Generation Challenge Programme
GCP website
Integrated Breeding
IBP website
  Connect with us GCP on Facebook GCP on Twitter GCP on LinkedIn Subscribe to GCP Newsletter Subscribe to GCP RSS feeds
Oct 242014
 
Print Friendly

By Eloise Phipps

Imagine the scene: it is the dead of night, and you are engaged on a dangerous mission. You are tense, alert for any noise. You must complete your task without being seen, or risk the shame and humiliation of failure… but it is not a pleasant undertaking!

Your mission? A critical matter of honour. To dispose of your family’s cassava peelings – not with the rest of your household waste, but smuggled into the murky depths of the pit latrine. Why?

“The stigma about cassava is mostly among the Kikuyu people of central Kenya,” explains Henry Ngugi, Kenyan scientist and former Maize Pathologist for Latin America at the International Maize and Wheat Improvement Center (CIMMYT). “Traditionally, the Kikuyu are very proud, and self-sufficiency in basic needs such as food is an important factor in this. That is, you cannot be proud if you cannot feed yourself and your family. Now, the other part of the equation regarding cassava is that, traditionally, cassava was eaten during seasons of severe food shortages. It is a hardy and drought-tolerant crop so it would be available when the ‘good food’ was not. This also meant that it was associated with hunger and poverty – inability to feed oneself.”

“Another factor that may have played a role in the way Kikuyu view cassava is that some of the traditional cultivars produced high levels of cyanide and were toxic [if not properly cooked], so as a crop it was not very highly regarded to start with. Improved cultivars have been bred to remove this problem. But because of these issues, many people would not want their neighbours to know they were so hungry they had to rely on cassava, and would go to great lengths to conceal any evidence!”

The story is not the same everywhere: graceful and strong, this farmer tends her field of cassava, in the village of Tiniu, near Mwanza, northern Tanzania.

Opening up for Open Access Week

This year, 20–26 October is Open Access Week, a global event celebrating, promoting and sharing ideas on open access – that is, making research results, including both publications and data, freely and publicly available for anyone to read, use and build upon. Even more exciting for us, this year’s theme is ‘Generation Open’, reflecting the importance of students and researchers as advocates for open access – a call that falls on fertile ground at the Generation Challenge Programme.

We at GCP have been reflecting this week on different virtues of openness and transparency, and the perils of shame and secrecy. But before we go on, we’re sticking with cassava (carrying over from World Food Week!) but crossing the globe to China to celebrate the latest open-access publication to join the GCP parade. ‘Cassava genome from a wild ancestor to cultivated varieties’ by Wang et al is still practically a newborn, published on the 10th of October 2014.

The article presents draft genome sequences of a wild ancestor and a domesticated variety of cassava, with additional comparative analyses with other lines. It shows, for example, that genes involved in starch accumulation have been positively selected in cultivated cassava, and those involved in cyanogenic (ie, cyanide-producing) glucoside formation have been negatively selected. The authors hope that their results will contribute to better understanding of cassava biology, and provide a platform for marker-assisted breeding of better cassava varieties for farmers.

The work was carried out by a truly international team, led by scientists from the Chinese Academy of Tropical Agriculture Sciences (CATAS) and Chinese Academy of Sciences (CAS). It incorporated and partially built upon previous work mapping the cassava genome, which was funded by GCP in our project on Development of genomic resources for molecular breeding of drought tolerance in cassava (G3007.03), led by Pablo Rabinowicz, then with the University of Maryland, USA. This provides a perfect example of the kind of constructive collaboration and continuation that open access and sharing of research results can facilitate: by building on what has already been done, rather than re-inventing the wheel or working in isolation, we share, disseminate and amplify knowledge more rapidly and efficiently, with win–win outcomes for all involved.

Cassava farmers in Vietnam.

One thing that makes the latest research even more special is that it was published in Nature Communications, which marked Open Access Week by going 100 percent open access from the 20th of October, making it an open-access flagship within the Nature Publishing Group – a clear indicator of the ever-increasing demand for and credibility of open-access publishing. We congratulate all of our open-access authors for making their work publicly available, and Nature Communications for its bold decision!

A matter of perspective: turning shame to pride and fears to opportunities

No shame here: a little girl clutches a cassava root in Kenya.

Of course, human beings worrying about their social status is old as humanity itself and nothing new. Food has never been an exception as an indicator. Back in mediaeval Europe, food was a hugely important status symbol: the poor ate barley, oats and rye, while only the rich enjoyed expensive and prestigious wheat. Although our ideas about what is luxurious have changed – for example, sugar was considered a spice thanks to its high cost – rare imported foods were something to boast about just as they might be today.

But why are we ashamed of eating the ‘wrong foods’ – like cassava – when we could take pride in successfully feeding our families? Many of the things we tend to try to hide are really nothing to be ashamed of, and a simple change in perspective can turn what at first seem like weaknesses into sources of pride (and there are two sides to the cassava saga, as we shall see later).

Throughout its existence, GCP has been characterised by its openness and transparency. We have worked hard to be honest about our mistakes as well as our successes, so that both we and others can learn from them. The rewards of this clear-eyed approach are clearly noted in our Final External Review: “GCP has taken an open and pro-active attitude towards external reviews – commissioning their own independent reviews (the case of the current one) as well as welcoming a number of donor reviews. There have been clear benefits, such as the major governance and research reforms that followed the EPMR [External Programme and Management Review] and EC [European Commission] Reviews of 2008. These changes sharply increased the efficiency of GCP in delivering benefits to the poor.”

Transparent decision-making processes for determining choices of methodologies have also improved the quality of our science, while open, mutually respectful relationships – including open data-sharing – have underpinned our rich network of partnerships.

One aspect of this open approach is, of course, our commitment to open access. All of our own publications are released under Creative Commons licenses, and we encourage all GCP grant recipients to do the same, or to pursue other open-access options. When exploring our research publications you will note that many are directly available to download. Our website will act as an archive for the future, ensuring that GCP publications remain online in one place after GCP’s closure in December this year.

“Open access journals are just terrific,” says Jean-Marcel Ribault, Director of GCP. “It’s great to enable access to publications, and it’s important to promote sharing of data and open up analysis too [see GCP’s policy on data-sharing]. The next big challenge is data management, and assuring the quality of that data. At the end of the day, the quality of the information that we share with others is fundamental.”

Proud in pink and polka dots: a farmer shows off a healthy cassava leaf in a plantation in Kampong Cham, Cambodia.

That’s a challenge that many other organisations are also grappling with. Richard Fulss, Head of Knowledge Management at our host CIMMYT is currently working on standards and approaches for the quality and structure of data, with the aim of implementing open access to all data within five years, meeting guidelines being put in place across CGIAR. “The issues to resolve are threefold,” he explains. “You have a licence issue, a technology issue – including building the right platform – and a cultural issue, where you need to build a culture of knowledge sharing and make open access publishing the norm rather than the exception.”

Our partners at the International Center for Tropical Agriculture (CIAT) already have a strong open-access policy, and are debunking some myths on their website.

It’s good to talk: saying no to secrecy

Back to cassava, and of course not everyone feels the same way about the same crop, as there are many sides to any story. In China, demand for cassava is soaring – for food, animal feed, and use in biofuel production – making breeding of resilient, productive cassava varieties even more important. Even within Kenya, there are those quicker to see the crop’s virtues. The Luhya people of western Kenya often mix cassava with finger millet or sorghum to make flour for ugali (a stiff porridge or dough eaten as a staple food in vast swathes of Eastern and Southern Africa). As Henry explains “one reason was that such ugali ‘stayed longer in the stomach’ in literal translation from local parlance meaning it kept you full for longer – which is scientifically sound because cassava has a crude starch that takes longer to digest, and lots of fibre!”

Meanwhile, watch the delightful Chiedozie Egesi, Nigerian plant breeder and molecular geneticist, in the video below to hear all about the high potential of cassava, both as a food in itself and as a raw material to make flour and other products – something some farmers have already spotted. “Cassava can really sustain a nation… we’ve seen that it can,” he says. “You have in Nigeria now some of the Zimbabwean farmers who left Zimbabwe, got to Nigeria, and they changed from corn [maize] to cassava, because they see the potential that it has.”

The power of openness is already showing itself in the case of cassava, as well as other root, tuber and banana crops. Check out RTBMaps, an online atlas developed by the CGIAR Research Program on Roots, Tubers and Bananas (RTB), using ‘scientific crowdsourcing’ to combine data on a wide range of variables, shared by many researchers, in a single map. Putting all that information together can help people make better decisions, for example on how to target breeding, or where disease threats are likely to be strongest.

We leave you with one final thought. It is not just cassava that is plagued with pride and prejudice; many foods attract high or low statuses in different regions – or even just variations of the same food. People in Asia and North America, for example, tend to prefer yellow maize, while Africans like their maize white. In fact, yellow maize these days carries a powerful stigma in many parts of Africa, as this was the colour of the maize that arrived as aid in periods of famine, so it carries memories of terrible times and the suffering and indignity of being unable to feed oneself and one’s family.

This might be a minor curiosity on colour and coloured thinking, were it not for the fact that when crops – such as sweet potato, cassava, or indeed maize – are bred to be rich in pro-vitamin A, and so provide plenty of the vitamin A that is particularly crucial for young children and pregnant women, they take on a golden yellow-orange hue. When promoting the virtues of this enriched maize among African farmers, it’s vital to know that as ‘yellow maize’ it would fall flat on its face, but as ‘orange maize’ or ‘golden maize’ it is a roaring success. A tiny difference in approach and label, perhaps, but one that means a big nutritional improvement for poor children and brings important ‘de-stigmatisation’. Ample proof then that sharing details matters, and that it’s good to talk – even about the things we are a little ashamed of, thereby breathing substance into the spirit of the theme ‘Generation Open’.

Do have some of these uncomfortable but candid conversations this Open Access Week and live its spirit to the fullest every day after that!

A little girl in Zambia gets a valuable dose of vitamin A as she eats her orange maize.

Eyes dancing with past, present or future mischief, two cheeky young chappies from Mozambique enjoy the sweet taste of orange sweet potato enriched with pro-vitamin A.

