orphans’ of the genome revolution. The focus has also been on resistance to rust, early and late leaf spot, and rosette – all economically critical diseases – by tapping the resilience of GBPD4, a cultivar resistant to rust and leaf spot, and introducing its dual resistance to fortify the most popular varieties against these diseases. The team also hopes to scale up these promising examples.

We believe this team is firmly on the way to fulfilling their two-fold project objectives which were: (1) to develop genomic resources and produce the first molecular-breeding products of the crop by injecting  disease resistance (from TLI Phase I work) into farmer- and market-preferred varieties; and, (2)  to lay the foundation for future marker-assisted recurrent selection (MARS) breeding by tapping on newly identified sources of drought tolerance.

 the genetic stocks that hold the most promise to overcome leaf disease are found in the wild relatives… A thorough reflection is needed to combine good genetics with sound agronomic management”

The future
But the team is not resting on their laurels, as the work will not stop with the fulfillment of project objectives. In many ways, their achievements are in fact just the beginning. The new breeding stocks developed during TLI Phase II need to be evaluated further for their drought tolerance and disease resistance prior to their deployment in breeding programmes, and this activity ‒ among others ‒ is included for the next phase of the work in the proposed Tropical Legumes III project. In particular, the genetic stocks that hold the most promise to overcome leaf disease are found in the wild relatives. Thus, the existing materials need to be fully exploited and more need to be produced to cover the full breadth of potential stresses. Vincent adds “Of course an increasing part of the efforts will be about assuring quality evaluation data, meaning we must continue to significantly enhance the capacity ‒ both human and physical ‒ of our partners in target countries. Last but not least, the good wheat and rice cultivars that directly arose from the green revolution would have been nothing without nitrogen fertiliser and irrigation.” Vincent adds that the same applies to groundnuts: they are cultivated in infertile soil, at seeding rates that are unlikely to optimise productivity.

Groundnut drawing

Groundnut drawing

For this reason, and others explained above, “A thorough reflection is needed to combine good genetics with sound agronomic management,” Vincent concludes, stressing the importance of what he terms as ‘looking beyond  the fence’. Vincent’s parting shot, as our conversation draws to close: “In fact, I have grown increasingly convinced over the past year that we probably overlook those agronomic aspects in our genetic improvements at our peril, and we clearly need a re-think of how to better combine genetic improvement with the  most suitable and farmer-acceptable agronomic management of the crop.”

Much food for thought there! And probably the beginnings of an animated conversation to which a groundnut crop model, on which Vincent and team are currently working, could soon yield some interesting answers on the most suitable genetic-by-management packages, and therefore guide the most adequate targets for crop improvement.

Links

*Editorial note: Erratum – Photo changed on April 8 2014, as the previous one depicted chickpeas, not groundnuts. We  apologise to our readers for the error.

Mar 042014
 
‘Made (up) in Ghana’

In the world of crop research as in the fashion industry, there are super-models, mere models, spectators and rank outsiders. Make no bones about it, trusty old cassava (Manihot esculenta) is a crop of very modest beginnings, but now finally strutting the research catwalk alongside the biggest and the best.

Elizabeth Parkes

Elizabeth Parkes

An ancient crop thought to have been first domesticated in Latin America more than 10,000 years ago, it was exported by Portuguese slave traders from Brazil to Africa in the 16th century as a cheap source of carbohydrates. From there, today we travel half a millennium forward in time – and in space, on to Ghana – to catch up with the latest on cassava in the 21st century.

Come on a guided tour with Elizabeth Parkes (pictured), of Ghana’s Crops Research Institute (CRI, of the Council for Scientific and Industrial Research, CSIR), currently on leave of absence at the International Institute of Tropical Agriculture (IITA).

A hard-knock life, but still going strong
In keeping with its humble heritage, cassava is a crop which has long been reputed for being more than a little worn through at the elbows, commonly known as a “poor man’s crop” according to GCP cassava breeder and researcher, Elizabeth Parkes. However, much like a dishevelled duffle coat, what the crop lacks in shimmer and shine, it makes up for in sturdiness and dependability, rising to the occasion time and again by filling a critical gap – that of putting food in bellies – with a readiness and ease that its more sophisticated crop relatives have often struggled to keep up with. Elizabeth explains:  “It has kept people alive over the years.” By the same token, the crop – now one of Africa’s most important staples – is fondly known in Ghana as bankye, meaning a ‘gift from the government’, thanks to its reliability and capacity to meet needs that other crops cannot. There is even a popular song in the country which pays homage to the crop as an indefatigable evergreen, conquering even the most willful and wily of weeds!

However, as cassava experts such as Elizabeth know only too well, behind this well-intentioned lyrical window dressing is the poignant story of a crop badly in need of a pressing pick-me-up. Hardy as it may seem on the surface, cassava is riddled with myriad problems of a political, physiological, environmental and socioeconomic nature, further compounded by the interactions between these. For starters, while it may be a timeless classic and a must-have item at the family table for a good part of Africa, à la mode it is not, or at least not for short-sighted policy-makers looking first and foremost to tighten their purse strings in straitened times, or for quick-fix, rapid-impact,  silver-bullet solutions: “African governments don’t invest many resources in research. Money is so meager, and funds have mostly come from external agencies looking to develop major cereals such as rice. Cassava has been ignored and has suffered a handicap as a result – it’s more or less an orphan crop now,” Elizabeth laments. Besides having to bear witness to their favourite outfit being left on the funding shelf, cassava breeders such as Elizabeth are also faced with a hotchpotch of hurdles in the field: “In addition to factors such as pests and disease, cassava is a long-season and very labour-intensive crop. It can take a whole year before you can expect to reap any rewards, and if you don’t have a strong team who can step in at different points throughout the breeding  process, you can often find unexpected results at the end of it, and then you have to start all over again,” Elizabeth reveals. Robust as it may be, then, cassava is no easy customer in the field: “After making crosses, you don’t have many seeds to move you to the next level, simply because with cassava, you just don’t get the numbers: some are not compatible, some are not flowering; it’s a real bottleneck that needs to be overcome,” she affirms.