Oct 152014
 
Print Friendly

In recognition of the International Day for the Eradication of Poverty, October 17th, we are reflecting on what poverty means, how crop breeding helps eradicate poverty and transform lives, and how we have tried to maximise and measure those impacts.

In the early days of GCP, we were largely on uncharted seas and needed to chart a course to where our efforts would have the greatest impact, a process documented in our Pathways to impact brief No 1: Where in the world do we start? Instead of using a monetary definition of poverty, since this varies so widely between places and contexts, we took a different approach. As an indicator of true poverty, we used data on the number of stunted – ie, severely malnourished – children, overlaying this on maps showing where drought was most likely to occur. Our thinking was clear and simple: poverty + drought = where GCP needed to be.

Whatever else you may think they may lack, these children in Sibi village, Burkina Faso, definitely have verve, and look full of the energy they need to play!

Whatever else you may think they may lack, these children in Sibi village, Burkina Faso, definitely have verve, and look full of the energy they need to play!

A boy plays with an improvised hoop in Lukolela, Democratic Republic of Congo.

A boy plays with an improvised hoop in Lukolela, Democratic Republic of Congo.

Drought routinely reduces harvests, and can be catastrophic. For example, nearly half (40 percent) of Africa’s maize-lands face occasional drought, reducing yields by between 10 and 25 percent, while a quarter suffers frequent drought, with overall losses of up to half the harvest – and total losses for some individual farmers. With climate change making droughts ever more common, drought was a natural priority for GCP from its inception.

Drought-tolerant crops are therefore the most important focus for the breeders of the GCP family, though not an exclusive one. Other key traits our breeders consider include resistance to pests and diseases and nutritional fortification, depending on the crop and location – and of course all varieties should yield well in good years too. Resilient improved varieties are particularly important for the poorest farmers, as they do not usually have access to measures such as irrigation or pesticides to combat environmental menaces. Typically, the poorest farmers also live in the most drought-prone drylands. Helping poor farmers to reap consistently abundant nutritious harvests means more food for their families and often a surplus to sell –reducing child malnourishment, and poverty in general.

A little girl eats fresh roti at home in the district of Dinajpur, Bangladesh.

A little girl eats fresh roti at home in the district of Dinajpur, Bangladesh.

A girl eats rice with her family in the Philippines.

A girl eats rice with her family in the Philippines.

Together we stand

The theme of the International Day for the Eradication of Poverty 2014 is Leave no one behind: think, decide and act together against extreme poverty, and it is one that echoes beautifully with the ethos of GCP. Collaboration and partnership have always been hallmarks of our approach, particularly in terms of empowering researchers in developing countries to implement – and lead – cutting-edge science. You can find a wealth of posts on our blog about our partnerships and the ‘GCP spirit’.

Collaboration is particularly important in crop breeding because one crop is often faced by all kinds of threats at once – a selection from the world’s least tasty smorgasbord of drought, heat, waterlogging pests, diseases, soil infertility, and much more. It is likely to be of no use breeding a super-crop that goes untouched by disease if it turns up its toes after a few dry days, or if no one likes the taste. That means researchers with different areas of expertise need to work together – and with farmers and extensionists too. Read the case for collective action in our Pathways to impact brief No 2: A call for collective action in agricultural research.

Girls help in the fields in Luang Prabang, Laos.

Girls help in the fields in Luang Prabang, Laos.

Eyes dancing with past, present or future mischief, two cheeky young chappies from Mozambique enjoy the sweet taste of orange sweet potato enriched with pro-vitamin A.

Eyes dancing with past, present or future mischief, two cheeky young chappies from Mozambique enjoy the sweet taste of orange sweet potato enriched with pro-vitamin A.

Impact by the numbers

GCP believes that using marker-assisted breeding (a range of efficient crop-breeding approaches that use genetic information to work out which plants have useful traits) to create improved varieties faster and more effectively is worth its extra cost, and has a real impact on farmers’ incomes. This cannot be taken for granted however, so get an introduction to the numerical approach in our Pathways to impact brief No 3: Molecular and conventional breeding through an economic lens. Our study found that women in Nigeria reported increased household incomes from growing improved cassava varieties, but also more time spent on cassava-related tasks – emphasising the need for researchers to be aware of the characteristics farmers – in this case predominantly women – value.

Hard at work, a boy helps to peel a mountain of cassava in Nigeria.

Hard at work, a boy helps to peel a mountain of cassava in Nigeria.

As we mark this year’s International Day for the Eradication of Poverty, we at GCP are proud to be contributing to the eradication of poverty by creating partnerships, expertise, and ultimately crop varieties that promise abundant harvests for the world’s poorest farmers and their families – helping their children grow up big, strong and free from poverty.

At play: children of the Sao Felix community in the Brazilian Amazon.

At play: children of the Sao Felix community in the Brazilian Amazon.

Enjoy the game, but keep off the plants! Boys play football next to maize fields in Khulungira, central Malawi.

Enjoy the game, but keep off the plants! Boys play football next to maize fields in Khulungira, central Malawi.

Oct 142014
 
Print Friendly
Things fall apart… and come together

By Eloise Phipps

Cassava – the tough, gutsy daughter of a poignant confluence of cultures, and the benevolent mother of millions when times get tough – is bursting onto the science scene after years of neglect. For October 15th, the International Day of Rural Women, we crown her the Queen of Crops. Read on to see why …

His mother and sisters worked hard enough, but they grew women’s crops, like coco-yams, beans and cassava. Yam, the king of crops, was a man’s crop.”

So wrote Chinua Achebe in his great novel, Things Fall Apart, set among the Igbo people in southeast Nigeria. His words are a reminder that men’s and women’s experiences, needs, activities and ambitions in the agricultural sphere can often be different – and that women’s contributions are all too often undervalued.

Cassava feeds more than half a billion people in the in the developing world. After rice and maize, it is the third-largest source of carbohydrates for people in the tropics, where it is grown across Africa, Asia and Latin America. Yet tough, unassuming cassava is a bit of an underdog – just like the women who grow it. We are celebrating the International Day of Rural Women by taking a special look at cassava, what it means for women, and the extraordinary things that can happen when Things Come Together!

A bright spot in a sea of green: a farmer in her field of cassava, in the village of Tiniu, near Mwanza, northern Tanzania.

A bright spot in a sea of green: a farmer in her field of cassava, in the village of Tiniu, near Mwanza, northern Tanzania.

It thrives on poor soils where other plants struggle, and it survives droughts that leave other crops biting the dust. For many rural mothers, cassava is the crop that keeps their families alive…”

“We must sing for you, great cassava…”

Hefty chunks of cassava – full of energy and nutrients – on sale in Kampala, Uganda.

Hefty chunks of cassava – full of energy and nutrients – on sale in Kampala, Uganda.

Cassava’s story is one that is inextricably linked to centuries of pain and struggle. It was introduced to Africa in the 16th century by Portuguese traders who brought it from Brazil – and took Africans back to Brazil as slaves.

Yam, native to Africa, was firmly established as the staple food of the Igbo people. Dominating their farming activities, it thus dominated the very routine of existence. So, control of yam affirmed men’s position at the top of the pinnacle. When cassava arrived, no one thought very much of it. For the Portuguese, it was a cheap source of carbohydrates. For the Igbo, it was a decidedly inferior crop to the long-beloved and much-revered yam.

Since the men were generally not much interested, Igbo women gradually adopted cassava as ‘their’ crop, a process that has been reinforced over the centuries. For example, Nigerian troop conscription during the First World War and the subsequent influenza pandemic caused a serious shortage of labour, particularly manpower. Women needed to grow more food, and cassava – more flexible and less labour-intensive than yam – was the natural choice, being also free from the cultural constraints that made yam the exclusive domain of men.

While no one would call cassava glamorous, plenty of women over the years have turned out to be quite happy that such a valuable crop ended up in their sphere of influence. While cassava is not often much of a cash crop in Africa, it is tough, resilient, and very useful for survival in difficult times. It thrives on poor soils where other plants struggle, and it survives droughts that leave other crops biting the dust. For many rural mothers, cassava is the crop that keeps their families alive.

What better words to sing cassava’s praises than those of Flora Nwapa, Nigeria’s first female novelist, in her Cassava Song? In ancient Igbo tradition, women sing their work, singing it into being and into completion, and her poem is a tribute to those work-songs.

We thank the Almighty God
For giving us cassava.
We hail thee, cassava
The great cassava.

You grow in poor soils
You grow in rich soils
You grow in gardens
You grow in farms.

You are easy to grow
Children can plant you
Women can plant you
Everybody can plant you.

We must sing for you
Great cassava, we must sing
We must not forget
Thee, the great one.

The hard-working hands of Angelique Ipanga, a teacher and farmer, as she tends her cassava crop in Lukolela, Democratic Republic of Congo.

The hard-working hands of Angelique Ipanga, a teacher and farmer, as she tends her cassava crop in Lukolela, Democratic Republic of Congo.

And here, we have another Nigerian to join the chorus of praise – watch Emmanuel Okogbenin, molecular plant breeder, on the importance of cassava:

While our spotlight on Nigeria thus far has been purely coincidental, let’s also not forget that Nigeria is the global cassava giant, being far and away the world’s biggest producer and consumer of cassava. But do buckle up and let’s cross the great ocean, to another part of the planet, for an equally captivating cassava story…

 … legend has it that the first cassava was birthed by a human woman…”

Crossing continents: A virgin-born, Amazonian Snow White planted in the earth

Of course, cassava is not exclusively a female province – it is grown by both women and men farmers around the world. But can you blame us for imparting it with a special feminine mystique, when legend has it that the first cassava was birthed by a human woman caught at the confluence of two cultures?

Many centuries before the Europeans arrived, cassava – often known in the New World as manioc – sustained peoples and cultures throughout the tropical lowlands of the Americas. The Tupí people of Brazil tell how, many years ago, the daughter of a chief became pregnant. Although she said that she had not been with a man, her father did not believe her, and threatened to kill her if she did not tell him the name of the child’s father. When he slept, however, he dreamt of a white-skinned warrior who told him that his daughter was telling the truth, and that one day, she would bear a great gift for all his tribe.