No time for skirting the issue
And at the ready to flex their research muscles and rise to these considerable challenges was Elizabeth and her Ghanaian CRI  team, who – with GCP support and in unison with colleagues from across Africa and the wider GCP cassava community – have been working flat out to put cassava firmly back on the research runway.

Thanks to funders such as GCP, who recognised that we couldn’t afford to turn a blind eye to the plight of this struggling crop, cassava has been given a voice…cassava is no longer just a poor man’s staple” 

A cassava farmer in Northern Ghana.

A  cassava farmer in Northern Ghana.

Elizabeth walks us through the team’s game plan: “GCP socioeconomist Glenn Hyman and team undertook a study to identify the best area in Ghana for supporting cassava flowering [Editor’s note: Glenn works at the International Center for Tropical Agriculture, CIAT]. Armed with that information, we have been applying grafting techniques, using hormones to induce flowering in Ghana and beyond.” The initiative is starting to bear fruit: “At the IITA–Nigeria Ubiaja site, for example, flowering is underway at factory-like efficiency – it’s a great asset. The soil has also greatly improved – we haven’t been able to pinpoint the exact cause yet, but what we’ve seen is that all cultivars there will now flower,” she reveals. Elizabeth’s team has been making steady progress in biotechnological techniques such as DNA extraction: thanks to work led by then GCP cassava comrade Martin Fregene (then with the International Center for Tropical Agriculture, CIAT, and now with the Donald Danforth Plant Science Center) and colleagues, focusing on the development of more reliable and robust simple sequence repeat (SSR) markers, Elizabeth was able to carry out genetic diversity diagnosis work on cassava, collecting germplasm from all over Ghana for the global GCP cassava reference set. [Editor’s note: A ‘reference set’ is a sub-sample of existing germplasm collections that facilitates and enables access to existing crop diversity for desired traits, such as drought tolerance or resistance to disease or pests]

Similar work was also conducted in Nigeria and Guatemala. So has this tremendous and tenacious teamwork proved strong enough to drag cassava out of the doldrums? Elizabeth certainly seems to think so: “Thanks to funders such as GCP, who recognised that we couldn’t afford to turn a blind eye to the plight of this struggling crop, cassava has been given a voice. Having worked together to understand the peculiarities of this crop, cassava is no longer just a poor man’s staple: beyond subsistence, it is becoming a crop of high starch quality, and of real use for industry, confectionary and even biofuels,” she enthuses.

Thankfully, it’s a most welcome change of tide that shows no sign of abating any time soon.  Human capacity, Elizabeth says, is going from strength to strength, with three GCP-funded Ghanaian postgraduate students advancing well, two of them working on PhDs in what would normally be considered, according to Elizabeth, a ‘no-go area’ of cassava research – that is, cassava drought tolerance and post-harvest physiological deterioration (PPD), as well as bio-fortification. Efforts by the CRI team have resulted in the release of some 14–15 new drought-tolerant and PPD-resistant varieties in Ghana to date; all are anticipated to have a long shelf-life, and other varieties are also in the pipeline. Biofortified seeds are in the making, with a view to soon mainstream biofortification in the team’s breeding activities. The biofortification work is in collaboration with a sister CGIAR Challenge Programme, HarvestPlus.

The impact of our GCP-supported research on cassava has been remarkable. Above all, it’s been the community spirit which has moved things forward so effectively; in this respect, I think researchers working on other crops might want to borrow a leaf from the cassava book!”

Molecular masterstrokes, a leaf to lend despite cold shoulder, and a ‘challenge crop’ befitting Challenge Programmes
Forthcoming plans for Elizabeth and her cassava companions in Ghana include a GCP Cassava Challenge Initiative project which will seek to unearth new marker populations and materials which are drought-tolerant and resistant to cassava mosaic virus and cassava bacterial blight. The team has successfully introgressed materials from CIAT into their landraces, and the next step will be to gauge how best the new genes will react to these traits of interest. In terms of people power, the CRI biotechnology laboratory built with GCP support – and now a regionally accredited ‘Centre of Excellence’ – is a hive of activity for local and international scientists alike, and is consequently bolstering cassava research efforts in the wider subregion. “The impact of our GCP-supported research on cassava has been remarkable. Above all, it’s been the community spirit which has moved things forward so effectively; in this respect, I think researchers working on other crops might want to borrow a leaf from the cassava book!” Elizabeth ventures.

Reflecting back on the conspicuous cocktail of constraints which mired the crop in the early days of her research career – challenges which often resulted in a cold shoulder from many of her research peers over the years – Elizabeth recalls affectionately: “At first, people didn’t want to work on cassava since it’s truly a challenge crop: the genetics of cassava are really tricky. Colleagues from around the globe often asked me: ‘Why not go for a smooth crop which is friendly and easy?’” Her commitment, however, has been unfaltering throughout: “I’ve stuck with cassava because that’s my destiny! And now I see SNPs being developed, as well as numerous other resources. Once you clean something up it becomes more attractive, and my thanks go out to all those who’ve remained dedicated and helped us to achieve this.”