The chief’s daughter gave birth to a little girl, Maní, whose skin was as white as the moon and eyes were as dark as the night. She grew into a happy and beautiful baby, but died suddenly after her first birthday. Her mother watered the grave every day, as was the custom, and one day, a strange plant grew there that no one had ever seen before. Later, the earth cracked open, and the Tupí people saw a fruit that was as white as the dead child. They drew it from the ground, peeled and cooked it, and to their surprise found that it was delicious, and even renewed their strength. They called it mandioca or manioca, meaning ‘House of Maní’.

It is a haunting tale, rich with evokes of the cultural upheavals that followed the coming of the Europeans, ancient fears of female impurity, and the realities of infant mortality. But it leaves one thing in no doubt: poor little Maní’s legacy was a precious treasure, not just for the Tupí but for the world.

Under the hot sun, the work goes on: a farmer tends her cassava crop in Colombia's southwestern Cauca department.

Under the hot sun, the work goes on: a farmer tends her cassava crop in Colombia’s southwestern Cauca department.

Proud in pink and polka dots: a farmer shows off a healthy cassava leaf in a plantation in Kampong Cham, Cambodia.

Proud in pink and polka dots: a farmer shows off a healthy cassava leaf in a plantation in Kampong Cham, Cambodia.

A busy Bea grows her way to cassava glory – with a little help from her friends

Female farmer reloaded: Being a rural woman farmer does not mean you have to have dirt under your fingernails all the time. Here’s Bea looking as elegant and regal as any queen.

Female farmer reloaded: Being a rural woman farmer does not mean you have to have dirt under your fingernails all the time. Here’s Bea looking as elegant and regal as any queen.

Ghanaian cassava researcher Elizabeth Parkes is no puny pushover, but even so she met her match in gutsy and determined farmer Bea. Elizabeth laughs as she remembers how the story began: “She hadn’t planted cassava before in her life, but she wanted to go into cassava production. She came to me – she pestered me actually! I was tired of it, because she didn’t know anything and it was a time when I was finishing my PhD, and I thought no, this lady cannot take this precious time from me.”

When most people think of a farmer, they probably think of a man in a straw hat. But in defiance of this stereotype, women make up 43 percent of the agricultural labour force in developing countries, rising to at least 50 percent in sub-Saharan Africa and Eastern Asia. These millions of rural women have incredibly diverse lives, but a few things stay surprisingly constant. Female farmers tend to produce less than their male counterparts – not because they are worse at farming, but because they have less access to all kinds of resources and opportunities. These include anything from land itself to improved seed and new technologies, and from education and information to financial credit.

If this gap could be completely sealed, women could increase their harvests by 20 to 30 percent, translating to millions fewer hungry and malnourished people worldwide. Fortunately, with the right kind of support, female farmers can – and do – transform their lives in remarkable ways. Bea’s story came to just such a happy ending: with guidance from Elizabeth, her cassava-growing skills took off like a rocket, and she became so successful that she was recognised as the best farmer in her community. “These are things that make me glad… that at least I have impacted somebody who hadn’t planted cassava before, and it’s amazing,” says Elizabeth. “There are people out there who need us, and when we give them our best, they will give the world their best as well.”

Listen to Elizabeth in the podcast below, and you are bound to pick up her infectious enthusiasm!

When scientists like these come together, with a dash of the right support, marvellous things happen… cassava has been given a voice.”

Things Come Together

Elizabeth Parkes is a woman from Ghana, and Chiedozie Egesi is a man from Nigeria, himself of the Igbo people and a yam breeder in a past life. However, the two have a lot in common. They are dynamic African scientists with a passion for social justice, and for helping the poorest and most disadvantaged rural people through their work on cassava. When scientists like these come together, with a dash of the right support, marvellous things happen.

Read Elizabeth’s story here and more from her here, and catch up with Chiedozie here and here.

Cassava has traditionally been a forgotten ‘orphan’ in crop science research. Humble and unfashionable, it also has some special challenges for breeders, like its long growth cycle and complicated genetics, while its tough and uncomplaining nature meant that many people thought of it as an “anywhere, anyhow” crop – a very misleading myth, if ever there was one (with thanks to myth-buster Joseph Adjebeng, for that memorable cassava quote). Although the idea grew from a kernel of truth, cassava, like any other crop, needs a little love, and yields less when plagued by problems such as diseases or degraded and infertile soils. But, like Harry Potter, in recent years this orphan has come out from the cupboard under the stairs, and the magic has begun.

Wreathed in sunlight and smiles, a cassava farmer inspects her crop in Kratie, Cambodia.

Wreathed in sunlight and smiles, a cassava farmer inspects her crop in Kratie, Cambodia.

Cassava’s no waif – luckily, as its tuberous roots are packed with staple carbohydrates. Here Ghanaian researcher Elizabeth Parkes shows off some huge and healthy cassava.

Cassava’s no waif – luckily, as its tuberous roots are packed with staple carbohydrates. Here Ghanaian researcher, Elizabeth Parkes, shows off some huge and healthy cassava. These days Elizabeth is a pro when it comes to things crop-related, but it was not always so. “I remember we use to uproot volunteer cocoyam from a serious, busy lady farmer’s farm and we put it in our garden expecting to have a fast-growing plant overnight,” she admits. “The crops died and the busy woman farmer had to come and warn us never to step in her farm again. That was the first hard lesson learnt.” Elizabeth remains ready to learn, with a healthy respect for the knowledge and skills of the farmers she works with, an attitude she learned early on when she visited cocoa farms near her home town. “I loved the way farmers called colleagues by making unique sounds,” she says. “There are many paths to the farm but everyone knew the many routes to our many farms. This still amazes me.”

The plus side of cassava being neglected for so long is that it only needed a relatively small initial investment in local capacity-building and applying modern breeding methods to make a big impact, and set the ball rolling for serious cassava research. “GCP helped us to build an image for ourselves in Nigeria and in Africa, and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us,” explains Chiedozie.

His team have released new cassava that are resistant to diseases and rich in pro-vitamin A, providing the vitamin A that is particularly important for small children and childbearing women. He believes that these varieties have the potential to transform the lives of the people – mainly rural women – who grow them. “The food people grow should be nutritious, resistant and high-yielding enough to allow them sell some of it and make money for other things in life, such as building a house, getting a motorbike, or sending their kids to school,” he says.

Elizabeth agrees that a new, “blessed and privileged era” has begun for cassava. “Thanks to funders such as GCP, who recognised that we couldn’t afford to turn a blind eye to the plight of this struggling crop, cassava has been given a voice.”

It seems that things have come together for cassava at last, and for Elizabeth, the personal rewards of being able to make real impacts are great. “I see African communities where poverty and hunger are seemingly huge problems with no way out; I’m fortunate to be working on a crop whereby, if I put in enough effort, I can bring some solutions.”

After all, it seems that being a ‘woman’s crop’ might not be a put-down, but something to celebrate. Cassava has come a long way, from a pale princess lying under the earth, to a steadfast mother keeping the family going in the toughest of times, to a confident and majestic queen with a glorious reign ahead of her.

And so, for October 15th, in honour of the International Day of Rural Women, we crown her the Queen of Crops. Long live Queen Cassava!

Colourful streamers for the coronation? No, they’re cassava noodles being made in Kampong Cham, Cambodia.

Colourful streamers for the coronation? No, they’re cassava noodles being made in Kampong Cham, Cambodia.

A regal African beauty tends her gorgeous cassava plants.

A regal African beauty tends her gorgeous cassava plants.

Links:  Our cassava Research | Slides | Podcasts Videos | InfoCentre | resaerch products

Sep 012014
 
Print Friendly

Scouring the planet for breeding solutions

Bindiganavile Vivek

Bindiganavile Vivek

Bindiganavile Vivek (pictured) is a maize breeder working at the International Maize and Wheat Improvement Center (CIMMYT), based in Hyderabad, India. For the past five years, Vivek and his team have been developing drought-tolerant germplasm for Asia using relatively new molecular-breeding approaches – marker-assisted recurrent selection (MARS), applied in a genomewide selection (GWS) mode. Their work in the Asian Maize Drought-Tolerance (AMDROUT) project is implemented through GCP’s Maize Research Initiative, with Vivek as the AMDROUT Principal Investigator.

Driven by consumer demand for drought-tolerant maize varieties in Asia, the AMDROUT research team has focussed on finding suitable drought-tolerant donors from Africa and Mexico. Most of these donors are white-seeded, yet in Asia, market and consumer preferences predominantly favour yellow-seeded maize. Moreover, maize varieties are very site-specific and this poses yet another challenge. Clearly, breeding is needed for any new target environments, all the while also with an eye on pronounced market and consumer preferences.

(1) Amazing maize and its maze of colour. Maize comes in many colours, hues and shapes. (2) Steeped in saffron: from this marvellous maize mix and mosaic, the Asian market favours yellow maize.

(1) Amazing maize and its maze of colour. Maize comes in many colours and hues. (2) Steeped in saffron: from this marvellous maize mix and mosaic, the flavour in Asia favours yellow maize.

Stalked by drought, tough to catch, but still the next big thing

Around 80 per cent of the 19 million hectares of maize in South and Southeast Asia is grown under rainfed conditions, and is therefore susceptible to drought, when rains fail. Tackling drought can therefore provide excellent returns to rainfed maize research and development investments. As we shall see later, Vivek and his team have already made significant progress in developing drought-tolerant maize.

Drough in Asia_Vivek slide_GRM 2013_w

The stark reality of drought is illustrated in this warning sign on a desiccated drought-scorched landscape, showing the severity of drought in Asia

But they are after a tough target: drought tolerance is dodgy since it is a highly polygenic trait, making it difficult for plant scientists to pinpoint genes for the trait (see this video with an example from rice in Africa). In other words, to make a plant drought-tolerant, many genes have to be incorporated into a new variety. As one would expect, the degree of difficulty is directly proportional to the number of genes involved. In the private-sector seed industry, MARS  (PDF) has been successfully used in achieving rapid progress towards high grain yield under optimal growth conditions. Therefore, a similar approach could be used to speed up the process of introducing drought tolerance into Asian crops – the reason why the technique is now being used by this project.