Thus, dusted down and  ‘marked-up’ with a molecular make-over well underway, all evidence now suggests that this once old-hat subsistence crop is en route to becoming the next season’s big research hit, with shiny new cassava varieties soon to be released at a field station near you! Go, Ghana, go!

Links

 

Feb 212014
 

 

Steaming rice bowl

Steaming rice bowl

What’s the latest from ‘GCP TV’? Plenty! With a world-favourite – rice – featuring high and hot on the menu.

Now serving our latest news, to tease your taste-buds with a tantalising and tingling potpourri of memorable cross-continental rice flavours, all captured on camera for our viewers…

Our brand-new series on YouTube serves up a healthy seven-course video feast inviting our viewers to sink their teeth into rice research at GCP.

First, we settle down for a tête-a-tête in the rice research kitchen with chef extraordinaire, Marie-Noëlle Ndjiondjop, Principal Investigator (PI) of GCP’s Rice Research Initiative in Africa, and Senior Molecular Scientist at Africa Rice Center. Target countries are Burkina Faso, Mali and Nigeria.

Photo: A Okono/GCP

Marie-Noëlle Ndjiondjop

Starters, palate and pocket
Marie-Noëlle opens the feast with a short but succulent starter, as she explains succinctly in 30 seconds just how rice is becoming a staple in Africa. In the second course, Marie-Noëlle chews over the questions concerning combatting constraints and boosting capacity in rice research in Africa.

The third course is pleasing to the eye, the palate and the pocket! Marie-Noëlle truly sells us the benefits of molecular breeding, as she extolls the virtues of the “beauty of the marker”. Why should you use molecular tools? They’ll save you time and money!

Rice as beautiful as the markers Marie-Noëlle uses in molecular breeding

Wherefore art thou, capacity building in rice research in Africa?
The Shakespearean language alludes to the why of capacity building in Africa, as does video episode number four, which also tackles the what of this fourth dish in our banquet. Course number five offers the viewer a light look at how capacity building in Africa is carried out.

In the 6th course, Marie-Noëlle takes us out of this world and into MARS: she teaches us that ‘two are better than three’, as she explains how the novel bi-parental marker-assisted recurrent selection (MARS) method is proving effective when it comes to duelling with drought, the tricky three-headed monster comprising physiological, genetic and environmental components.

Blooming rice in the field

Of stars and scoundrels
The 7th and final course offers us a riveting tale of heroes and villains, that is, many heroes and a single villain! Our rice raconteuse, Marie-Noëlle, praises the power of the team, as a crew from cross-continental countries come together, carefully characterise their combatant (drought), before striking with environment-specific drought-tolerant varieties! AfricaRice’s project partners are Burkina Faso’s Institut de l’environnement et de recherches agricoles (INERA); Mali’s Institut d’économie rurale (IER); and Nigeria’s National Cereals Research Institute (NCRI). Collaborators are France’s Centre de coopération internationale en recherche agronomique (CIRAD); the International Center for Tropical Agriculture (CIAT); and the International Rice Research Institute (IRRI).

We hope these tasty teasers are enough to whet your appetite – you can savour each of the courses individually à la carte, or, for those with a daring desire to try the ‘all you can eat’ buffet for true rice gourmets, all seven courses are presented as a single serving on our YouTube channel.

Jonaliza Lanceras-Siangliw

Jonaliza Lanceras-Siangliw

Tastes from Asia
To further please your palate with our rice bowl of delights, our next stop is Asia. We are  pleased to offer you the Asian flavour through a peek into the world of molecular rice breeding in the Mekong region. Our connection to this project is through a GCP-funded capacity-building project entitled A Community of Practice for strengthening rice breeding programmes by using genotyping building strategy and improving phenotyping capacity for biotic and abiotic stresses in the Mekong region led by PI Jonaliza Lanceras-Siangliw, of the National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand (see project poster, and slides on a related drought-tolerance project led by Boonrat Jongdee). BIOTEC’s partners in the Mekong rice breeding CoP are the Cambodian Agricultural Research and Development Institute (CARDI); LAO PDR’s National Agricultural and Forestry Research Institute (NAFRI);  Myanmar’s Department of Agricultural Research (DAR); and Thailand’s Kasetsart University and Ubon Ratchathani University). The video also features former GCP PI, Theerayut Toojinda (BIOTEC) whose project was similarly entitled The ‘Community of Practices’ concept applied to rice production in the Mekong region: Quick conversion of popular rice varieties with emphasis on drought, salinity and grain quality improvement.

BIOTEC

Boonrat Jongdee

Shifting gears: golden oldie
If all of this talk of eating has been a little overwhelming, we also offer you the perfect digestif: a ‘golden oldie’ in terms of GCP video history showing a 2012 BBC interview with former GCP PI, Sigrid Heuer, then at the International Rice Research Institute (IRRI), who explains how her project isolated the rice root-enhancing gene PSTOL1. Bon appétit!

 

Might you still have a corner of your mind yearning for more material on rice research? If so, check out the following:

  • Our lip-smacking selection of rice-related blogposts
  • A gorgeous gallery of PowerPoint presentations on rice research (SlideShare)
  • Check out our one-stop Rice InfoCentre for all things rice and nice, that we have online!

 

Nov 302012
 
Photo: IRRI

Sigrid Heuer

Meet Sigrid Heuer (pictured), a Molecular Biologist and Senior Scientist at the International Rice Research Institute (IRRI). Her lively and riveting story will take us from Africa through her native Europe and on to Asia, and finally Down Under to Australia.