AMDROUT Meeting Penang Dec2010_w

More than India: the AMDROUT project also comprises research teams in China, Indonesia, Thailand, The Philippines and Vietnam. In this photo taken during the December 2010 annual project meeting in Penang, Malaysia, the AMDROUT team assessed the progress made by each country team, and  team members were trained in data management and drought phenotyping. They also realised that there was a need for more training in genomic selection, and did something about it, as we shall see in the next photo. Pictured here, left to right: Luo Liming, Tan jing Li, Villamor Ladia, V Vengadessan, Muhammad Adnan, Le Quy Kha, Pichet Grudloyma, Vivek, IS Singh, Dan Jeffers (back), Eureka Ocampo (front), Amara Traisiri and Van Vuong.

The rise of maize: clear chicken-and-egg sequence…

Vivek says that the area used for growing maize in India has expanded rapidly in recent years. In some areas, maize is in fact displacing sorghum and rice. And the maize juggernaut rolls beyond India to South and Southeast Asia. In Vietnam, for example, the government is actively promoting the expansion of  maize acreage, again displacing rice. Other countries involved in the push for maize include China, Indonesia and The Philippines.

So what’s driving this shift in cropping to modern drought-tolerant maize? The curious answer to this question lies in food-chain dynamics. According to Vivek, the dramatic increase in demand for meat – particularly poultry – is the driver, with 70 percent of maize produced going to animal feed, and 70 percent of that going into the poultry sector alone.

GCP gave us a good start… the AMDROUT project laid the foundation for other CIMMYT projects”

 Show and tell: posting and sharing dividends

As GCP approaches its sunset in December 2014, Vivek reports that all the AMDROUT milestones have been achieved. Good progress has been made in developing early-generation yellow drought-tolerant inbred lines. The use of MARS by the team – something of a first in the public sector – has proved to be useful. In addition, regional scientists have benefitted from broad training from experts on breeding trial evaluation and genomic selection (photo-story on continuous capacity-building). “GCP gave us a good start. We now need to expand and build on this,” says Vivek.

AMDROUT trainees at Cambridge_w

AMDROUT calls in on Cambridge for capacity building. AMDROUT country partners were at Cambridge University, UK, in March 2013, for training in quantitative genetics, genomic selection and association mapping. This was a second training session for the team, the first having been September 2012 in India.
Pictured here, left to right – front row: Sri Sunarti, Neni Iriany, Hongmei Chen;
middle row: Ian Mackay (Cambridge), Muhammad Azrai, Le Quy Kha, Artemio Salazar;
back row: Roy Efendy, Alison Bentley (who helped organise, run and teach on the course, alongside Ian) and Suriphat Thaitad.AMDROUT country partners are from China’s Yunnan Academy of Agricultural Sciences (YAAS); the Indonesian Cereals Research Institute (ICERI); the Institute of Plant Breeding at the Unversity of Philppines at Los Baños (UPLB); Thailand’s Nakhon Sawan Field Crops Research Center (NSFCRC); Vietnam’s National Maize Research Institute (NMRI); and private-sector seed companies in India, such as Krishidhan Seeds.Curious on who proposed to whom for this AMDROUT–Cambridge get-together? We have the answer: a Cambridge callout announced the training, and AMDROUT answered by calling in, since course topics were directly relevant to AMDROUT’s research approach. 

 

 

According to Vivek, the AMDROUT project laid the foundation for other CIMMYT projects  such as the Affordable, Accessible, Asian (AAA) Drought-Tolerant Maize (popularly known as the ‘Triple-A project’) funded by the Syngenta Foundation for Sustainable Agriculture. This Triple-A project is building on the success of AMDROUT, developing yet more germplasm for drought tolerance, and going further down the road to develop hybrids.

 

Outputs from the AMDROUT project will be further refined, tested and deployed through other projects”

Increasing connections, and further into the future

Partly through GCP’s Integrated Breeding Platform (IBP), another area of success has been in informatics. Several systems such as the Integrated Breeding FieldBook, the database Maize Finder and the International Maize Information System (IMIS) now complement each other, and allow for an integrated data system.

There is now also an International Maize Consortium for Asia (IMIC–Asia), coordinated by CIMMYT, comprising a group of 30 commercial companies (ranging from small to large; local to transnational). Through this consortium, CIMMYT is developing maize hybrids for specific environmental conditions, including drought. IMIC–Asia will channel and deploy the germplasms produced by AMDROUT and other projects, with a view to assuring impact in farmers’ fields.

Overall, Vivek’s experience with GCP has been very positive, with the funding allowing him to focus on the agreed milestones, but with adaptations along the way when need arose: Vivek says that GCP was open and flexible regarding necessary mid-course corrections that the team needed to make in their research.

But what next with GCP coming to a close? Outputs from the AMDROUT project will be further refined, tested and deployed through other projects such as Triple A, thus assuring product  sustainability and delivery after GCP winds up.

Links

As our Maize Research Initiative does not have a Product Delivery Coordinator, Vivek graciously stepped in to coordinate the maize research group at our General Research Meeting in 2013, for which we thank him yet again. Below are slides summing up the products from this research, and the status of the projects then.

Aug 312014
 
Print Friendly

 Crop disease costs farmers billions of dollars each year in lost yields and inputs. For farming communities in developing countries, such losses can mean deepening poverty, food insecurity, and the resulting poor nutrition and health. 

In Africa alone, it is estimated that crop pests and diseases lead to losing more than half the crops planted. Added to this, some fungal pathogens cause toxic compounds to accumulate in food. In extreme cases, crop diseases have led to widespread famine, social disruption and loss of life – the Irish Potato Famine in the 19th century is a case in point.

Overcoming this reality is what motivates plant pathologists like Rebecca Nelson (pictured below, and profiled here), of Cornell University, USA. For the past quarter century, Rebecca has worked across four continents to understand the ways in which plants defend themselves against diseases.

Rebecca Nelson

Rebecca Nelson

“Pesticides are the dominant way in which pests and diseases are managed, in spite of the many downsides to this approach,” says Rebecca. “For resource-limited farmers, this is often not an option. For those who use pesticides, the health impacts hit harder in the tropics, where protective clothing is not the norm. That’s why we’re trying to understand how plants naturally defend themselves, so that we can then tap into this, and learn from nature to breed crops that are resistant to disease.”

With this premise and funding from GCP, Rebecca collaborated with an interdisciplinary international team from USA, The Philippines, Indonesia and Kenya to identify genes associated with disease resistance in maize and rice. Although the project itself ended in 2009, that was far from the end of the story. In many ways, the end of the GCP project was in fact the beginning of life-changing chapters that followed. Thus far, the project has led to several locally developed disease-resistant varieties of rice in Indonesia and maize in Kenya.

We now already know quite a lot about the genetic architecture of several critical diseases, and this knowledge is enough for us to get started on improving the efficiency of resistance breeding”

Dissecting resistance – the genie in the genes
To understand the genetic reason behind resistance, Rebecca and her team used a range of genetic tools to dissect various forms of genetic resistance, understand the mechanisms that the plants use to reduce pathogen success, and identify the genes that provide resistance.

To create a near isogenic line, an organism with the phenotype of interest, often a plant, is crossed with a  standard line of the same plant. The F1 generation is selfed to produce the F2 generation.

NILS explained: To create a near-isogenic line, a plant with the phenotype of interest is crossed with a standard line of the same plant. The F1 (1st filial) generation is thereafter selfed (ie, crossbred within itself) to produce the F2 (2nd filial) generation.

“There has been a lot of work done on sequencing the genomes of rice and maize, so we tapped into this work and combined our team expertise in genetics, pathology and plant breeding to help identify these disease-resistance genes,” says Rebecca. “We used recombination breeding and other genetic techniques to dissect the genomes and identify specific regions that convey disease resistance. We now already know quite a lot about the genetic architecture of several critical diseases, and this knowledge is enough for us to get started on improving the efficiency of resistance breeding. In addition, we’re identifying the genes and the ways they work, so as to interrupt pathogenesis [the manner in which a disease develops]. This involved breeding near-isogenic lines of rice and maize with the genes of interest, infecting these plants with a disease of interest, and monitoring their resistance in the field.”

Identifying genes responsible for resistance
Through this process, the team identified several genomic regions and specific genes responsible for protecting resistant rice plants against rice blast and sheath blight and resistant maize plants against northern and southern leaf blight, grey leaf spot and ear rot.

An underlying objective of the project was to also investigate if some of these genes were responsible not for just one specific disease, but for multiple diseases.

“We were intrigued by the idea of multiple disease resistance, because farmers face a range of diseases in their fields. In maize, we identified a gene associated with resistance to three diseases – southern leaf blight, northern leaf blight and grey leaf spot.”

While the team found several gene loci in both maize and rice that provide resistance to more than one disease, they have so far found little cross-benefit from the work on the two crops. But from their research they have ‘handles’ on the rich diversity of resistance loci in each of the two crops.

“Plant breeders will be able to use this information to breed crops for multiple disease resistance, increasing the security of the crop and farmers’ livelihoods,” says Rebecca.

A 2008 update: A slide from Rebecca's presentation at the GCP General Research Meeting in September of that year.

A 2008 update: a slide from Rebecca’s presentation at the GCP General Research Meeting in September of that year.

Working with that great group of people and being a part of the larger GCP family, which comprises of an amazing talent pool, was really valuable.”

Collaborating with old friends, and new
Rebecca credits her collaborators and support from the GCP family for the success of the project, saying none of the outcomes could have been achieved without everyone playing their part.  “Working with that great group of people and being a part of the larger GCP family, which comprises of an amazing talent pool, was really valuable. I really appreciated that GCP supported my work at a time when I was making a transition in my career. GCP gave me and my team time and inspiration to find our feet. All of our labs are now well established, and we have since been able to diversify our funding sources.”

Project scientists from the Kenya Agricultural Research Institute (KARI) and the Indonesian Centre for Agricultural Resources Research and Development (ICABIOGRAD) reflect the involvement of country agricultural research programmes. Other partners included the International Rice Research Institute (IRRI) and four universities: Bogor Agriculture University in Indonesia and Colorado State, Cornell and North Carolina State Universities, all in USA.