Origins – the African chapter
Africa holds a special and soft spot in Sigrid’s love affair with science: it was while on this continent that she realised her calling in life as a scientist – linking people doing pure research on plant genes to help plants survive and even thrive in harsh environments, with people who want to apply that knowledge to breed crops that can change the lives of millions of farmers who constantly compromise with nature to make a living.

Photo: IRRI

Fieldwork: Sigrid at a field trial for rice phosphorus uptake.

“Working as a postdoc at the Africa Rice Center in Senegal was a real life-changing experience,” Sigrid recollects with great fondness. “It’s where I found my niche, using my background in theoretical science and applying it to developing crops that could overcome abiotic stresses, and in doing so, make a real impact on people’s lives.”

Rowing further down the river: from upstream to downstream science
Sigrid was born and raised in Hamburg, Germany. She remembers wanting to be a psychologist and didn’t consider science until a few years after finishing school. After completing a biology undergraduate at Phillips University, Marburg, Germany, she returned to her home city of Hamburg to complete a Masters and PhD in plant physiology and molecular biology respectively.

“Back then, I was really involved in upstream science, fascinated in the fine details without much consideration of how such research could benefit society,” says Sigrid. “I still enjoy this form of science and really do value its purpose, but putting it into practice and focusing on the impact that it can have is what really motivates me now.”

Moving to IRRI, and meeting Pup1 and GCP
After three years in Senegal, Sigrid moved to the Philippines to join IRRI in 2003, first as a consultant then as a part-time scientist. In these early years, she was working on several projects, one of which was the GCP-funded Pup1 (rice phosphorus uptake) project.

“The project sought to identify the genes associated with phosphorus uptake in rice lines that could tolerate phosphorus-deficient soils,” says Sigrid. “It was an interesting project in which I was able to use my background in molecular biology. Little by little, I got more and more involved in the Pup1 project and after a year I was asked by Matthias Wissuwa, who was leading the project at the time, if I wanted to take it over. It was a great opportunity which I jumped at, not knowing then how challenging it would prove.”

Pup1 was the first major project I had managed. It was a playground of sorts that allowed me to learn what I needed to know about managing a project – writing proposals and reports, managing budgets and people’s time, and everything else that comes with leading a team.

The ‘root’ and  ‘command post’ where it all happens: Sigrid in the office. For the benefit of our readers, we would have credited the young artist whose colourful work graces the background below the bookshelf, but we were too polite to pry and prise out the young talent’s name, having hogged too much of Sigrid’s time already!

Learning to lead – both work and play

Over the last seven years, Sigrid has been a Principal Investigator and joint leader of the project, which has given her latitude to mature professionally, and not just in science alone. “It’s been tough but personally fulfilling,” Sigrid says, with just a touch of exhaustion.

Pup1 was the first major project I had managed. It was a playground of sorts that allowed me to learn what I needed to know about managing a project – writing proposals and reports, managing budgets and people’s time, and everything else that comes with leading a team. I was really lucky to have Matthias’ help as well as the other experienced collaborators and networks. However, the main factor that made my job a lot less stressful, was the benefit of long-term funding and support from GCP. GCP was always there, supporting us and giving us confidence even when we weren’t sure we were going to succeed.”

Persistence pays: tangible products, plus publication in Nature
In August 2012, Sigrid and her team achieved what they had set out to do seven years ago, through what Sigrid puts down to sheer persistence: their discovery of the Pup1 gene was recognised by their scientific peers and published in the highly renowned journal,  Nature.

Sigrid (3rd left) at the lab with other colleagues in the phosphorus uptake team.

“Having our paper published is really something special and personally my greatest achievement to date,” says Sigrid, but she is also quick to add that it was a team achievement, and that the achievement was in itself humbling.

“It was a double reward for persisting with the research, and with getting it into Nature. We wanted it in Nature for several reasons. To raise awareness on phosphorus deficiency and phosphorus being a limited resource, especially in poorer countries; and to draw attention to how we do molecular breeding these days, which is a speedier, easier and cost-effective approach to developing crops that have the potential to alleviate such problems.”

Sigrid hopes the article will have a lasting impression on readers, and encourage funders to continue to support projects that have such impact on the lives of end-users.

What next? Technology transfer, transitions and torch smoothly passing on…
With the Pup1 gene now found, IRRI researchers are working with breeders from country-based breeding programmes around the world to help them understand the techniques to breed local varieties of rice that can grow in phosphorus-deficient soils. They are also collaborating with other projects that wish to use the Pup1 project as a case study for phosphorous deficiency tolerance in other crops like maize, sorghum, and wheat (see an example here, that includes partners from Africa and Latin America).

Sigrid sees this next stage as a perfect time to step down from the project: she plans to move to Adelaide, Australia at the end of 2012 to lead a new project that is looking at drought and nitrogen deficiency tolerance in wheat.

“Matthias passed the baton on to me, and now I get to pass the baton on to someone else, so it’s nice. And I’ll be sure to always be around to help them too.”

Links

Sigrid’s presentation at the GCP General Research Meeting 2011

 

 

Oct 302012
 

BREAK-TIME AND BRAKE-TIME from beans for a bit: Steve Beebe takes a pause to strike a pose in a bean field.

“These [molecular breeding] techniques, combined with conventional methods, shorten the time it takes to breed improved varieties  that simultaneoulsy combine several traits.

And this means that we also get them out to farmers more quickly compared to phenotypic selection alone.”
– Steve Beebe

THE NEAR-PERFECT FOOD: Common beans (Phaseolus vulgaris L) comprise the world’s most important food legume, feeding about 200 million people in sub-Saharan Africa alone. Their nutritional value is so high, they have been termed ‘a near-perfect food’. They are also easy to grow, adapting readily to different cropping systems and maturing quickly.

That said, this otherwise versatile, adaptable and dapper dicotyledon does have some inherent drawbacks and ailments that crop science seeks to cure….

Rains are rapidly retreating, and drought doggedly advancing
Despite the crop’s widespread cultivation in Africa, “yields are low, stagnating at between 20 and 30 percent of their potential,” remarks Steve Beebe, GCP’s Product Delivery Coordinator for beans, and a researcher at the International Center for Tropical Agriculture (CIAT, by its Spanish acronym).

“The main problem is drought, brought about by climate change,” he says. “And it’s spreading – it already affects 70 percent of Africa’s major bean-producing regions.”  Drought decimates bean harvests in most of Eastern Africa, but is particularly severe in the mid-altitudes of Ethiopia, Kenya, Tanzania, Malawi and Zimbabwe, as well as in southern Africa as a whole.

A myriad of forms and hues: bean diversity eloquently speaks for itself in this riot of colours.

Drought, doubt and duality − Diversity a double-edged sword
“Common beans can tolerate drought to some extent, using various mechanisms that differ from variety to variety,” explains Steve. But breeding for drought resistance is complicated by the thousands of bean varieties that are available. They differ considerably according to growth habit, seed colour, shape, size and cooking qualities, and cultivation characteristics.

“A variety might be fantastic in resisting drought,” says Steve, ‘but if its plant type demands extra work, the farmers won’t grow it,” he explains. “Likewise, if consumers don’t like the seed colour, or the beans take too long to cook, then they won’t buy.”

Molecular breeding deals a hand, waves a wand, and weaves a band
This is where molecular breeding techniques come in handy, deftly dealing with the complexities of breeding drought-resistant beans that also meet farmer and consumer preferences. No guesswork about it: molecular breeding rapidly and precisely gets to the heart of the matter, and helps weave all these different ‘strands’ together.

The bean research team has developed ‘genetic stocks’, or strains of beans that are crossed with the varieties favoured by farmers and consumers. The ‘crosses’ are made so that the gene or genes with the desired trait are incorporated into the preferred varieties.

The resulting new varieties are then evaluated for their performance in different environments throughout eastern and southern Africa, with particular focus on Ethiopia, Kenya, Malawi and Zimbabwe which are the target countries of the Tropical Legumes I (TLI) project.

Propping up the plant protein: a veritable tapestry of terraces of climbing beans.

GCP supported this foundation work to develop these molecular markers. This type of breeding – known in breeder parlance as marker-assisted selection (MAS) – was also successfully used to combine and aggregate resistance to drought; to pests such as bean stem maggot (BSM); and to diseases such as bean common mosaic necrosis potyvirus (BCNMV) and to bruchid or common bacterial blight (CBB). The resulting ‘combinations’ laden with all this good stuff were then bred into commercial-type bean lines.

“These techniques, combined with conventional methods, shorten the time it takes to breed improved varieties that simultaneoulsy combine several traits,” comments Steve. “This means that we also get them out to farmers more quickly compared to phenotypic selection alone.”

Informed by history and reality
Breeding new useful varieties is greatly aided by first understanding the crop’s genetic diversity, and by always staying connected with the reality on the ground: earlier foundation work facilitated by GCP surfaced the diversity in the bean varieties that farmers grow, and how that diversity could then be broadened with genes to resist drought, pests and disease.

What next?
Over the remaining two years of Phase II of the Tropical Legumes I (TLI) project, the bean team will use the genetic tools and breeding populations to incorporate drought tolerance into farmer- and market-preferred varieties. “Hence, productivity levels on smallholder farms are expected to increase significantly,” says Steve.

Partnerships
The work on beans is led by CIAT, working in partnership with Ethiopia’s South Agricultural Research Institute (SARI),  the Kenya Agricultural Research Institute (KARI),  Malawi’s Department of Agricultural Research and Technical Services (DARTS) and  Zimbabwe’s Crop Breeding Institute (CBI) of the Department of Research and Specialist Services (DR&SS).

Other close collaborators include the eastern, central and southern Africa regional bean research networks (ECABREN and SABRN, their acronyms) which are components of the Pan-African Bean Research Alliance (PABRA). Cornell University (USA) is also involved.

VIDEO: Steve talks about what has been achieved so far in bean research, and what remains to be done

Links

 

Sep 202012
 

Getting to the core of a world-favourite dessert by unravelling banana’s origin and genealogy

GCP has enabled us to lay a credible foundation, which gave us a leg-up in the intense competition that typifies the genome sequencing arena” – Angélique D’Hont, CIRAD researcher

‘A’ is also for Angélique, as you will see once you read on…

An ‘A’ to our banana team for ushering in a new era in banana genetics. But let soup precede dessert, and don’t let this worry you: stay with us because we’re still very much on the topic and focused on bananas, which offer the whole range from soup and starters, to main course and dessert, plus everything else in between, being central for the food security of more than 400 million people in the tropics: around a third each is produced in Africa, Asia-Pacific and Latin America, and the Caribbean. About 87  percent of all the bananas produced worldwide are grown by small-scale farmers.