Masdiar Bustamam

A highlight of the project for Rebecca was reconnecting with old colleagues at IRRI, where she had previously worked for eight years. “It was great to involve my IRRI mentor, Hei Leung, and our collaborator Jan Leach, as well as several other IRRI people whom I worked with on several rice disease-resistance projects. It was also great to involve Masdiar Bustamam of ICABIOGRAD. My team at IRRI had worked with her laboratory as she was getting it started. It was such a pleasure to see how far she and her lab had come since our earlier collaboration. They were able to make a significant contribution to the project in advancing the understanding of inheritance of rice blast and sheath blast resistance, and they developed germplasm that has really good resistance to these diseases.”

Having a limited background in maize research before the project began, Rebecca was grateful for her close collaboration with KARI’s James Gethi, who was a lead researcher in Kenya. At the time of the proposal, James was a recent Cornell graduate who was returning home to contribute to his nation’s crop-research capabilities.

“James and I were both getting our maize programmes going and the support was terrific for our labs and for our collaboration. We’ve continued to work together since our GCP project wrapped up.”

Rebecca (left) on a field visit to Kenya in September 2006. On the left is John Okalembo of Moi University, with James Gethi behind the camera.

A partnership of long standing: Rebecca (left) on a field visit to Kenya in September 2006. On the right is John Okalembo of Moi University, with James Gethi behind the camera.

You can’t see it, you can’t taste it, you can’t feel it. The population is being poisoned without knowing about it.”

Continuing projects, tracking a silent cereal killer, and spreading a positive epidemic
One such project, which Rebecca and James have worked tirelessly on, is understanding genetic resistance to aflatoxins in maize. “We were travelling through Kenya together in 2005 when there was an aflatoxin outbreak,” remembers Rebecca. “Ever since, we’ve been obsessed with the problem.”

Aflatoxin is the most carcinogenic natural substance known. It is produced by species of fungi, especially Aspergillus flavus, which can colonise and contaminate grain before harvest or during storage. Maize is particularly susceptible to infection during drought, or when it is attacked by insects, or improperly stored. In 2004, 125 people died in Kenya after eating maize with very high aflatoxin levels.

“This food-safety problem is rigorously and carefully managed in developed countries but less so in cash-strapped developing nations,” says Rebecca. “In tropical countries where maize and groundnuts are often grown under stress and stored under suboptimal conditions, it is a huge problem. Yet you can’t see it, you can’t taste it, you can’t feel it. The population is being poisoned without knowing about it.”

Rebecca and James spent years trying to get support for their work on aflatoxin – the silent cereal killer – and trying to get funding for a graduate student who could take a lead. They made headway while Rebecca was on sabbatical at the Biosciences eastern and central Africa (BecA) Hub in Nairobi. BecA eventually received a major grant from Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO), and Rebecca says a strong team is now tackling the issue.

We’re indebted to GCP for bringing us together to tackle cereal diseases”

“One of our big goals was to support a promising young talent named Samuel Mutiga. I’m delighted to say that he is just finishing his PhD at Cornell now, and has done some terrific work on aflatoxin in collaboration with James and BecA.”

Samuel is one of several PhD students at Cornell who are passionate about improving food safety in Africa by beating the aflatoxin problem. “One American students is working with a Kenyan student in Nairobi to develop an improved spectroscopic grain sorter for people processing their maize at small grain mills. This will allow them to remove the toxic kernels before they mill and eat the grain, something that cannot be done visually.”

Rebecca says it’s “exciting to see this new generation take on this huge challenge. There are more scientists who are coming on board and sharing their expertise. James and I are gratified that we helped ‘infect’ these people with the conviction that something needs to be done and can be done. We’re indebted to GCP for bringing us together to tackle cereal diseases.”

 Links

 

Aug 302014
 
Print Friendly

In ancient Europe, Timbuktu, in Northern Mali, gained fame as a fabled city of knowledge and learning at a far end of the world – snuggled in the Sahara Desert, and almost impossible to get to. And so, then as in our times, the phrase ‘As far as Timbuktu’ came to mean a place that is unimaginably far away, is completely foreign, or is unreachable – at the other end of the earth. Sitting on the left bank of the River Niger on the southern edge of the Sahara, it was not only a seat of learning in the ancient world, but also an important trade and travel stop for merchants as they sought refuge from the desert.

Niaba Teme

Niaba Témé

Timbuktu ticks on today. And if you strike out south and travel 450km from Timbuktu, you would come to the village of Yendouma-Sogol. This is where Niaba Témé, a plant breeder at Mali’s L’Institut d’économie rurale (IER), was born and grew up on the family farm, and where his saga with sorghum began.

“We grew dryland crops like millet, sorghum, cowpeas, groundnuts, Bambara nuts, sesame and dah,” says Niaba. “I used to love harvesting the millet and helping my mother with her groundnut crops.”

Niaba describes the geography and climate of the region as being very harsh. Sandstone cliffs soar from the dusty sun-scorched lower plains where temperatures are only slightly lower than the plateaus, which bake in the intense heat – the daily temperature rarely falls below 30oC. As there is no major river, every single drop of the 500 millimetres of rainfall received each wet season is used for drinking, cropping and livestock husbandry.

“The rains during July and August make farming possible for our people,” says Niaba.“If we did not receive those rains, our crops would suffer and in some years, we were not able to harvest anything.”

Niaba says these crop failures contributed in part to his choosing a career where he could help farmers, like his parents and siblings, protect themselves from the risks of drought and extreme temperatures.

With molecular markers, you can easily see if the plant you’ve bred has the gene related to drought tolerance without having to grow the plant and or risk missing the trait through visual inspection.”

Breeding more sorghum with less water
For the past four years, Niaba and his team at IER have been collaborating with Jean-François Rami and his team at France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), with support from Syngenta complemented by other GCP funding on a project to improve sorghum grain yield and quality for West African farmers.

A sorghum farmer in Mali.

A sorghum farmer in Mali.

Sorghum is an important staple crop for Mali. It is used to make to (a thick porridge), couscous, as well as malted and local beer beverages. “Anytime I talk with farmers, they are always asking for higher-yielding lines and lines that can produce sustainable yields during drought, or do so with less water,” says Niaba. “Since 2008, with the help of CIRAD and Syngenta, we have been learning how to use molecular markers to identify parental lines which are more tolerant and better adapted to the arable and volatile environment of Mali and surrounding areas which receive between 600 and 800 millimetres of rainfall per year. Using molecular markers is new and exciting for us as it will speed up the breeding process. With molecular markers, you can easily see if the plant you’ve bred has the gene related to drought tolerance without having to grow the plant and or risk missing the trait through visual inspection.”

In 2010, Niaba obtained GCP funding to carry out similar research with CIRAD and collaborators at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in Africa. “In this project, we are trying to enhance sorghum grain yield and quality for the Sudano-Sahelian zone of West Africa using the backcross nested association mapping [BCNAM] approach. This involves using an elite recurrent parent that is already adapted to local drought conditions, then crossing it with several different specific or donor parents to build up larger breeding populations. The benefit of this approach is it can lead to detecting elite varieties much faster.”

AB_Mali 2009 (3) 243_w

Niaba (foreground) examining a sorghum panicle at trials in Mali in 2009.

I spent eight months in Hyderabad. It was the first time I had to speak English every day… I spent almost 11 years at the University of Texas Tech, and enjoyed every moment… We have been collaborating with researchers…  in Australia “

Traversing the world seeking knowledge
But to backtrack a bit and find out how Niaba got to where he is today, let’s return to the family farm where he grew up, and where his career inspiration was forged and fired.

With a family background in farming now coupled with a keen interest in science, young Niaba enrolled at L’Institut Polytechnique Rural de Formation et de Recherche Appliquée (IPR/IFRA) at Katiboutou, in Eastern Bamako, Mali to study agronomy. He then went to IER, where, after two years there, he was offered a scholarship to study plant breeding in India.

“I spent eight months in Hyderabad. It was the first time I had to speak English every day so I was enrolled for an intensive English course at the University of Ousmania, Hyderabad, India, for the first two months. I then went on to do six months intensive training in the ICRISAT labs, learning how to set up experiments and collect and analyse data.”

His zest for plant breeding research and knowledge still unquenched, Niaba sought yet another intensive training course, this time in USA. During his time there, he made an impression on local researchers and it wasn’t long before he returned to complete his Bachelor’s, Master’s and PhD in Agronomy at the University of Texas Tech, Texas. “I spent almost 11 years at the University of Texas Tech, and enjoyed every moment. I love the opportunities and freedom that USA offers.”

Despite this attraction, Niaba remained true to Timbuktu and Mali. He left Texas and returned to Mali in January 2007 , where he was rapidly recruited by IER to take charge of their new biotechnology lab at Le Centre Regional de Recherche Agromique (CRRA). Shortly after, he became involved with GCP, working on three projects, one of which would take this native from near (or as far away as?) Timbuktu to yet another far-away place at the opposite end of the world known as Down Under – Australia.

“We have been collaborating with researchers at the Department of Agriculture, Fisheries and Forestry in Queensland, and the University of Queensland, Australia, since 2009, to introduce the stay-green drought-resistant gene into our local sorghum varieties.” says Niaba.

 

Left to right: Niaba Teme (Mali), David Jordan (Australia), Sidi Coulibaly (Mali) and Andrew Borrell (Australia) visiting an experiment at Hermitage Research Facility in Queensland, Australia.

Left to right: Niaba Témé (Mali), David Jordan (Australia), Sidi Coulibaly (Mali) and Andrew Borrell (Australia) visiting an experiment at Hermitage Research Facility in Queensland, Australia.

Sorghum staying-greener with less water
Stay-green is a post-flowering drought adaptation trait that has contributed significantly to sorghum yield stability in northeastern Australia and southern USA for the last two decades. The project has three objectives:

  • To evaluate the stay-green drought resistance mechanism in plant architectures and genetic backgrounds appropriate to Mali
  • To develop sorghum germplasm populations enriched for stay-green genes that also carry genes for adaptation to cropping environments in Mali.
  • To improve capacity of Mali researchers by carrying out training activities for African sorghum researchers in drought physiology and selection for drought adaptation in sorghum.

“In 2012 a colleague and myself were invited to Australia to take this training by Andrew Borrell and David Jordan,” says Niaba. “We learnt about association mapping, population genetics and diversity, molecular breeding, crop modelling using climate forecasts and sorghum physiology, plus a lot more! It was intense but rewarding, more so the fact that we have developed these new drought-tolerant crops which will enhance food security for my country.”

Thus ends today’s chapter in Niaba’s saga with sorghum. We expect to hear more on the latest from Niaba at the GCP General Research Meeting  (GRM) in October, so watch this space!

Meantime, see his slides from GRM 2013 below.

Links

 

 

Aug 292014
 
Print Friendly
One of the greatest challenges of our time is growing more crops to feed more people, but using less water

Sorghum is one of the most ‘efficient’ crops in terms of needing less water and nutrients to grow. And although it is naturally well-adapted to sun-scorched drylands, there is still a need to improve its yield and broad adaptability in these harsh environments. In West Africa, for example, while sorghum production has doubled in the last 20 years, its yield has remained stagnant – and low.

The GCP Sorghum Research Initiative comprises several projects, which are exploring ways to use molecular-breeding techniques to improve sorghum yields, particularly in drylands. All projects are interdisciplinary international collaborations with an original focus on Mali, where sorghum-growing areas are large and rainfall is getting more erratic and variable. Through the stay-green project, the research has since broadened to also cover Burkina Faso, Ethiopia, Kenya, Niger and Sudan.

Using molecular markers is new and exciting for us as it will speed up the breeding process. With molecular markers, you can easily see if the plant you’ve bred has the desired characteristics without having to grow the plant and or risk missing the trait through visual inspection.”

What’s MARS got to do with it?

Niaba Témé is a local plant breeder and researcher at Mali’s L’Institut d’économie rurale (IER). He grew up in a farming community on the southern edge of the Sahara Desert, where crops would constantly fail during drier-than-normal seasons.

Niaba Teme

Niaba Témé

Niaba says these crop failures were in part his inspiration for a career where he could help farmers like his parents and siblings protect themselves from the risks of drought and extreme temperatures.

For the past four years, Niaba and his team at IER have been collaborating with Jean-François Rami and his team at France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), to improve sorghum grain yield and quality for West African farmers. The work is funded by the Syngenta Foundation for Sustainable Agriculture.

“With the help of CIRAD and Syngenta, we have been learning how to use molecular markers to improve breeding efficiency of sorghum varieties more adapted to the variable environment of Mali and surrounding areas which receive less than 600 millimetres of rainfall per year,” he says.

Jean-François Rami

Jean-François Rami

“Using molecular markers is new and exciting for us as it will speed up the breeding process. With molecular markers, you can easily see if the plant you’ve bred has the desired characteristics without having to grow the plant and or risk missing the trait through visual inspection.”

Jean-François Rami, who is the project’s Principal Investigator, has been impressed by the progress made so far. Jean-François is also GCP’s Product Delivery Coordinator for sorghum.

“Since its inception, the project has progressed very well,” says Jean-François. “With the help of the IER team, we’ve been able to develop two bi-parental populations from elite local varieties, targeting two different environments of sorghum cropping areas in Mali. We’ve then been able to use molecular markers through a process called marker-assisted recurrent selection [MARS] to identify and monitor key regions of the genome in consecutive breeding generations.”

The collaboration with Syngenta came from a common perspective and understanding of what approach could be effectively deployed to rapidly deliver varieties with the desired characteristics.

“Syngenta came with their long experience in implementing MARS in maize. They advised on how to execute the programme and avoid critical pitfalls. They offered to us the software they have developed for the analysis of data which allowed the project team to start the programme immediately,” says Jean-François.

Like all GCP projects, capacity building is a large part of the MARS project. Jean-François says GCP has invested a lot to strengthen IER’s infrastructure and train field technicians, researchers and young scientists. But GCP is not the only player in this: “CIRAD has had a long collaboration in sorghum research in Mali and training young scientists has always been part of our mission. We’ve hosted several IER students here in France and we are interacting with our colleagues in Mali either over the phone or travelling to Mali to give technical workshops in molecular breeding. The Integrated Breeding Platform [IBP] has also been a breakthrough for the project, providing to the project team breeding services, data management tools, and a training programme – the Integrated Breeding Multiyear Course [IB–MYC].”

We don’t have these types of molecular-breeding resources available in Mali, so it’s really exciting to be a part of this project… the approach has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to drought… one of the great successes of the project has been to bring together sorghum research groups in Mali in a common effort to develop new genetic resources for sorghum breeding.”

Back-to-back: more for Mali’s national breeding programme

On the back of the MARS project, Niaba successfully obtained GCP funding in 2010 to carry out similar research with CIRAD and collaborators in Africa at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).

“In this project, we are trying to enhance sorghum grain yield and quality for the Sudano-Sahelian zone of West Africa using the backcross nested association mapping (BCNAM) approach,” explains Niaba, who is the Principal Investigator of the BCNAM project. “This involves using an elite recurrent parent that is already adapted to local drought conditions. The benefit of this approach is that it can lead to detecting elite varieties much faster.”

Kirsten Vom Brocke (CIRAD) Michel Vaksmann (CIRAD) Mamoutou Kouressy (IER) Eva Weltzien (ICRISAT) Jean-Francois Rami (CIRAD) Denis Lespinasse (Syngenta) Niaba Teme (IER) Ndeye Ndack Diop (GCP) Ibrahima Sissoko (Icrisat) Fred Rattunde (Icrisat)

A ‘sample’ of the rich mix of international partners in sorghum research: Left to right – Kirsten Vom Brocke (CIRAD), Michel Vaksmann (CIRAD), Mamoutou Kouressy (IER), Eva Weltzien (ICRISAT), Jean-François Rami (CIRAD), Denis Lespinasse (Syngenta), Niaba Teme (IER), Ndeye Ndack Diop (GCP Capacity Building Leader), Ibrahima Sissoko and Fred Rattunde (both from ICRISAT).

Eva Weltzien has been the Principal Scientist for ICRISAT’s sorghum breeding programme in Mali since 1998. She says the project aligned with much of the work her team had been doing, so it made sense to collaborate considering the new range of sorghum genetic diversity that this approach aims to use.

“We’ve been working with Niaba’s team to develop 100 lines for 50 populations from backcrosses carried out with 30 recurrent parents,” explains Eva. “These lines are being genotyped by CIRAD. We will then be able to use molecular markers to determine if any of these lines have the traits we want. We don’t have these types of molecular-breeding resources available in Mali, so it’s really exciting to be a part of this project.”

Eva Weltzien (holding sheet of paper) presenting to Mali's Minister of Agriculture (in white cap) a graph on the superiority of new guinea race hybrids. Also on display are panicles and seed of the huybrids and released varieties of sorghum in Mali. The occasion was an annual field day at ICRISAT's research station at Samanko, Mali.

An annual field day at ICRISAT’s research station at Samanko, Mali. Eva Weltzien (holding sheet of paper) showing Mali’s Minister of Agriculture, Tiemoko Sangare, (in white cap) a graph on the superiority of new guinea race hybrids. Also on display are panicles and seed of the hybrids and released varieties of sorghum in Mali.

Eva says that the approach has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to drought.

For Jean-François, one of the great successes of the project has been to bring together sorghum research groups in Mali in a common effort to develop new genetic resources for sorghum breeding.

“This project has strengthened the IER and ICRISAT partnerships around a common resource. The large multiparent population that has been developed is analysed collectively to decipher the genetic control of important traits for sorghum breeding in Mali,” says Jean-François.

 Plants with this ‘stay-green’ trait keep their leaves and stems green during the grain-filling period. Typically, these plants have stronger stems, higher grain yield and larger grain.”

Sorghum staying green and strong, with less water

In February 2012, Niaba and his colleague, Sidi B Coulibaly, were invited to Australia as part of another Sorghum Research Initiative project they had been collaborating on with CIRAD, Australia’s University of Queensland and the Queensland Department of Agriculture, Fisheries and Forestry (QDAFF).

“We were invited to Australia for training by Andrew Borrell and David Jordan, who are co-Principal Investigators of the GCP stay-green sorghum project,” says Niaba.

Left to right: Niaba Teme (Mali), David Jordan (Australia), Sidi Coulibaly (Mali) and Andrew Borrell (Australia) visiting an experiment at Hermitage Research Facility in Queensland, Australia.

Left to right: Niaba Témé (Mali), David Jordan (Australia), Sidi Coulibaly (Mali) and Andrew Borrell (Australia) visiting an experiment at Hermitage Research Facility in Queensland, Australia.

“We learnt about association mapping, population genetics and diversity, molecular breeding, crop modelling using climate forecasts, and sorghum physiology, plus a lot more. It was intense but rewarding – more so the fact that we understood the mechanics of these new stay-green crops we were evaluating back in Mali.”

It wasn't all work and there was clearly also time to play, as we can see her., Sidi Coulibaly and Niaba Teme visiting with the Borrell family in Queensland, Australia.

It wasn’t all work and there was clearly also time to play, as we can see here., where Sidi Coulibaly and Niaba Témé are visiting the Borrell family in Queensland, Australia.

Stay-green is a post-flowering drought adaptation trait that has contributed significantly to sorghum yield stability in northeastern Australia and southern USA over the last two decades.

Andrew has been researching how the drought-resistant trait functions for almost 20 years, including gene discovery. In 2010, he and his colleague, David Jordan, successfully obtained funding from GCP to collaborate with IER and CIRAD to develop and evaluate drought-adapted stay-green sorghum germplasm for Africa and Australia.

“Stay-green sorghum grows a canopy that is about 10 per cent smaller than other lines. So it uses less water before flowering,” explains Andrew. “More water is then available during the grain-filling period. Plants with this ‘stay-green’ trait keep their leaves and stems green during the grain-filling period. Typically, these plants have stronger stems, higher grain yield and larger grain.”

Andrew says the project is not about introducing stay-green into African germplasm, but rather, enriching the pre-breeding material in Mali for this drought-adaptive trait.

The project has three objectives:

  1. To evaluate the stay-green drought-resistance mechanism in plant architecture and genetic backgrounds appropriate to Mali.
  2. To develop sorghum germplasm populations enriched for stay-green genes that also carry genes for adaptation to cropping environments in Mali.
  3. To improve the capacity of Malian researchers by carrying out training activities for African sorghum researchers in drought physiology and selection for drought adaptation in sorghum.