Moving back then to soup for starters, we’re serving up our own unique blend of alphanumeric banana ‘soup’, spiced with ABCs, a pinch of 123s, plus a dash of alpha and omega. Curious about the ABCs? Look no further:‘C’ for getting to the core of ‘B’ for bananas, and an ‘A’ score for our ace genomics team that did it.

Read how GCP seeded … and succeeded, in helping open a new era in banana genetics. An achievement by itself, and an important milestone on the road to unlocking genetic diversity for the resource-poor, which is GCP’s raison d’être.

So get your travelling gear please, for time travel with a ‘midspace checkpoint’ in Malaysia.

We start in 2004, when GCP commissioned a survey of diversity with microsatellites (or SSRs, simple sequence repeats) for all mandate food crops in the CGIAR crop research Centres. The objective of that study was to make new genetic diversity from genebank accessions available to breeders.

The endpoint is opening new research avenues to incorporate genes for disease resistance, with the added bonus of an article published in Nature online on July 11 2012, entitled The banana (Musa acuminata) genome and the evolution of monocotyledonous plants.

It may not be quite as easy as the ABC and 123 that The Jacksons promise in song, but we promise you that the science is just as exciting, with practical implications for breeding hardy disease-resistant bananas. Onwards then to the first leg of this three-step journey!

(Prefer a shorter version of this story in pictures? We’ve got it! Choose your medium between Flickr and Facebook)

1) Let’s go Greek: the alpha and omega of it

Rewinding to the beginning

The proof of the pudding is in the eating: we imagine that Jean Christophe Glaszmann just has to be saying “Yummy!” as he samples this banana.

Start point, 2004: “At that time, several research groups had developed SSR markers for bananas, but there was no coordination and only sketchy germplasm studies,” recalls Jean Christophe Glaszmann (pictured), then the leader of what was GCP’s Subprogramme 1 (SP1) on Genetic Diversity on a joint appointment with CIRAD. He stepped down as SP1 Leader in March 2010, and is currently the Director of a multi-institutional research unit Genetic improvement and adaptation of Mediterranean and tropical plants (AGAP, by its French acronym) at France’s Centre de ccoopération internationale en recherche agronomique pour le développement (CIRAD) in Montpellier.

Jean Christophe continues, “The reference studies had been conducted with RFLP* markers, a very useful tool but far too cumbersome for undertaking large surveys. We mobilised Bioversity International, CIRAD and the International Institute of Tropical Agriculture for the project. The process took time, but delivered critical products.[*RFLP stands for restriction fragmented length polymorphism]

Fastforward to 2012, and gets just a little geeky…

Eight years down the road in 2012, the list of achievements is impressive, as evidenced by a suite of published papers which provide the details of the analysis of SSR diversity and describe how the data enabled the researchers to unravel the origin and genealogy of the most important dessert bananas. The origin of the predominant variety – Cavendish – suggested by the markers, involves two rounds of spontaneous hybridisation between three markedly differentiated subspecies. This scheme has been marvellously corroborated by linguistic patterns found in banana variety names as revealed in a paper published in 2011 in the proceedings of USA’s National Academy of Sciences.

But what else happened in between the start- and end-point? We now get to the really ‘sweet’ part of this bonanza for banana breeding!

It is now possible to conduct research to identify and incorporate genes for disease resistance within fertile populations that are close to the early progenitors, and then inter-cross them to re-establish sterility and obtain vigorous, disease-resistant and seedless progenies.

 2) Of bits, bananas, breeding and breadcrumbs

Threading all these bits together for breeding better bananas is akin to following a trail of breadcrumbs, in which GCP played an important facilitating role: where in the germplasm to undertake genetic recombination is one key; and then, how to expedite incorporation of disease resistance and how to control sterility – so as to first suppress it, then re-establish it – is another set of keys that are necessary for proficient breeding.

Hei Leung in the lab at IRRI.

In 2005, Hei Leung (pictured), then Leader of GCP’s Subprogramme 2 on Comparative Genomics (until June 2007) on a dual appointment with the International Rice Research Institute (IRRI), recognised that with GCP’s main focus being drought tolerance in crops, Musa (the banana and plantain botanical genus) was somewhat on the fringe. However, it was still important that GCP support the emergence of banana genomics.

Hei is currently Programme Leader of Genetic Diversity and Gene Discovery at IRRI. He remembers, “We had a highly motivated group of researchers willing to devote their efforts to Musa. Nicolas Roux at Bioversity was a passionate advocate for the partnership. The GCP community could offer a framework for novel interactions among banana-related actors and players working on other crops, such as rice. The team led by Takuji Sasaki of Japan’s National Institute of Agrobiological Science, which had vast experience in rice genome sequencing, added the scientific power. So, living up to its name as a Challenge Programme, GCP decided to take the gamble on banana genomics and help it fly.”

Angélique D’Hont, CIRAD researcher and lead author of the article published in ‘Nature’.

Through several projects, GCP helped consolidate Musa genomic resources, contributed to the establishment of medium-throughput DArT markers as well as the construction of the first saturated genetic map. Additional contributions included the first round of sequencing of large chromosome segments (BAC clones) and its comparison with the rice sequence and a detailed analysis of resistance gene analogues. All these findings have now been published in peer-reviewed journals. And while publication takes time, it still remains a high-premium benchmark for quality and validation of results, and for efficient sharing of information. It reinforces the value of collaboration, builds capacity and gives visibility to all partners, thereby providing potential new avenues for funding.

Such was the case with bananas: using a collaborative partnership framework established with the Global Musa Genomics Consortium, animated by Nicolas Roux and now chaired by Chris Town, the community developed a case for sequencing the genome. With the mentorship of Francis Quétier, contacts were made with various major players in genomics, which in the end formalised a project between France’s CIRAD and CEA–Genoscope, funded by the Agence Nationale de la Recherche and led by Angélique D’Hont (pictured) and Patrick Wincker.

GCP contributed DArT analysis for anchoring the sequence to the genetic map. But, as stressed by Angélique, CIRAD researcher and lead author of the Nature paper: “Above all, GCP has enabled us to lay a credible foundation, which gave us a leg-up in the intense competition that typifies the genome sequencing arena. We were delighted that France rolled the dice in our favour by funding this work.”

3) Musa musings on the road to and from Malaysia checkpoint

Three years down the road, the team published a description of the genome of a wild banana from Malaysia.

Jean Christophe communes with a Musa plant, perhaps musing “What’s your family history and when will you be fully grown?”

Let’s drill down to some technical facts and figures here: the Musa genome has some 520 million nucleotides distributed across 11 chromosomes, revealing traces of past duplications and bearing some 36,000 genes. While most genes derived from duplication tend to lose their function, some develop novel functions that are essential for evolution; bananas seem to have an outstanding range of transcription factors that could be involved in fruit maturity.

And while the road ahead remains long, we now have a good understanding of banana’s genetic diversity, we have genomic templates for functional studies (a whole-gene repertoire) as well as for structural studies (the chromosome arrangement in one subspecies) aimed at unraveling the genomic translocations that could control sterility in the species complex.

It is now possible to conduct research to identify and incorporate genes for disease resistance within fertile populations that are close to the early progenitors, and then inter-cross them to re-establish sterility and obtain vigorous, disease-resistant and seedless progenies.

This is undoubtedly an inspiring challenge towards unlocking the genetic diversity in this crop, which is central to food security for more than 400 million people in the tropics.

Links

 

Jul 082012
 

SDC and GCP

Today, we catch up with SDC’s Carmen Thönnissen (pictured). She walks us through the whys of Switzerland’s continued funding to GCP that has spanned nearly the Programme’s entire lifetime.

We were …drawn to GCP’s upstream–downstream connections, and its pre-conceived product delivery path. GCP produces global public goods, with a clear focus on strategic research for development, while also addressing important upstream research elements in crop science such as gene discovery and marker validation. In addition, GCP already had a Product Delivery Strategy to guarantee downstream application.

The way GCP uses and ‘bundles’ resources within and beyond CGIAR, then as now, is attractive to us as a meaningful approach, promising good value for money.”

GCP’s work is very results-oriented and pragmatic, forging partnerships followed by concrete actions to address bottlenecks in research for development in molecular crop breeding, without ruling out conventional breeding.

Carmen Thönnissen is Senior Advisor, Federal Department of Foreign Affairs, Swiss Agency for Development and Cooperation (SDC), Corporate Domain Global Cooperation of the Global Programme for Food Security. Through the years, SDC has been a consistent GCP funder. Today, Carmen gives us some insights into this longstanding relationship.

Tell us briefly about SDC and its funding to GCP
SDC is the Swiss Agency for Development and Cooperation, affiliated to the Ministry of Foreign Affairs of the Swiss Government.

We’ve funded GCP since 2006 with an annual contribution of 450,000 Swiss francs – a total of 1.9 million so far.

SDC provides GCP core unrestricted funds at Programme level, meaning that SDC does not tie its funding to specific GCP projects, giving GCP discretion over these funds.

Why does SDC support GCP?
We share a long history with GCP, going as far back as the Programme’s ‘pre-birth’.

Starting in 2001, CGIAR adopted a more programmatic systemwide approach and endorsed the concept of Challenge Programmes. Between 2002 and 2005, SDC actively supported this process and the emerging Challenge Programmes.

In 2005, SDC reviewed its support to CGIAR and identified SDC priority regions, research priorities, and guiding principles for its unrestricted funding to the CGIAR system.

From this review, SDC decided to invest 30 percent of its core unrestricted funds to several CGIAR Systemwide and Challenge Programmes, one being GCP.

The Challenge Programmes were perceived as results-oriented, poverty-relevant and responsive to the CGIAR reform process of that time. They were also partnership-oriented, with transparent communication strategies.

Several points convinced SDC to invest in GCP, and I’ll mention just some of these. One was GCP’s focus on crops in marginal areas and on drought tolerance in sub-Saharan Africa, and South and Southeast Asia. These overlap with SDC’s own thematic and geographical priorities.

We were also drawn to GCP’s upstream–downstream connections, and its pre-conceived product delivery path. GCP produces global public goods, with a clear focus on strategic research for development, while also addressing important upstream research elements in crop science such as gene discovery and marker validation. In addition, GCP already had a Product Delivery Strategy to guarantee downstream application.

The way GCP uses and ‘bundles’ resources within and beyond CGIAR, then as now, is attractive to us as a meaningful approach, promising good value for money. Back then, SDC was interested in the exploration of plant diversity and the application of advanced genomics and comparative biology to advance breeding of the main staple crops grown by resource-poor farmers, which was the very objective of GCP.

Our funds were intended to be used to increase the exploratory implementation of new research tools in applied breeding programmes to produce improved drought-tolerant crop varieties.

We liked GCP’s structured approach of a Global Access Policy backed by guidelines on public–private sector partnerships and addressing intellectual property.

We also found the ‘suite approach’ proposed by GCP attractive, since at that time, very little was being done in these fields by CGIAR. We were drawn to the mix of a research component – on the impact of modern and integrated breeding approaches on productivity in developing countries, plus a service component aiming to disseminate knowledge, resources and technology, alongside lab services and capacity building.