…we have found that the stay-green trait can improve yields by up to 30 percent in drought conditions with very little downside during a good year, so we are hoping that these new lines will display similar characteristics”

Expansion and extension:  beyond Mali to the world

Andrew explains that there are two phases to the stay-green project. The project team first focused on Mali. During this phase, the Australian team enriched Malian germplasm with stay-green, developing introgression lines, recombinant inbred lines and hybrids. Some of this material was field-tested by Sidi and his team in Mali.

“In the past, we have found that the stay-green trait can improve yields by up to 30 percent in drought conditions with very little downside during a good year, so we are hoping that these new lines will display similar characteristics,” says Andrew. “During the second phase we are also collaborating with ICRISAT in India and now expanding to five other African countries – Niger and Burkina Faso in West Africa; and Kenya, Sudan and Ethiopia in East Africa. During 2013, we grew our stay-green enriched germplasm at two sites in all these countries. We also hosted scientists from Burkina Faso, Sudan and Kenya to undertake training in Queensland in February 2014.”

 

A sampling of some of stay-green sorghum partnerships in Africa. (1)  Asfaw Adugna assessing the genetic diversity of  sorghum panicles produced from the GCP collaboration at Melkassa, Ethiopia. (2)  Clarisse Barro-Kondombo (Burkina Faso) and Andrew Borrell (Australia) visiting a lysimeter facility in Hyderabad, India, as part of GCP training. (3) Clement Kamau (Kenya, left) and  Andrew Borrell (Australia, right) visiting the seed store at the Kenya Agricultural Research Institute (KARI) in Katumani, Kenya.

A sampling of some of stay-green sorghum partnerships in Africa. (1) Asfaw Adugna of the Ethiopian Institute of Agricultural Research (EIAR)  assessing the genetic diversity of sorghum panicles produced from the GCP collaboration at Melkassa, Ethiopia. (2) Clarisse Barro-Kondombo (left, INERA – Institut de l’environnement et de recherches agricoles , Burkina Faso) and Andrew Borrell (right) visiting a lysimetre facility at ICRISAT’s headquarters in Hyderabad, India, as part of GCP training, in February 2013. (3) Clement Kamau (left, Kenya Agricultural Research Institute [KARI] ) and Andrew Borrell (right) visiting the seed store at KARI, Katumani, Kenya.

Andrew says that the collaboration with international researchers has given them a better understanding of how stay-green works in different genetic backgrounds and in different environments, and the applicability is broad. Using these trial data will help provide farmers with better information on growing sorghum, not just in Africa and Australia, but also all over the world.

“Both David and I consider it a privilege to work in this area with these international institutes. We love our science and we are really passionate to make a difference in the world with the science we are doing. GCP gives us the opportunity to expand on what we do in Australia and to have much more of a global impact.”

We’ll likely be hearing more from Andrew on the future of this work at GCP’s General Research Meeting (GRM) in October this year, so watch this space! Meantime, see slides below from GRM 2013 by the Sorghum Research Initiative team. We also invite you to visit the links below the slides for more information.

Links

Aug 292014
 
Print Friendly

“…I wanted to contribute in a similar way” – Eva Weltzien

 

Eva Weltzien

Eva Weltzien

Learning about the work of Nobel laureate, Norman Borlaug, in high school inspired Eva Weltzien to become a plant breeder so she too could contribute to improving the living conditions in the developing world. Today, Eva is a Principal Scientist in sorghum breeding and genetic resources at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in Mali.

“Not only did Norman Borlaug revolutionise agriculture by breeding high-yielding wheat varieties, he then selflessly distributed these to the countries in the world that most needed them, saving hundreds of millions from starvation,” Eva recollects passionately, as she speaks about her scientific hero. “I remember being inspired when he won his Nobel Prize in 1970, mainly for the fact that agricultural research was actually being seen as contributing to world peace,” says Eva. “I knew then that I wanted to contribute in a similar way.”

I…wanted to take a break from… theory and instead gain an appreciation for plant breeding by working in the field”

The path to plant breeding, and pearls along the way
Eva was raised in her native Germany, as well as in Beirut, Lebanon, where she spent six years when her parents were stationed at the local university there. She credits her parents; both plant pathologists, for instilling in her a scientific mind-set from a tender age.

“They taught me to think outside the box and apply my knowledge and understanding to how I made sense of the world,” Eva recalls. “Being plant pathologists, they also encouraged me to observe the environment carefully and treat the earth with respect.”

Upon graduating from high school, Eva deferred going to university and instead worked as a seed technician for a private company in Germany. “I just wanted to take a break from studying theory and instead gain an appreciation for plant breeding by working in the field,” says Eva.

After one year with the company, Eva was ready to start university. During the decade that followed, she completed a Diploma in Agricultural Biology (University of Hohenheim, 1981) and a PhD in Agriculture (Munich University, 1986).

A year after completing her PhD, Eva accepted a postdoc position at Iowa State University, USA, where she met her future husband Fred Rattunde. After a few years, both Eva and Fred moved to India to work with ICRISAT. “I’ve been working for ICRISAT for almost 27 years now,” says Eva. “When I first started, I was working in pearl millet breeding.”

The key challenges have been improving the infrastructure of the national research facilities… as well as increasing the technical training for local researchers…this has slowly improved, particularly in the last four years with the funding and help through the GCP Sorghum Research Initiative.…we can see our work making an impact on people’s lives…”

Off to Africa, and bearing fruit
In 1998, ICRISAT offered Eva and Fred positions in Mali where they would take responsibility for the Institute’s sorghum-breeding programme in West Africa.

OLYMPUS DIGITAL CAMERA

Evaluating Eva: In Dioila district, Mali, evaluating the panicles of a new sorghum line after harvest.

“It was a great challenge that we both wanted to explore,” says Eva. “The key challenges have been improving the infrastructure of the national research facilities to do the research as well as increasing the technical training for local agronomists and researchers. Over the past 15 years, this has slowly improved, particularly in the last four years, with the funding and facilitation through the GCP Sorghum Research Initiative. Now we can see our work making an impact on people’s lives in West Africa.” (see GCP’s work on infrastructure improvement)

…we are closer to delivering more robust sorghum varieties which will help farmers and feed the ever-growing population in West Africa.”

Improving drought tolerance in sorghum for Africa
The second phase of GCP’s Sorghum Research Initiative focuses on Mali, where sorghum-growing areas are large, and distributed over a wide range of rainfall regimes.

Eva and her team are currently collaborating with local researchers at L’Institut d’économie rurale (IER), Mali and France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD) on a project to test a novel molecular-breeding approach – backcross nested association mapping (BCNAM). Eva says the approach has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to poor soil fertility conditions.

“We don’t have these type of molecular-breeding resources available in Mali, so it’s really exciting to be a part of this project.”  Still, Eva and her colleagues continue to press forwards in this new frontier in plant science, making good advances in another parallel but closely related project that Eva leads in the GCP Comparative Genomics Research Initiative.

Eva continues, “We’ve had good results in terms of field trials, despite the political situation. Overall, we feel the experience is enhancing our capacity here in Mali, and that we are closer to delivering more robust sorghum varieties which will help farmers and feed the ever-growing population in West Africa.”

Slides (with more links after the slides)

Links

Aug 272014
 
Print Friendly
Leon Kochian

Leon Kochian

“By being involved with GCP, I’ve had more opportunities to travel to the developing world and witness the problems that local farmers in these countries are facing, as well as to meet with the local researchers who are trying to overcome these problems. It has made me appreciate that these  researchers also need the capacity to sustainably deal with agricultural problems once the project money starts to dry up.” – Leon Kochian (pictured), Professor, Cornell University, USA; and Director of Robert W Holley Center for Agriculture and Health, United States Department of Agriculture – Agricultural Research Service. Also Product Delivery Leader for GCP’s Comparative Genomics Research Initiative.

Bright and early beginnings in biology
For as long as Leon Kochian can remember, he’d always wanted to be a biologist.

“I remember my second-grade teacher reading a story to us about the white cliffs of Dover and thinking to myself ‘They’re white because they’re covered in the prehistoric remains of dead protozoan’,”’ says Leon with a chuckle. “Yes, I was a weird kid and that sort of stuff [biology] has always interested me.”

Having completed a Bachelor’s Degree in Botany at the University of California, Berkeley, and a PhD in Plant Physiology at the University of California, Davis (both in USA), Leon joined the United States Department of Agriculture based at Cornell University.

For 30 years, he has combined lecturing and supervising duties at Cornell, with his quest to understand the genetic and physiological mechanisms that allow some cereals to tolerate acidic soils.

The GCP model has always attracted me, particularly its focus on making an impact on farmers’ lives… I had already been a successful researcher having published more than 250 papers, but I felt little of that had made any real impact on the world.”

Identifying genes and breeding tolerant crops for African farmers
Leon and Cornell University have been involved with GCP since the Programme’s inception in 2004, playing a lead role in GCP’s Comparative Genomics Research Initiative, of which Leon is the Product Delivery Coordinator. Cornell University is a member of the GCP Consortium, with Leon as Cornell’s representative in the GCP Consortium Committee.

“The GCP model has always attracted me, particularly its focus on making an impact on farmers’ lives,” says Leon, who has been a Principal Investigator for several Comparative Genomics Research Initiative projects. “I had already been a successful researcher having published more than 250 papers, but I felt little of that had made any real impact on the world.”

During the first phase of the project, Leon led a team comprising of researchers from Cornell, EMBRAPA in Brazil and Moi University in Kenya.

In the foreground, left to right, Leon, Jura and Sam in a maize field in Kenya.

Leon (left) with project colleagues, Jurandir Magalhães (EMBRAPA) and Sam Gudu (Moi University) in a maize field in Kenya in May 2010.

“We had been working for many years with both EMBRAPA and Moi University to identify the genes associated with aluminium tolerance in sorghum and maize and saw the potential to apply our research and expand it to explore other cereals such as rice and wheat,” explains Leon.