GCP’s work is very results-oriented and pragmatic, forging partnerships followed by concrete actions to address bottlenecks in research for development in molecular crop breeding, without ruling out conventional breeding.

You mentioned common SDC–GCP thematic and geographic scope. Are there other areas where the missions of SDC and GCP overlap?
SDC has a focus on genetic resource improvement, and also supported the CGIAR Systemwide Programme on Genetic Resources, as well as the Global Crop Diversity Trust.

Supporting GCP is in line with SDC’s internal guidelines on Green Biotechnology. Among other things, we avoid single-donor initiatives, instead working within larger programmes that not only have a clear focus but also aim to strengthen developing-country capacity.

GCP’s work is very results-oriented and pragmatic. GCP plays a strong facilitating role in forging partnerships, which is followed by concrete actions, services, tools, methods, and so on, to address the bottlenecks identified by the research-for-development network with the aim of supporting molecular crop breeding for various crops, regions and partners, without ruling out conventional breeding.

SDC shares the view that Green Biotechnology, including genetic modification, can never fully replace conventional breeding, but it can be an important tool in improving plant-breeding programmes.

What outcomes are you expecting from this support?
To mention just a few, improved accessibility to modern breeding tools, methods and approaches for the developing world, plus enhanced capacity for developing-world partners on using these tools, as well as them knowing their rights and obligations regarding access to, and use of, plant genetic resources and related tools.

We also hope to see improved services for breeders, including learning materials and information on new resources for crop breeding. The long-term outcome we’d like to see is improved crop varieties, more resistant to abiotic and biotic stresses.

What are some of the lessons learnt from investing in GCP?
The importance of a strong programmatic orientation and the role of an honest broker in effective partnerships: GCP plays the role of enabler and facilitator, while its research partners are the actors.

Investing in GCP enables us to project a clear flow from upstream to applied research – with capacity building included – in the critical areas of food security and climate change.

Relevant links

Policies 

Blogposts

Jul 022012
 

A walk down memory lane with Masa

Photo: JIRCASWe caught up with Masaru Iwanaga (pictured right), previously Director General of CIMMYT  from 2002 to 2008, and now President of the Japan International Research Center for Agricultural Sciences (JIRCAS), based in Tsukuba, Japan. CIMMYT is GCP’s host Centre. Here’s what Masa had to say about GCP’s early years, and where the Programme is today…

What was the vision for GCP at its foundation?
Our vision for GCP was to unlock genetic diversity through the application of modern science.

In 2002, as CIMMYT’s Director General, I proposed GCP to CGIAR. I’m proud that I was successful in convincing CGIAR to add GCP to its suite of Challenge Programmes.

GCP was based on partnerships. Partnerships were key because we wanted to mobilise modern science, both inside and outside CGIAR. We wanted to utilise modern science and CGIAR genetic resources for crop improvement.

Dave Hoisington and Peter Ninnes helped me draft the concept framework for how GCP would work.

GCP’s tagline – ‘Partnerships in modern crop breeding for food security’ – what does this mean for you?
I think we wanted to take advantage of our progress, especially in genomics to utilise genetic resources for the betterment of rural livelihoods. We wanted to utilise partnerships to enhance the gains made. I was involved in the establishment of GCP, overseeing the appointments of previous and current Directors, Bob Zeigler and Jean-Marcel Ribaut. GCP has made outstanding progress since its founding.

Practically all CGIAR activities are based on partnerships. Historically, CGIAR had been viewed in some quarters as technology-supply-driven – that technology was pushed on farmers who had to adapt to new varieties and adopt the technology that accompanied it. In the early years, GCP was viewed in the same light. I wanted to correct that view. Our objective was the effective utilisation of the genetic diversity that CGIAR is conserving –utilising this diversity for crop improvement. I had to work very hard to make people see this.

From what I’ve heard and been involved in, GCP has been one of the more successful Challenge Programmes in terms of meeting expectations. My view is very positive.

I left CIMMYT four years ago, and the progress that GCP has made during this time has astounded me.

For me, my life back then seems so distant to where I am now. But, recently I visited a national programme in a developing country, and the people I met had a positive view of GCP, saying it added value to their programme.

I’m currently head of the Japan International Research Center for Agricultural Sciences [JIRCAS, Tsukuba, Japan]. We conduct technical research activities.

I have mentioned partnership several times. This is because GCP is a partnership involving many organisations for the purpose of enhancing the capacity of national programmes to utilise advanced technology for crop improvement, taking advantage of genetic diversity.

Germplasm conservation by CGIAR Centres can be centralised but crop improvement needs to be decentralised because it is, of course, influenced by the local environment. It means we need to have capable crop breeders in national programmes. However, national programmes have been weakened in many developing countries, for various reasons.

By building capacity for developing-country breeders, we can contribute to stability by offering them the necessary resources, services and tools to progress and advance their work, and make them more efficient – and therefore more effective – in doing their work.

My fondest memory of my involvement with GCP was attending technical meetings and hearing the dialogue between a biotechnologist and a germplasm curator who were discussing how they could utilise each other’s strengths to conserve germplasm and enhance crop breeding.

What role did CIMMYT play then in supporting GCP?
In my role as Director of CIMMYT, I tried hard to make sure that CIMMYT was not misinterpreted as taking over GCP. Our role was to provide a management and administrative support framework for GCP to develop in its own way.

It’s been a real pleasure revisiting this chapter of my life.

Relevant links

cheap ghd australia