During GCP Phase I (2004–2008), the team successfully identified and cloned the major sorghum aluminium tolerance gene (AltSB). In Phase II (2009–2014), they are working towards breeding aluminium-tolerant sorghum lines for sub-Saharan Africa as well as applying what they have learnt to discover similar genes in rice and maize.

“Aluminium toxicity is a problem all over the world, but more so in Africa, as most farmers don’t have the money to manage it,” says Leon “These new aluminium-tolerant crops will improve African farmers’ yields, and, in turn, improve their quality of life.”

It’s like match.com for collaborative research and will hopefully foster greater collaboration between the two continents.”

Insights, connections and matchmaking
According to Leon, the funding from GCP has been very beneficial in making significant research progress on the projects he’s been involved with so far, and he is also quick to note the unexpected and very welcome non-monetary benefits from being involved with GCP.

“By being involved with GCP, I’ve had more opportunities to travel to the developing world and witness the problems that local farmers in these countries are facing, as well as to meet with the local researchers who are trying to overcome these problems. It has made me appreciate that these  researchers also need the capacity to sustainably deal with agricultural problems once the project money starts to dry up.”

Working with GCP, Leon has designed and run workshops to train African scientists on molecular breeding techniques and hosted several postgraduate researchers at Cornell. He is now working with GCP collaborators to develop a database that will help African scientists find potential collaborators in USA and the rest of the Americas. “It’s like match.com for collaborative research and will hopefully foster greater collaboration between the two continents,” says Leon.

Research is such a fun and social experience! … I still love getting into the lab and discovering new things. I’ve also learnt to enjoy being the old guy in the lab!”

Growing greyer, growing wiser
Leon says his passion for biology and research is steadfast and has not waned through the years. Although he doesn’t get to do much of the hands-on work these days, it still remains the most enjoyable part of his job. “Research is such a fun and social experience! I still love getting into the lab and discovering new things. I’ve also learnt to enjoy being the old guy in the lab! Just watching and helping young researchers grow and develop their skills is really rewarding. Each of the 13 PhD students I’ve supervised is like one of my kids and I still keep in touch with all of them, as I do with my own PhD supervisor, 30 years on!”

Having recently celebrated his 60th birthday, Leon has no plans on slowing down anytime soon. “I’m currently Director of the Robert W Holley Center for Agriculture and Health, lecturing undergraduate and postgraduate students, supervising two PhD students and sitting on several boards, all the while trying to find time to write papers and do some research. It’s hard work but I enjoy it.”

The three faces of Leon: (1) in the lab in Cornell; (2) in the field courtesy of USDA-ARS; and, (3) delivering opening remarks as Director of the Robert W Holley Center

The three faces of Leon: (1) in the lab in Cornell; (2) in the field, courtesy of USDA–ARS; and, (3) delivering opening remarks as Director of the Robert W Holley Center.

Leon tries to impart this philosophy to his students, believing scientists need to enjoy what they are doing, work hard at it, be flexible and creative, and, most importantly, not have ‘fear of failure’. “I don’t care how smart you are. If you’re not willing to work really hard and learn to improve yourself, then you’re not going to succeed.”

With regard to his GCP projects soon coming to a close when GCP sunsets in December 2014, Leon hopes he and team will succeed in meeting all their goals, but even if they don’t, he’s sure they’ll continue the research and try to discover more about aluminium tolerance. More power to them!

Leon’s slides, with links to more supplementary material after the slides

Links

Aug 152014
 
Print Friendly

 

Samuel Gudu

Samuel Gudu

Having funding to support PhD students and provide them with the resources they need to complete their research is very fulfilling and will go a long way to enhance the long-term success of our goal: to provide Kenyan farmers with cereal varieties that will improve their yields and make their livelihood more secure and sustainable.” – Samuel Gudu, Professor and Deputy Vice-Chancellor (Planning & Development) at Moi University, and now Principal, Rongo University College: a Constituent College of Moi University, Kenya.

Growing up, and getting dirty
Learner, teacher and leader. Sam Gudu has been all these, but this doesn’t mean he doesn’t like to get his hands dirty.

Growing up in a small fishing village on the banks of Lake Victoria, in Western Kenya, Sam was always helping his parents to fish and garden, or his grandparents to muster cattle.

“I remember spending long hours before and after school either on the lake or in the field helping to catch, harvest and produce enough food to eat and support our family,” reminisces Sam.

He attributes this “hard and honest” work to why he still enjoys being in the field.

“Even though I now spend most of my days doing administration work, I’m always trying to get out into the field to get my hands dirty and see how our research is helping to make the lives of Kenyan farmers a lot more profitable and sustainable,” he says.

Sam in a maize field in Kenya.

Doing what he likes to do best: Sam in a maize field in Kenya.

I was… captivated by the study of genetics as it focused on what controlled life.”

Taking control: bonded to genetics, at home and away
Sam says his love for the land transferred to an interest and then passion in the classroom during high school. “I became very interested in Biology as I wanted to know how nature worked,” says Sam. “I was particularly captivated by the study of genetics as it focused on what controlled life.”

This interest grew during his undergraduate years at the University of Nairobi where he completed a Bachelor of Science in Agriculture and a Master’s of Science in Agriculture, focusing on genetics and plant breeding.

“I fondly remember a lecturer during my master’s degree studies who would continually give us challenges to test in the field and in the lab. If you had a viable idea he supported you to design an experiment to test your theory. I like to use the same method in teaching my students. I discuss quite a lot with my students and I encourage them to disagree if they use scientific process.”

Driven by an ever-growing passion and enthusiasm, Sam secured a scholarship to travel to Canada to undertake a PhD in Plant Genetics and Biotechnology at the University of Guelph.

[There has been an] influx of young Kenyans who are choosing degrees in science. The Kenyan Government has recently increased its funding for science and research…”

Nurturing the next breed of geneticists
After graduating from Guelph in 1993, Sam returned to Kenya to lecture at Moi University where he initiated and helped expand teaching and research in the disciplines of Genetic Engineering, Biotechnology and Molecular Biology.

In the past two decades, he has recruited young talented graduates in genetics and helped acquire advanced laboratory equipment that has enabled practical teaching and research in molecular biology.

“I wouldn’t be where I am now were it not for all the assistance I received from my teachers, lecturers and supervisors; notably my PhD supervisor – Prof Ken Kasha of the University of Guelph. So I’ve always tried my best to give the same assistance to my students. It’s been hard work but very rewarding, especially when you see your students graduate to become peers and colleagues.” (Meet some of Sam’s students)

Sam (2nd right), with some of his young charges: Thomas Matonyei (far left) , Edward Saina (2nd left) and Evans Ouma (far right)

Sam (2nd right), with some of his young charges: Thomas Matonyei (far left), Edward Saina (2nd left) and Evans Ouma (far right).

Sam is particularly buoyed by the influx of young Kenyans who are choosing degrees in science.

“The Kenyan Government has recently increased its funding for science and research to two percent of GDP,” explains Sam. “This has not only helped us compete in the world of research but has helped raise the profile of science as a career.”

Knowing which genes are responsible for aluminium tolerance will allow us to more precisely select for aluminium tolerance in our breeding programmes, reducing the time it takes for us to breed varieties that will have improved yields in acidic soils without the use of costly inputs such as lime or fertiliser.” (See the work that Sam does in this area with other partners outside Kenya)

So far we have produced 10 inbred lines that are outstanding for phosphorus efficiency, and two that were outstanding for aluminium toxicity. We are now testing unique verities developed for acid soils of Kenya.”

Slashing costs, increasing yields and resilience: genes to the rescue
Currently, Sam and his team of young researchers at Moi University are working with several other research facilities around the world (Brazilian Agricultural Research Corporation, EMBRAPA; Cornell University, USA; the International Rice Research Institute (IRRI); Japan’s International Research Center for Agricultural Sciences, JIRCAS; and the Kenya Agricultural Research Institute, KARI–Kitale) to develop high-yielding maize varieties adapted to acid soils in East Africa, using molecular and conventional breeding approaches.

Can you spot Sam? It’s a dual life. Here, he sheds his field clothes in this 2011 suit-and-tie moment with Moi University and other colleagues involved in the projects he leads. Left to right: P Kisinyo, J Agalo, V Mugalavai, B Were, D Ligeyo, S Gudu, R Okalebo and A Onkware.

Acid soils cover almost 13 per cent of arable land in Kenya, and most of the maize-growing areas in Kenya. In most of these areas, maize yields are reduced by almost 60 per cent. Aluminium toxicity is partly responsible for the low and declining yields.

“We found that most local maize varieties and landraces grown in acid soils are sensitive to aluminium toxicity. The aluminium reduces root growth and as such the plant cannot efficiently tap into native soil phosphorus, or even added phosphorus fertiliser. However, there are some varieties of maize that are suited to the conditions even if you don’t use lime to improve the soil’s pH. So far we have produced 10 inbred lines that are outstanding for phosphorus efficiency, and two that were outstanding for aluminium toxicity. We are now testing unique varieties developed for acid soils of Kenya.”

Sam (left)   a group of farmers and alking to farmers and researchers at Sega, Western Kenya, in June 2009

Sam (left) addressing a mixed group of farmers and researchers at Sega, Western Kenya, in June 2009.

In a related project, Sam is working with the same partners to understand the molecular and genetic basis for aluminium tolerance.

“Knowing which genes are responsible for aluminium tolerance will allow us to more precisely select for aluminium tolerance in our breeding programmes, reducing the time it takes for us to breed varieties that will have improved yields in acidic soils without the use of costly inputs such as lime or fertiliser.”

 … my greatest achievements thus far have been those which have benefited farmers and my students.”

 Summing up success
For Sam, the greatest two successes in his career have not been personal.

“If I’m honest, I have to say my greatest achievements thus far have been those which have benefited farmers and my students. Having funding to support PhD students and provide them with the resources they need to complete their research is very fulfilling and will go a long way to enhance the long-term success of our goal: to provide Kenyan farmers with cereal varieties that will improve their yields and make their livelihoods more secure and sustainable.”

With a dozen aluminium-tolerant and phosphorus-efficient breeding lines under their belt already, and two lines submitted for National Variety Trials (a pre-requisite step to registration and release to farmers), Sam and his team seem well on their way towards their goal, and we wish them well in their quest and labour.

Links: