Nov 202013
 
Chiedozie Egesi

Chiedozie Egesi

Despite the social injustice around me, I always thought there was opportunity to improve people’s lives…GCP helped us to build an image for ourselves in Nigeria and in Africa, and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.”
 
– Chiedozie Egesi, a would-have-been surgeon who switched sides to biology and crop genetics, and who got acquainted with GCP through the Internet.

Backdrop: A booming economy and a wealth of natural resources may be among some of the common preconceptions of the average Jane and Joe regarding Africa’s most populous nation. Lamentably, however, Nigeria, like numerous robust economies worldwide, is still finding its feet in addressing severe inequality and ensuring that the nation’s wealth also flows to the poorest and most marginalised communities.

It’s a problem Chiedozie Egesi (pictured above), a molecular plant breeder at Nigeria’s National Root Crops Research Institute (NRCRI), understands well: “Nigeria is an oil-producing country, but you still see grinding poverty in some cases. Coming from a small town in the Southeast of the country, I grew up in an environment where you see people who are struggling, weak from disease, poor, and with no opportunities to send their children to school,” he reveals. The poverty challenge, he explains, hits smallholder farmers particularly hard: “Urban ‘development’ caught up with them in the end: some of them don’t even have access to the land that they inherited, so they’re forced to farm along the street.”

Maturing cassava fruits.

Food first! A man with a mission and fire in his belly, determined to make a difference
For this gifted and socially conscious young man, however, the seemingly bleak picture only served to ignite a fierce determination and motivation to act: “Despite the social injustice around me, I always thought there was opportunity to improve people’s lives.” And thus, galvanised by the plight of the Nigerian smallholder, plans for a career in medical surgery were promptly shelved, and traded for biological sciences and a PhD in crop genetics, a course he interspersed with training stints at USA’s Cornell University and the University of Washington, Seattle, along the way, before returning to the motherland to accept a job as head of the cassava breeding team, and – following a promotion in 2010 – Assistant Director of the Biotechnology Department, at NRCRI.

As evident from the burgeoning treasure chest of research gems to his name, it was a professional detour which paid off, and which continues to bear fruit today.

Making a marked difference, cultivating new partnerships, and looking beyond subsistence
In 2010, work by Chiedozie and his NRCRI team resulted in the official release of Africa’s first molecular-bred cassava variety which was both disease-resistant and highly nutritious – an act they followed in 2012 with the release of a high-starch molecular-bred variety. The team’s astute navigation of molecular markers resulted in breeding Latin American cassava varieties resistant to cassava mosaic disease (CMD), leading to the release of CMD-resistant cassava varieties in the African continent for the first time. Genetic maps intended to enhance breeding accuracy for cassava – the first of their kind for the crop in Africa – have been produced, and quantitative trait loci (QTLs) for cassava breeding are in the making. In 2011, the team, together with their partners at the International Institute of Tropical Agriculture (IITA) and HarvestPlus (a CGIAR Challenge Programme), released three pro-vitamin A-rich varieties of cassava, which hold the potential to provide children under five and women of reproductive age with up to 25 percent of their daily vitamin A allowance – a figure Chiedozie and his team are now ambitiously striving to increase to 50 percent.

These new and improved varieties – all generated as a direct or indirect result of his engagement in GCP projects – are, Chiedozie says, worth their weight in gold: “Through these materials, people’s livelihoods can be improved. The food people grow should be nutritious, resistant and high-yielding enough to allow them sell some of it and make money for other things in life, such as building a house, getting a motorbike, or sending their kids to school.”

Prior to my GCP work, I was more or less a plant breeder, and a conventional one at that. Whilst I’d been exposed to molecular tools during my early work on yam and other crops, I was not applying them in my work back then…GCP was not only there to provide technology but also to guide you in how to operate that technology… Now all our staff understand what is meant by good breeding, data analysis or applying genotypic data. My whole team benefitted.”

A chance ‘meeting’, with momentous manifold connections
Having first stumbled across the GCP website by chance when casually surfing the internet one day in a cyber café back in 2004, Chiedozie’s attention was caught by an announcement for a plant breeders’ training course in South Africa, an opportunity which he applied for on the off chance…and for which, hey presto!, he was accepted! Thus, his GCP ‘adventure’ began!

Chiedozie Egesi (left) and Emmanuel Okogbenin (right) in a cassava field.

Chiedozie Egesi (left) and Emmanuel Okogbenin (right) in a cassava field.

Promptly revealing an exceptional craftsmanship for all things cassava, Chiedozie soon became engaged in subsequent opportunities, including a one-year GCP fellowship at the International Centre for Tropical Agriculture (CIAT) in Colombia, a number of GCP Capacity building à la carte-facilitated projects, and, more recently, a major role as a Principal Investigator in the GCP Cassava Research Initiative (RI), teaming up with NRCRI colleague and Cassava RI Product Delivery Coordinator, Emmanuel Okogbenin. The Cassava RI is where Chiedozie’s energies are primarily invested at present, with improving and deploying markers for biotic stresses in cassava being the name of the game.

The significance of his GCP engagements was, Chiedozie affirms, momentous: “Prior to my GCP work, I was more or less a plant breeder, and a conventional one at that. Whilst I’d been exposed to molecular tools during my early work on yam and other crops, I was not applying them in my work back then.”

Collaboration in a GCP-funded project with CIAT led to the development of a new laboratory space for NRCRI, bolstered by support for basic materials as well as training. “GCP was not only there to provide technology but also to guide you in how to operate that technology,” Chiedozie comments. (For more on how it all began, see At home and to go and Molecular bonds in pp 26–29 in this e-book)

GCP’s Integrated Breeding Platform (IBP), he says, has played a vital role in this regard: “By opening the door to training, generation of data, analysis of data, and by giving support in making decisions, GCP’s IBP serves as a one-stop shop for cassava breeding.” It’s a sentiment shared by his NRCRI colleagues, he says: “GCP is providing a comprehensive full-package deal. Besides myself, several colleagues have been trained at NRCRI. Now all our staff understand what is meant by good breeding, data analysis or applying genotypic data. My whole team benefitted.”

A real deal-breaker is the facilitation of self-empowerment amongst national programmes, and the new avenues unfolding for enhanced collaboration at the local, national and regional level…What we’re seeing is a paradigm shift. In the past there was a general belief that this kind of advanced molecular science was only feasible in the hands of CGIAR Centres or developed-country research institutes – the developing-country programmes were never taken seriously. When the GCP opportunity to change this came up we seized it, and now the developing-country programmes have the boldness and capacity to do molecular breeding and accurate phenotyping for themselves.”

Growth in numbers, capital, capacity, collaboration, reach and impact
Strength in numbers, Chiedozie says, is a vital lifeline for cassava, a crop which has suffered years of financial neglect. As such, a real deal-breaker in Chiedozie’s eyes is the facilitation of self-empowerment amongst national programmes, and the new avenues unfolding, thanks to his involvement in the GCP cassava breeding Community of Practice (CoP), for enhanced collaboration at the local, national and regional level: “We now have a network of cassava breeders that you can count on and relate with in different countries. This has really widened our horizons and also made work more visible,” he offers, citing effective links formed with Ghana, Sierra Leone, Liberia, Mozambique, Malawi and Côte d’Ivoire, amongst several other cassava-breeding neighbours near and far.

Cassava leaf

Cassava leaf

The achievements amongst this mushrooming community are, he stresses, unprecedented: “Participation in the CoP means many countries can now create their own hybrids and carry out their own selection, which they could not do before,” he affirms.

And it’s a milestone Chiedozie and colleagues are justifiably proud of: “What we’re seeing is a paradigm shift. In the past there was a general belief that this kind of advanced molecular science was only feasible in the hands of CGIAR Centres or developed-country research institutes – the developing-country programmes were never taken seriously. When the GCP opportunity to change this came up we seized it, and now the developing-country programmes have the boldness and capacity to do molecular breeding and accurate phenotyping for themselves,” Chiedozie confirms.

GCP helped us to build an image for ourselves in Nigeria and in Africa, and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.” 

Building on success, going from strength to strength as the sands shift

With internal capacity now blossoming of its own accord – in no small measure due to the leading role played by NRCRI in the sensitisation of cassava plant breeders throughout Nigeria and beyond – the sands are certainly shifting: “GCP helped us to build an image for ourselves in Nigeria and in Africa, and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.”

Anthony Pariyo (left) of NaCRRI, Uganda

Visitors with working clothes on: NaCRRI Uganda’s Anthony Pariyo (left) and Williams Esuma (right) visiting NRCRI Umudike on a breeder-to-breeder visit in July 2012. Williams’ postgraduate studies were funded by GCP through the cassava CoP.

And the beauty of it, Chiedozie continues, is that the cassava crew is going from strength to strength: “Nigeria is seen as a really strong cassava-breeding team, not only within Africa but also globally. And we have not yet realised all the benefits and potential – these are still unfolding,” he enthuses.

Also yet to unfold are Chiedozie’s upcoming professional plans, which, he reveals, will soon see him engaging with the USA’s Cornell University, the Bill & Melinda Gates Foundation, the International Institute of Tropical Agriculture (IITA) and Uganda’s National Crop Resources Research Institute (NaCRRI) in an initiative which, through its focus on genomic selection in cassava breeding, promises to be, Chiedozie reveals, “at the frontier of cutting-edge technology.” Genomic selection for this initiative is already underway.

Readers intrigued by this tantalising taster of what to expect in Chiedozie’s next professional chapter are encouraged to watch this space over the coming years…Judging by his remarkable research record to date, we feel confident that future installments will not disappoint!

Meantime, here’s Chiedozie’s presentation at the GCP General Research Meeting in September 2013. We are also working on videos of Chiedozie and his work. Yet more reason to watch this space!

Links
  • For a picture of Chiedozie’s work near the beginning in 2006, see pp 26–29 here (At home and to go and Molecular bonds)
  • More recent updates are on the Cassava InfoCentre

 

Nov 122013
 

 

 

Participants at the 2013 GRM. High-resolution version on Flickr: http://bit.ly/1fxhkmQ

Participants at the 2013 GRM. High-resolution version on our Flickr account.

The General Research Meeting (GRM) is by far the largest and most important event on our calendar. This year’s GRM was held on September 27‒30 2013, with 135 people from 35 countries attending (see list).

Various presentations were made on progress and next steps on research in GCP projects, including for GCP’s Integrated Breeding Platform (IBP). Focus was on GCP’s nine focus crops in Phase II – beans, cassava, chickpeas, cowpeas, groundnuts, maize, rice, sorghum and wheat, with the poster sessions adding a couple more (see ‘sixty posters’ below). You can view the presentations made on our website  (to see them in the context of the overall agenda), or on SlideShare (all gathered in one place).  We have uploaded all but one presentation, where we’re still waiting for the presenter’s permission to publish. A comprehensive update on all GCP projects is here (PDF). The meeting was a blend of plenary sessions on core topics and research updates, and ‘drill-down’ breakouts on crops, data management and capacity building (the last two, in the context of IBP’s proposed Phase II, which had its own dedicated one-day stakeholder meeting after GRM, on 1st October).DSC07162_w

Social were we…but we also did some heavy lifting
We didn’t just talk to ourselves: we made a bit of noise on social media to also bring in other voices into the GRM discourse and chit-chat, using the hashtag #GRM13, creating a good buzz of conversations. Also linking in to GRM were our LinkedIn followers. And neither was it all business, science and rigid structure: there was free-flow too, with an open afternoon where participants could take a relaxing break, organise their own meetings, or take a tour to Lisbon. Some of the scenes from the tour are posted on Flickr, as are other snapshots from the meeting. We’ve since gathered up some of the social media posts on Storify.

GRM was far from its grim-sounding  abbreviation and hashtag on social media:  exemplifying the best of the ‘GCP spirit’,  the sessions were engaging, relaxed, conversational and spiced with humour and a light touch, despite the ‘heavy’ topics under discussion (see agenda). But the topic at hand was grim, since the situation is dire – drought affects almost all crops and all regions worldwide. As drought tolerance is our key focus since inception, most of the discussions naturally centred on this topic. Equally important is the scourge wrought by pests and disease, which afflict some crops more than others. For example, under most circumstance, cassava is naturally very drought-tolerant, but what good will this do if cassava survives drought only to succumb to the deadly pests and diseases that stalk this drought champion?

Sunset and ‘moon-rise’
GRM was also a time for both stocktaking and mapping the future  given GCP’s sunset in 2014.  A central and recurring theme was GCP’s transition strategy, and how – and where – to embed GCP-initiated projects that will extend beyond the Programme’s lifetime. For this, the CGIAR Research Programs (CRPs) are a natural first choice. GRM enjoyed a very good representation of the CRPs, with all six crop CRPs represented, some at the highest level.

A few members of our Executive Board also attended. Board Chair, Andrew Bennett, set the right tone for the meeting. In his remarks at the opening session, he emphasised that this was not a time for sadness, swan songs and moping as GCP approaches sunset.  Rather, it was a time to appreciate the beauty of sunsets, in the sure knowledge that sunsets give rise to  moon-rise!

A section of Poster Session II presenters. IN the foreground, Andrew Bennett, Chair, GCP Excecutive Board.

A section of Poster Session II presenters. In the foreground, Andrew Bennett, Chair, GCP Executive Board.

“Say it succinctly in sixty seconds!”
The poster session was as lively as always, with a record of… (hold your breath!) 60 posters presented, surpassing the previous GRM in 2011 which attracted 53 posters.

Perfection!  Sixty posters for sixty seconds
Sixty was a PERFECT number for the 60-second sizzle, where each poster presenter had a maximum of 60 seconds (and not a second more!) to present at plenary, devising whichever means necessary to attract the audience to their poster. It was easy to discern the brash ‘old hands’ who had perfected their art after several GRMs; the tricksters and various reincarnations of The Artful Dodger amongst them, trying to beat the clock; new and slightly jittery presenters who were more than just a little bewildered but still proved their mettle; and the new, sassy and confident. This beautiful blend apart, the poster session brought in not only new faces to add to the familiar ones, but also refreshing new tastes to diversify and sweeten our Staple of Nine crops. To our diet of cereals, legumes and tubers, poster presenters from The Philippines added eggplants, rounded off with bananas for dessert.

"Definitely time for dessert, and do not disturb!" they seem to be saying. Jean-Christophe Glaszmann (left) and Hei Leung (right), who played ace roles on a multi-partner GCP project on bananas.

“Definitely time for dessert, and do not disturb!” they seem to be saying. Jean-Christophe Glaszmann (left) and Hei Leung (right), who played ace roles on a multi-partner GCP project on bananas.

♫ Welcome to the Hotel California! ♫…
As always, GRM was a mingling of old and new friends, a time for some paths to meet and for new forks to branch out, a season to reflectively look back and progressively face forwards. In keeping with Andrew’s continuity of sunsets giving way to moonrise, we said a group goodbye to Rajeev Varshney, former Genomics Theme Leader, who left the GCP Management Team in August. And we were happy to once again welcome, embrace and recognise two old friends – Jean Christophe Glaszmann (CIRAD) and Hei Leung (IRRI), who were, respectively ex-Subprogramme Leaders for genetic diversity and genomics in GCP Phase I, and continue to be involved with GCP as researchers, as will Rajeev.

In this picture, we caught up with them at a very appropriate moment: dessert during the Gala Dinner. Take it from us, these two guys are well versed in matters dessert, with a dash of science, as this blast from the past on bananas attests, also summarised in a Facebook photo-story here.

We are indeed a Hotel California of sorts – always open for check-in and checkout. As for leaving…we’re still working on the modalities of that!

And despite the fond farewell, truth is Rajeev is not going anywhere either, as far as GCP is concerned. You only needed to have been at GRM or following the conversations on Facebook and Twitter, especially the photos, to witness this. He was (delightfully!) all over the place, passing on his ‘positive epidemic’ of highly infectious enthusiasm and incredible energy. Here he is in action at the Gala Dinner in the photos below, which really need no caption. We’re sure you’ll be able to easily spot Rajeev, ‘high-fivin’ and ‘rapping’, eclipsing the GCP Director, who however appears quite pleased in his lower perch with Rajeev on the platform. But if you’re truly lost and can’t spot the super-charged high-energy guy in the photos, no worries! Here are some handy clues.

OLYMPUS DIGITAL CAMERAOLYMPUS DIGITAL CAMERA

In distinguished company
Rajeev’s energy goes beyond GRM and GCP; this year as in previous ones, he received several awards, among them, the Young Crop Scientist Award by Crop Science Society of America, and the Illumina Agriculture Greater Good Initiative Award.

Hari Upadhyaya

Hari Upadhyaya

Prior to these recognitions during the Gala Dinner, Jean-Marcel formally honoured ICRISAT’s Hari Upadhyaya (pictured) during plenary for two awards Hari had received in the course of the year, also from the Crop Science Society of America. These awards were for Hari’s notable contributions – at international level – to crop science, and to plant genetic resources.

Hari is a long-term GCP Principal Investigator, working primarily on sorghum. But that is not the only crop he works on. Hari was the lead author of the joint chickpea and pigeonpea chapter in our book on drought phenotyping.

Evaluation
Unlike other GRMs where we’ve requested participants to evaluate the meeting, we did not do so this year, since this is very likely the last meeting of its kind, and the goal of the evaluation is to use participant feedback to improve future meetings. With the help of our participants, we’ve applied the lessons we’ve learnt from them through the years to arrive at what we believe to be a winning combination, balancing the diverse interests of our participants for overall improvement of their GRM experience.

 

 

 

 

 

Jan 232013
 

Abdelbagi Ismail

 I was forever inquisitive as to how things grew, and questioning when they didn’t grow well. I think it’s what got me interested in plant science.”
– Abdelbagi Ismail, Plant Physiologist and Principal Scientist, International Rice Research Institute.

Today, we talk to Abdel. His riveting voyage in plant science starts on the bountiful banks of the Nile, before we sail on to Asia’s ricelands.  We’ll make a short stopover in USA for cowpeas and drought in between,  then proceed to to our main meal of rice, spiced and seasoned with a strong dash of salt-and-P.

It’s not just about food, but also family: you’ll  get to meet a sister Challenge Programme along the way. Intrigued? We hope so, so please do read on

‘A’ for Abdel and agriculture – an early passion for plants
From a tender age, Abdel was fascinated by agriculture.

Growing up on a small family farm backing onto the banks of the Nile in the Northern State of Sudan, he helped his parents in tilling the land, sowing and harvesting.

Abdel reminisces, “It was a relaxing paradise with all types of fruit growing around you year-round. Working and living on a farm, I was forever inquisitive as to how things grew, and questioning when they didn’t grow well. I think it’s what got me interested in plant science.”

Armed with a Bachelor’s and Master’s in Agricultural Sciences (agronomy, crop production, water relations) from the University of Khartoum, Sudan, Abdel moved to the University of California, Riverside, USA, for a PhD on drought tolerance in cowpeas.

“It was the first time I had ever left Africa, and it was a real eye-opener,” Abdel recalls. “It was a fantastic new page in my career too, as I was working with world-class professors and mentors. I chose to work on cowpeas because it is a hardy crop that can be grown in dry conditions which were – and still are – becoming more prevalent in sub-Saharan Africa.” (you can take a sidetrack here, to see our research on cowpeas)

 What interests me is how some societies have survived, and, in some cases, flourished because they invested in improving their plants and crops to adapt and adjust to weather adversities.”

Navigating away from the Nile, and discovering his niche
For this native son of the Nile, this move was a watershed. It marked the start of a dedicated – and still ongoing – career quest to understand how plants can adapt to better tolerate extreme environmental stresses such as higher and lower temperatures, too much or too little water, salinity, and nutrient imbalances.

“Abiotic stresses have had, and continue to have, a major impact on human life, with some societies disappearing altogether because of changes in soils or climate,” says Abdel. “What interests me is how some societies have survived, and, in some cases, flourished because they invested in improving their plants and crops to adapt and adjust to weather adversities.”

From time immemorial, the communities around the Nile where Abdel spent his childhood are a prime example of this flourishing against adversity.

IRRI beckons, and nurtures
In 2000, Abdel accepted a position at the International Rice Research Institute (IRRI) in The Philippines.

Abdel inspects cyclone-damaged rice in Isladi Village, southern Bangladesh.

“I saw it as an opportunity to convert knowledge and scientific discoveries into resources that could help needy farmers,” explains Abdel.

Abdel confesses that when he joined IRRI, his intention was to stay for a short stint and then move on. But as he became more involved in his work, he felt IRRI offered him the best opportunity to build his career, and to contribute to global food-security issues.

“I’ve been here for 12 years now. IRRI really is a great place to grow as a person and a researcher, and to learn how to become a leader.”

Having GCP provide ongoing funding and support for public institutions to conduct a long-term project has been pivotal to the success of the project. It has given us all the security we need to focus on conducting the complex research required…”

Trailblazing for GCP : a much-needed dash of ‘salt-and-P’
In 2004, Abdel proposed a collaborative project between nine different research organisations, across seven countries, to improve salt tolerance and phosphorus uptake efficiency in rice. The work was funded by a sister CGIAR Challenge Programme on Water and Food (CPWF).

This work caught – and held – GCP’s attention, because it sought to overcome a problem that negatively affects the lives of tens of thousands of rice growers around the world. The two resultant GCP-funded IRRI-led projects involved partners from Bangladesh, India, Indonesia, Vietnam and USA’s University of California, Davis. Globally, more than 15 million hectares of ricelands are saline, and more than one-third of all ricelands are phosphorus-deficient, hitting poor communities hardest.

In the nine years since, and together with his colleagues and partners, Abdel has developed the proposal into a productive and coherent suite of interconnected projects: he has managed and overseen most of the progress made during the discovery of the genes associated with salinity tolerance (Saltol) and phosphorus uptake (Pup1), and their insertion into well-known rice varieties that farmers in Bangladesh, Indonesia and The Philippines know and trust.

It’s all about rice: salt tolerance (Saltol) ‘meets’ phosphorus uptake (Pup1) in Bangladesh. Abdel is on the extreme right. Next to him is Sigrid Heuer, Principal Investigator of the ‘Pup1’ work.

Keeping the faith, and going where no rice has gone before…
A long-term horizon helps, since, just like art, science cannot be hurried: “Having GCP provide ongoing funding and support for public institutions to conduct a long-term project has been pivotal to the success of the project,” Abdel emphasises.

“It has given us all the security we need to focus on conducting the complex research required to advance our knowledge about these genes, then breed and develop popular varieties containing then. In some cases, we have developed lines with doubled yields, and grown rice in areas where it has never been grown before because the land was too saline.”

For Abdel, such achievements are heartening as they provide farmers with greater food and income security, which in turn improves their and their community’s livelihoods.

“It brings a smile to my face whenever I think about how our work helps to produce higher-yielding crops for poverty-stricken countries whose farmers often can only afford to grow one crop per year,” says Abdel sincerely.

Abdel continues to build upon, and has even employed, partners he has met through the GCP project…”We want to improve their capacity to take up new breeding techniques, such as the use of molecular markers, which can reduce the time it takes to breed new varieties from six to 10 years to two to three years…”

Continually building on the best
So what’s in store for the future?

Having discovered the Saltol gene and developed experimental lines, his team is now training breeders from country breeding programmes on how they can successfully breed for salt tolerance and tolerance of other abiotic stresses using their own popular varieties, thereby fortifying popular varieties with these much-needed tolerance traits.

“We want to improve their capacity to take up new breeding techniques, such as the use of molecular markers, which can reduce the time it takes to breed new varieties from six to 10 years to two to three years,” reveals Abdel. “This will allow them to breed for crops quicker, in response to ever-changing and extreme climate conditions.”

As for his other projects with IRRI, Abdel continues to build upon, and has even employed, partners he has met through the GCP project to help him with his Stress tolerant rice for Africa and South Asia (STRASA) project.

GCP helped IRRI attract support from other funders…”

Going further, faster, together… five and counting, still learning, and the future looks bright
STRASA is almost five years old and has another five years left to run.

“GCP helped IRRI to attract additional support from other funders, such as the Bill & Melinda Gates Foundation, to start STRASA, which seeks to support the development and distribution of stress-tolerant varieties in Africa and South Asia,” Abdel explains.

Abdel’s parting words? “I’m still committed to understand how plants can be manipulated to adapt to, and better tolerate, extreme environmental stresses, which seems  more feasible today than it has ever been before.”

Links

Dec 212012
 

I’ve always enjoyed my job, particularly teaching students and young researchers, but this project has made me think about how I can do more practical science.” – Zeba Seraj, Biochemistry and Molecular Biology Professor, University of Dhaka, Bangladesh

Zeba Seraj

Growing up with a botanist as a father, Zeba Seraj was nurtured to look at plants in a scientific light. But at one stage in her life, she took a different fork on the road: she was more interested in rat livers and cow eyes, before becoming a ‘late bloomer’ in applied science and molecular plant breeding, which is her current niche.

Taking that fork: rats seduced, cows made eyes, but both lost…
Having completed her Undergraduate and Master’s in Biochemistry at the University of Dhaka, Bangladesh, during the 70s and 80s, she moved to Scotland for a PhD at the University of Glasgow. After being persuaded that molecular biology and recombinant DNA technology were not likely to be too different in animals and plants, she focused on the separation of nuclear proteins involved in post-transcriptional processing in the rat liver system.

“I then went on to work as a postdoc at the University of Liverpool, UK, for 18 months, where I worked on a bovine retina cDNA [complementary DNA] library,” Zeba recalls. “I was exposed to a number of recombinant DNA techniques and was pleasantly surprised to find DNA much easier to work with compared to proteins! I enjoyed it, but when I returned to the Bangladesh, there was no work in that field, so I turned to plants.”

The rise of rice, propelled by ‘Petrra’ project and petri dish
Back at her old University, one of Zeba’s first projects was working on salt tolerance in rice which allowed her to set up plant tissue culture facilities and establish a modest molecular biology laboratory. Zeba thereafter worked with the International Rice Research Institute (IRRI) and the Bangladesh Rice Research Institute (BRRI) on the Petrra project (poverty elimination through rice research assistance). The project was funded by the Department for International Development, UK. Meanwhile, she also spent a couple of months in the laboratory of the illustrious Dr John Bennett at IRRI, learning the latest technology in DNA markers and polymerase chain reaction (PCR) technology. This inital work would, in a way, lead her to GCP.

Meeting GCP, and banking on potential
Zeba joined the GCP community in 2005, working on the rice Saltol (salt tolerance) project. She was a focal collaborator in Bangladesh for this IRRI-led project that aimed to revitalise marginal ricelands by discovering and breeding into popular rice varieties ‘survival’ genes to enable rice to not only survive but also thrive on saline or phosphorus-poor soils.

“We were introduced to the project through the Principal Investigator, Abdel Ismail,” recalls Zeba. “Our lab was not very modern, but we did have all the facilities to do marker work, as well as a firm grasp on the theory, so IRRI and GCP must have seen potential in us.”

 …doing the research helped me understand the practical application better… It was a real eye-opener.”

Transiting from theory to practice
After 15 years of working as an associate professor and professor at the University of Dhaka (DU), mainly nurturing young biochemists, Zeba was re-energised by the thought of working on such a practical project that would have a direct impact on her country’s food security, and on its farmers’ livelihoods.

In the background, genotyping in progress at the Department of Biochemistry and Molecular Biology, University of Dhaka. In thef oreground, student– supervisor consultations. Pictured (left to right) are: Zeba I Seraj, Roman, Adnan, Sarwar, Debashis,Rabin, Dost, Mishu, Shamim and Rejbana.

Nearly one million hectares along the Bangladesh coast are affected by varying degrees of salinity which has severely limited the introduction of modern high-yielding rice varieties, as few of these are saline-tolerant. Given Bangladesh’s high population, farmers need as bountiful yields as possible, and minimum risk of failure.

“After reading and teaching theory for so long, it was really exciting to actually put it into practice and work towards a practical outcome,” says Zeba.

“Actually doing the research helped me understand the practical application better too. It was a real eye-opener.”

 Using molecular markers allowed us to at least halve the time it would take to release stress-tolerant rice.” 

Gaining time: the ‘miracles’ and ‘magic’ of molecular makers
Zeba’s lab was responsible for the molecular evaluation and selection of rice lines bred by BRRI for insertion of the genomic region containing Saltol (discovered to confer salt toleranceby the previous IRRI-led GCP-funded project).

Md Sazzadur Rahman of BRRI assesses progress on a salt-tolerant rice variety in the field.

“We collected leaf samples from the BRRI-bred lines which were a combination of popular rice landraces and a Saltol donor.” explains Zeba ‘Landraces’ is ‘breeder-speak’ for varieties grown by, and popular with, farmers, but not necessarily improved by selective scientific breeding. Zeba continues, “We then used molecular markers which would indicate the presence of the Saltol genomic region.”

“The information we gathered guided the breeders at BRRI to select rice plants with the Saltol region. Selected plants were then further analysed with markers, to maximise the presence of popular alleles,” she adds. Allele is one of two, or more, forms of a gene – the alternative form of a gene responsible for a trait producing different effects.

“Using molecular markers allowed us to at least halve the time it would take to release stress-tolerant rice,” Zeba reveals.

 I will be the happiest person on earth the day they release the new lines, knowing that I’d helped to make a difference.”

Seven years on, what next?
Zeba is grateful that she and her lab were active partners in GCP projects for seven consecutive years: first in the IRRI-led project in 2005 to 2009, then in a follow-up supplementary capacity-building DU-led project from 2010 to 2011, for which Zeba was the Principal Investigator.

Nirmal Sharma and Jamal emasculate the first backcross population of a crosscombination for a second backcross at BRRI

“I don’t think we could have done the work without the various GCP networks. Several times in the project we would lag behind and they’d offer us support to get us back on track,” says Zeba. “They also instilled in us the importance of proper data management, and we have now implemented their system to collect, store and report data for all of our projects. We also now have all the equipment and processes in place, meaning that we’re now able to accommodate similar projects, now and into the future.”

Personally Zeba feels the project has given her a new direction in her career that she’s keen to further explore. “I’ve always enjoyed my job, particularly teaching students and young researchers, but this project has made me think about how I can do more practical science,” confides Zeba.

As for the Saltol project, she is keeping a close eye on the application waiting for the news of high-yield salt-tolerant lines becoming accessible to all Bangladeshi rice farmers.

“I will be the happiest person on earth the day they release the new lines, knowing that I’d helped to make a difference.”

Links

  • More on Zeba Seraj on page 40 here
  • The road behind us: read on the early days (2005/2006) of the rice salt-tolerance work:
    • on pages 36–39 here
    • on pages 28–30 here
    • on page 6 here
  • Profile: Abdel Ismail, Principal Investigator of the salt tolerance project

 

Nov 302012
 
Photo: IRRI

Sigrid Heuer

Meet Sigrid Heuer (pictured), a Molecular Biologist and Senior Scientist at the International Rice Research Institute (IRRI). Her lively and riveting story will take us from Africa through her native Europe and on to Asia, and finally Down Under to Australia.

Origins – the African chapter
Africa holds a special and soft spot in Sigrid’s love affair with science: it was while on this continent that she realised her calling in life as a scientist – linking people doing pure research on plant genes to help plants survive and even thrive in harsh environments, with people who want to apply that knowledge to breed crops that can change the lives of millions of farmers who constantly compromise with nature to make a living.

Photo: IRRI

Fieldwork: Sigrid at a field trial for rice phosphorus uptake.

“Working as a postdoc at the Africa Rice Center in Senegal was a real life-changing experience,” Sigrid recollects with great fondness. “It’s where I found my niche, using my background in theoretical science and applying it to developing crops that could overcome abiotic stresses, and in doing so, make a real impact on people’s lives.”

Rowing further down the river: from upstream to downstream science
Sigrid was born and raised in Hamburg, Germany. She remembers wanting to be a psychologist and didn’t consider science until a few years after finishing school. After completing a biology undergraduate at Phillips University, Marburg, Germany, she returned to her home city of Hamburg to complete a Masters and PhD in plant physiology and molecular biology respectively.

“Back then, I was really involved in upstream science, fascinated in the fine details without much consideration of how such research could benefit society,” says Sigrid. “I still enjoy this form of science and really do value its purpose, but putting it into practice and focusing on the impact that it can have is what really motivates me now.”

Moving to IRRI, and meeting Pup1 and GCP
After three years in Senegal, Sigrid moved to the Philippines to join IRRI in 2003, first as a consultant then as a part-time scientist. In these early years, she was working on several projects, one of which was the GCP-funded Pup1 (rice phosphorus uptake) project.

“The project sought to identify the genes associated with phosphorus uptake in rice lines that could tolerate phosphorus-deficient soils,” says Sigrid. “It was an interesting project in which I was able to use my background in molecular biology. Little by little, I got more and more involved in the Pup1 project and after a year I was asked by Matthias Wissuwa, who was leading the project at the time, if I wanted to take it over. It was a great opportunity which I jumped at, not knowing then how challenging it would prove.”

Pup1 was the first major project I had managed. It was a playground of sorts that allowed me to learn what I needed to know about managing a project – writing proposals and reports, managing budgets and people’s time, and everything else that comes with leading a team.

The ‘root’ and  ‘command post’ where it all happens: Sigrid in the office. For the benefit of our readers, we would have credited the young artist whose colourful work graces the background below the bookshelf, but we were too polite to pry and prise out the young talent’s name, having hogged too much of Sigrid’s time already!

Learning to lead – both work and play

Over the last seven years, Sigrid has been a Principal Investigator and joint leader of the project, which has given her latitude to mature professionally, and not just in science alone. “It’s been tough but personally fulfilling,” Sigrid says, with just a touch of exhaustion.

Pup1 was the first major project I had managed. It was a playground of sorts that allowed me to learn what I needed to know about managing a project – writing proposals and reports, managing budgets and people’s time, and everything else that comes with leading a team. I was really lucky to have Matthias’ help as well as the other experienced collaborators and networks. However, the main factor that made my job a lot less stressful, was the benefit of long-term funding and support from GCP. GCP was always there, supporting us and giving us confidence even when we weren’t sure we were going to succeed.”

Persistence pays: tangible products, plus publication in Nature
In August 2012, Sigrid and her team achieved what they had set out to do seven years ago, through what Sigrid puts down to sheer persistence: their discovery of the Pup1 gene was recognised by their scientific peers and published in the highly renowned journal,  Nature.

Sigrid (3rd left) at the lab with other colleagues in the phosphorus uptake team.

“Having our paper published is really something special and personally my greatest achievement to date,” says Sigrid, but she is also quick to add that it was a team achievement, and that the achievement was in itself humbling.

“It was a double reward for persisting with the research, and with getting it into Nature. We wanted it in Nature for several reasons. To raise awareness on phosphorus deficiency and phosphorus being a limited resource, especially in poorer countries; and to draw attention to how we do molecular breeding these days, which is a speedier, easier and cost-effective approach to developing crops that have the potential to alleviate such problems.”

Sigrid hopes the article will have a lasting impression on readers, and encourage funders to continue to support projects that have such impact on the lives of end-users.

What next? Technology transfer, transitions and torch smoothly passing on…
With the Pup1 gene now found, IRRI researchers are working with breeders from country-based breeding programmes around the world to help them understand the techniques to breed local varieties of rice that can grow in phosphorus-deficient soils. They are also collaborating with other projects that wish to use the Pup1 project as a case study for phosphorous deficiency tolerance in other crops like maize, sorghum, and wheat (see an example here, that includes partners from Africa and Latin America).

Sigrid sees this next stage as a perfect time to step down from the project: she plans to move to Adelaide, Australia at the end of 2012 to lead a new project that is looking at drought and nitrogen deficiency tolerance in wheat.

“Matthias passed the baton on to me, and now I get to pass the baton on to someone else, so it’s nice. And I’ll be sure to always be around to help them too.”

Links

Sigrid’s presentation at the GCP General Research Meeting 2011

 

 

Jul 082012
 

Inside GCP today

Do a deep dive with Jean-Marcel into GCP’s ‘engine room’. What makes the Programme work? How is it structured and governed? For a geographically dispersed Programme with multi-institutional teams, what’s the trick that keeps the different parts moving and well-oiled to maintain forward motion and minimise friction? Get acquainted (and hopefully ‘infected’) with the ‘GCP Spirit’…

Jean-Marcel Ribaut (pictured) is the GCP Director. His work involves coordinating the research activities and overseeing finances, ensuring that at the end of the day that the overall Programme objectives are met. This means much multitasking, a great asset in running a multi-institutional partnership-based Programme. Jean-Marcel comes from a research background, although the research team he led while at CIMMYT was nothing the size of GCP…

…we’ve moved from exploration to application…underpinned by services and capacity building. To make a difference in rural development, to truly contribute to improved food security through crop improvement and incomes for poor farmers, we knew that building capacity had to be a cornerstone in our strategy.”

How long have you been GCP Director?
Since 2005. My first two years were a steep learning curve!

The GCP tagline – ‘Partnerships in modern crop breeding for food security’  – what does this mean for you?
GCP is a very dynamic Programme. The kind of research that we were doing in 2005 is quite different from what we are doing today. As we implement our strategy, we’ve moved from exploration to application. We therefore revised our tagline to match this evolution, with the Programme now focussing much more on modern crop breeding and related aspects. We had naturally started by looking for diversity in the alleles, then evolved to gene discovery and developing supporting tools and markers alongside capacity building. Now, our focus is on application – using this diversity, markers and tools to progress to the next level, and boost the genetic gains for our nine key crops in challenging environments.

This application is underpinned by a service component through our Integrated Breeding Platform, as well as a strong capacity-building component for both human resources and infrastructure.

To make a difference in rural development, to truly contribute to improved food security through crop improvement and incomes for poor farmers, we knew that building capacity had to be a cornerstone in our strategy.

We take an integrated approach … exploring new avenues but exercising due caution …we are not promoting molecular breeding as the magic bullet and only solution – it’s an additional useful tool for arriving at educated breeding decisions.

One of our objectives was to bridge the gap between upstream and downstream research in the teams we brought together. While we did have some failures where groups worked together for the project duration alone and didn’t continue their collaboration, we have had other cases where the teams we forged then have not only grown but also continued to work together – with or without us.”

Why is GCP’s work important?
Through our Research Initiatives, we focus on several crops, with relatively limited funding for each of them compared, say, to other much larger crop-specific initiatives supported for example by the Bill & Melinda Gates Foundation. So,  we operate on a proof-of-concept model: our goal is to demonstrate the use of new technologies and the application of out-of- the-box strategies which – if proven effective – will be funded and expanded by other agencies, including governments.

We take an integrated approach to problem-solving, exploring new avenues but exercising due caution while so doing. For example, for modern crop breeding which is our current focus, we are not promoting molecular breeding as the magic bullet and only solution – it’s an additional useful tool for arriving at educated breeding decisions.

…more than half our projects are led by scientists in developing countries

…The ‘GCP Spirit’ is visible and palpable: you can recognise people working with us have a spirit that is typical of the Programme.”

For you, what have been the major outcomes of the Programme so far?
Seeing developing-country partners come to the fore, and take the reins of project leadership. During Phase I, most project leaders were from CGIAR and advanced research institutes. However, over time, there has been a major shift and we are proud that today, more than half our projects are led by scientists in developing countries. They’ve moved from the position of implementers to the role of leaders, while CGIAR Centres and universities have taken a back seat, being more in a supporting role as mentors or tutors.

We have created this amazing chain of people, stretching  from the labs to the fields. This ‘human’ component is a terrific living asset, but it is also very difficult to scientifically quantify. Perhaps the best way I can describe it is as a ‘GCP Spirit’ created by the researchers we work with. The Programme’s ‘environment’ is friendly, open to sharing and is marked by a strong sense of community and ‘belonging’. The ‘GCP Spirit’ is visible and palpable: you can recognise people working with us have a spirit that is typical of the Programme.

One of our objectives was to bridge the gap between upstream and downstream research in the teams we brought together. While we did have some failures where groups worked together for the project duration alone and didn’t continue their collaboration, we have had other cases where the teams we forged then have not only grown but also continued to work together – with or without us.

A number of the partnerships we’ve forged have had a win–win outcome for players at opposite ends of the research–development spectrum. For example, academia tends to place a high premium on publications and theory, and relatively lower value on application and the real-world context. GCP provides a window for academics to apply their expertise, which benefits developing-country partners.

GCP’s relationship with project ppartners goes beyond funding. We are not just giving money; we are engaged in partnership with our project teams. We in management consult with them, interact and grapple over the technical issues with them in candour, and we toast and celebrate the successes together. I see our management style as fairly ‘paternal’, particularly for projects led by scientists from developing countries, but paternal in the positive sense of wanting to see these groups of people succeed, and us helping them to do so.

If a research site needs a pump for fieldwork, we work with a local or international consultant who will visit the partner and evaluate their needs, advise them on what type of pump they need, as well as other infrastructure they’ll need for the whole system to be sustainable. We’ll then provide training on how to use the pump most effectively.

It’s an investment in the people as much as in the products they are working on because we are trying to change the system of how science within partnerships is conducted and supported, as much as we are trying tap genetic diversity and breed resilient crops for the developing world.

Our successes have only been possible because of our ‘slim’ structure and the structural support we have enjoyed. With governance and advisory roles vested in an Executive Board and Consortium Committee, and with CIMMYT providing us with a legal and administrative home, we have minimal overheads and much flexibility. This agility has allowed us to adjust rapidly to changes when needed than, say, a classic research institute which would – quite rightly – have more rigid and elaborate obligatory steps, over a much longer time horizon.

…advocacy, persuasion and presenting a compelling business case are all necessary ingredients. Because we cannot be ‘directive’ with our partners in the manner their own institutes can be since they don’t ‘belong’ to us, we need to demonstrate success and convince people to adopt new business models.

How will GCP ensure sustainability?
Through our project Delivery Plans which link up a chain of users of our research products, and our Transition Strategy which shows how our research activities are embedded in the new CGIAR Research Programmes. We also hope to see our nascent communities of practice confer a sense of ownership to community members, and therefore sustainability. All that is on the ‘systematic’ and ‘documentation’ side of things.

Even more compelling is something I mentioned earlier, on the ‘organic’ and community side of things. Although it is completely outside our control, so to speak, it is wonderful to see that some of the partnerships we brought together have acquired a life of their own, and the teams we constituted are working together in other areas that have nothing to do with their GCP projects.

What are some of the lessons learnt so far?
The first one was focus. It’s very difficult to coordinate too many tasks, carried out by too many partners. Midstream in 2008, we had to review the way we were working and change course.

People management is the other. Cultivating relationships with people is critical. The trick is in balancing: by being cordial and friendly managers, we perhaps erode some of our authority over some of our project partners!

Another big lesson is that if it’s not working, don’t push it. Learn the lesson, cut your losses, and move on. Two main lessons have come from both our research and service aspects. For research, we invested in a massive fingerprinting exercise to characterise reference sets for all our 18 mandate crops at the time. [Editor’s note: A ‘reference set’ is a sub-sample of existing germplasm collections that facilitates and enables access to existing crop diversity for desired traits, such as drought tolerance or resistance to disease or pests]

The results were not great, the documentation was poor, and it was very difficult reconciling the different datasets from the work. We ended up incurring extra costs for genotyping, to salvage the investment. Then for building the Integrated Breeding Platform, we’d initially involved all major actors in developing the ‘middleware’ – the ‘invisible’ part that links the tools, services and resources IBP provides to breeders, with the respective crop databases. This did not work, and we subcontracted the work to an external service provider.

In both cases, we erred on the side of inclusiveness since we wanted to have all the players on board, and to also facilitate their capacity-building-by-engagement. We have learnt the need to strike a balance between inclusiveness and capacity building on the one hand, and outsourcing to get the job done on the other.

Then there is behaviour change – changing people’s mindsets to adopt technology, since people tend to be naturally conservative. We’ve learnt that developing the tools and techniques is the easy part. The human component – changing how people do business, getting them to adopt a corporative and cooperative over an institutional focus – is a real challenge, and needs to be strongly demand-driven with clear short-term benefits.

Data management and quality control, their documentation, publication and sharing continue to dog us and it’s probably the greatest challenge, although not unique to GCP.

Finally, advocacy, persuasion and presenting a compelling business case are all necessary ingredients. Because we cannot be ‘directive’ with our partners in the manner their own institutes can be since they don’t ‘belong’ to us, we need to demonstrate success and convince people to adopt new business models.

What is the most enjoyable aspect of your position at GCP?
More than one, actually.

We enable people, research teams and institutes to grow, thrive and stand on their own, and this is deeply gratifying; it is very rewarding to see people from developing countries growing and becoming leaders.

Working on different crops, with different partners, in different circumstances, and of different capacities is highly stimulating and brings a lot of diversity. My job is anything but boring!

I also appreciate being sheltered from the administrative burden our multi-institutional approach carries. The administrative load is ably borne by CIMMYT. This allows me to dedicate more of my time to supporting our research partnerships, institutional relationships and services to researchers.

I work with a small and dedicated team. As you can imagine, things are not always rosy, since a small team also means we operate in a ‘tight’ space and occasionally knock knuckles, and we also come from different cultures, but all these work to the good. This cultural diversity is actually a big plus, bringing a broader array of perspectives to the table. And the benefit of the ‘tight’ space is that, when there is a task to be done, the team spirit is incredible – everyone in the group, from management to office assistants, apply themselves to the task at hand. This is a fantastic experience!

Beyond the management and staff group, there is also the real GCP that is out there, which is highly stimulating, and I will end by sharing an excerpt from the external mid-term review report:

“Perhaps the most important value of GCP thus far, is the opportunities it has provided for people of diverse backgrounds to think collectively about solutions to complex problems, and, in the process, to learn from one another.”

Related blogposts

GCP website

External links

 

 

 

Jul 042012
 

The GCP community, its labours and joys

If tools and resources are not put to use, then we labour in vain...GCP contributes to food security by providing breeders with integrated tools, techniques and services to speed up the selection cycle, be this by conventional or molecular breeding. GCP focuses on developing new materials and new techniques and delivering these, and the appropriate breeding tools, technologies and services, to breeders. I think GCP has been one of the most successful builders of research and development partnerships.

The Board’s focus is now on auditing the Programme, and mapping a strategy to sustain its successful partnerships and systems, so that these can continue to deliver products and capacity to the developing world.”

Seatbelts on please! Time to take a tour with Andrew, for an ‘aerial’ view of GCP from the very  ‘top’.

Please meet Andrew Bennett (pictured), the Chair of GCP’s Executive Board. Among other responsibilities, he is also President of the Tropical Agricultural Association, UK, chairs the SciDev.Net Board, and previously chaired the CIFOR Board. He was formerly Executive Director of the Syngenta Foundation and Director of Rural Livelihoods and Environment at the Department for International Development (DFID, UK) where he was responsible for professional advice on policy and programmes on livelihoods, natural resources, environment, sustainable development and research. Andrew has worked on development programmes in Africa, Asia, Latin America, the Pacific and the Caribbean.

Today, Andrew shares his perspectives on GCP’s work, its impact, the challenges, the community GCP has built, and the role of the Board. Please read on…

When was the GCP Board established, and what is its profile and role?
The Board was set up in mid-2008 towards the end of the first phase of the Programme. A review recommended that there be a fully independent Board, comprising people who had no conflict of interest with the Programme to facilitate decision-making.

Board members have between them a wide variety of skills and backgrounds, ranging from expertise in molecular biology to development assistance, socioeconomics, academia, finance, governance and change management.

We are committed to the role that can be played by science in development, and to the Programme. We have offered advice and helped the Programme’s Consortium Committee and management refocus the Programme. By all accounts, they seem happy with how things have evolved.

Because GCP is hosted by CIMMYT, the Board does not have to deal with any policy issues. That is the responsibility of the Consortium Committee. Our role is more to provide advice and to help with decision-making and implementation, which is great as we’ve been able to focus on the Programme’s science and people.

How long have you been involved with GCP?
Since the Board was established in 2008.

What does the GCP tagline – ‘Partnerships in modern crop breeding for food security’ – mean for you?
It means that all our undertakings are geared towards producing crop varieties that are tolerant to a range of environments, as well as being socially acceptable and appealing to farmers and markets.

How do you upgrade the planting material farmers have by fortifying it to combat the biotic and abiotic stresses? Half the challenge is breeding and selecting good material, and the other half is ensuring delivery of tools to breeders and new planting materials to farmers.

So GCP focuses on developing new materials and new techniques and delivering these, and the appropriate breeding tools, technologies and services, to breeders.

Why is GCP’s work important, and what does it mean for food security?
People who are food-secure have access to adequate food at all times to maintain healthy active lives. There are two sides to making this happen – access and availability.

GCP is increasing the number of varieties and lines tolerant to the conditions farmers are facing. What we cannot do is put money in the hands of poor people. If we supply people with the means to produce sustainable and healthy crops, they will have the means to produce food for themselves, and a means of making an income.

GCP contributes to food security by providing breeders with integrated tools, techniques and services to speed up the selection cycle, be this by conventional or molecular breeding.

For you, what have been the major outcomes of GCP so far?
GCP has shown that it is possible to form very productive partnerships across CGIAR institutes and advanced research establishments and those countries that have less scientific capacity. I think it has been one of the most successful builders of research and development partnerships. GCP has also shown public researchers can work very well with the private sector. The public sector has the means to build a lot of capacity.

I think GCP has demonstrated that it is possible to establish molecular breeding programmes in those parts of the world that do not have well-developed scientific infrastructure.

Just a little bit of money – relatively speaking of course – clear vision, and good leadership, can go very far, and produce tremendous benefits and progress.

GCP has also identified the constraints that we have to work within – the challenge of phenotyping and restrictions on the movement of genetic material to other parts of the world. GCP has paid particular attention to intellectual property [IP] because the information and materials GCP produces must remain in the public domain. IP in the international arena within which the Programme operates must span potentially conflicting national legislation regimes. It is a very complex area.

‘Challenge’ is in GCP’s name. What are the major challenges that the Programme has so far overcome?
Quite a number and more could be on the horizon. GCP has overcome some of these challenges. They include the problem of poor-quality phenotyping. This has been addressed through a comprehensive capacity-building programme, including laboratory and field infrastructure, and the training of research support staff in the developing-country field sites where GCP projects are being implemented.

Another challenge was focusing the Programme. At the start, the Programme was spread too thin, spanning too many crops and partners, but these have been progressively narrowed down in Phase II.

This narrowing is no mean feat in the public sector. In the private sector, you start with, say, a hundred projects, then after six months you halve them. After a year, you are down to 10 projects and you put all your resources into making those 10 ‘winners’ work. In the public sector, you keep the entire hundred going for three years, then you look for funding to keep them all running for another cycle. It’s a different culture: the private sector is product-oriented, while some aspects of the public sector emphasise contributing to the growth of knowledge and information, and to building or maintaining relationships, without necessarily asking about their usefulness and benefits to society.

The Board’s focus is now on auditing the Programme and mapping a strategy to sustain its successful partnerships and systems, so that these can continue to deliver products and capacity to the developing world.”

What are the future challenges that the Programme must overcome to remain sustainable?
There are many GCP activities that can be integrated into the new CGIAR Research Programmes. However, there may be other activities such as capacity building and IP management which – at this point in time – appear somewhat less easy to integrate into the new CGIAR Research Programmes.

There is also a danger – not unique to GCP but with all aid-assisted programmes – that when the money ends, everything will disappear into the archives. We have to make sure that doesn’t happen in this instance.

The Board’s focus is now on auditing the Programme and mapping a strategy to sustain its successful partnerships and systems, so that these can continue to deliver products and capacity to the developing world.

What are some of the lessons learnt so far?
GCP was born at a time when we thought molecular biology could solve all our problems quickly and efficiently. What I think we are finding is that molecular tools –while extremely useful – cannot entirely replace understanding the agronomy and phenotypic activities. Molecular biology alone is not a panacea or silver bullet for crop breeding; but it is a valuable tool.

Then there is capacity building: molecular breeding is a tool that you can only use if you have the capacity. Many parts of the world will require a lot of capacity building and support to be able to use the tools. GCP and its Integrated Breeding Platform can make a modest contribution to meeting this need through the proof-of-concept GCP Research Initiatives for selected crops and countries and establishing communities of practice.

If tools and resources are not put to use, then we labour in vain.

What has been the most enjoyable aspect of your position with GCP?
Without a doubt, attending the General Research Meetings has been the most enjoyable, meeting scientists from a wide range of institutes, backgrounds and countries.

These scientists come together because they share the same interests and a common goal. There’s a lively buzz of conversation. It is good to hear about what they are doing, what their aspirations are, and to learn from the knowledge and posters they bring to the meeting.

You don’t have to be a cutting-edge scientist to listen to these people whose enthusiasm is palpable. They are passionate, have a strong sense of community, enjoy what they are doing, and are just as keen to share this knowledge and enthusiasm. It’s all highly infectious!

Relevant links

Jul 032012
 

Where we’ve come from, where we are, and where we’re going

Travel with Dave from the beginning – and before the beginning – of GCP, and how the Programme will be brought to an orderly close. Dave also elaborates on the role of the Consortium Committee.

There’s no doubt that the Programme has enabled new partnerships and rekindled and rejuvenated old or existing partnerships amongst the different partners. Some of these are between the different CGIAR Centres and others are between these Centres and partners outside the CGIAR. These partnerships have been very fruitful.

People speak of GCP almost as if it were the 16th Centre. They speak of it with pride and respect. They understand the important role it can play.

GCP has a lot of credibility with national programmes. When you go to GCP’s General Research Meetings, there’s clearly a feeling of being part of the community, and that we are all improving our efficiency because of the Programme.

…I think it’s been one of the more successful Challenge Programmes.

Dave Hoisington (pictured)  is the Chair of GCP’s Consortium Committee, and currently ICRISAT’s Director of Research. Dave was previously with CIMMYT, GCP’s host Centre. He has therefore been involved with GCP “since day minus one” in his words. “It’s equally exciting to be involved in the Programme’s closure, because I think that is even more important with regard to keeping its legacy alive.” Dave now walks us through the workings of the Programme today, its achievements and challenges, and what the early formative years were like….

What is the role of the GCP Consortium Committee?
GCP was set up as a multi-institutional endeavour. As an elaborate and broad partnership representing various interests, the decision at the Programme’s inception was to set up a committee representing all the key members from CGIAR Centres, developing-country programmes and advanced research institutes.

This Consortium Committee is ultimately the one that ‘owns’ GCP and oversees the basic functioning of the Programme to make sure that it is going in the right direction. We have an Executive Board which the Consortium appointed and it’s that Executive Board that Jean-Marcel [GCP Director] reports to. Because we set up the Board, they actually report to us.

…by having this Committee of the key players in research as well as an independent Board, we can all make sure GCP is going in the right direction, by giving voice to both the ‘players’ and ‘referees’.

Why have a Committee as well as a Board, and why seek broad partnerships?
During a mid-term review of GCP, the need for both a Committee and an independent Executive Board was recognised to give the Programme more structure and guidance. The Consortium Committee was established in 2008, and its precursor was the Programme Steering Committee.

GCP is not a research programme run by a single institute but really a consortium to enhance effectiveness. So, by having this Committee of the key players in research as well as an independent Board, we can all make sure GCP is going in the right direction, by giving voice to both the ‘players’ and ‘referees’.

There’s no doubt that the Programme has enabled new partnerships and rekindled and rejuvenated old or existing partnerships amongst the different partners. Some of these are between the different CGIAR Centres and others are between these Centres and partners outside the CGIAR. These partnerships have been very fruitful.

GCP’s tagline – ‘Partnerships in modern crop breeding for food security’ – what does this mean for you?
It really captures the essence of GCP – GCP is about creating opportunities for these partnerships. It’s about using a modern approach, a more integrated approach to breeding, to aid food security in the developing world.

Why is GCP’s work important?
The whole premise of setting up GCP 10 years ago was really the fact that our major crops were not registering the necessary increases in yield to meet food needs in developing countries. There are many reasons for that. The reason that became the main driving force for GCP was that we had not been able to tap the rich genetic diversity that exists for almost all of these crops. So the idea was to come up with mechanisms, methods, examples and proofs-of-concept that tap into this genetic diversity, and package it such that breeding programmes can integrate it into their operations. By so doing, we would broaden the horizon of breeding programmes for more rapid gains in yields and productivity in farmers’ fields.

Originally, the whole idea was mostly a proof-of-concept. Once we realised it could work, we realised that capacity needed to be built within national programmes since GCP’s scope was 10 years. So, the emphasis began to rightly shift from exploration and discovery to application and impact, buttressed by more training and capacity building within national programmes for sustainability. Genetic research was – and still remains – the backbone, but there has been a growing reliance on other tools including IT and molecular breeding. Now the technology has matured, costs have decreased, making it more viable for public research.

Unfortunately, we don’t have the alternative case of what it would have been like without GCP… but I think that many institutes within and outside CGIAR are trying to use genomics as a technology, and I think a lot of that can be traced back to projects that GCP supported.

What have been the major outcomes of GCP so far?
The greatest overall outcome is a stronger awareness and use of genomics in our research programmes across the board.

Unfortunately, we don’t have the alternative case of what it would have been like without GCP, which we could compare to, but I think that many institutes within and outside CGIAR are trying to use genomics as a technology, and I think a lot of that can be traced back to projects that GCP supported and encouraged.

In the early years, characterisation of genetic resources was very beneficial and it’s encouraging to see it still continues, with characterising genetic resources now considered routine.

What outcomes are you most looking forward to?
I think one of the most promising, and potentially important outcomes will be the adoption of GCP’s Integrating Breeding Platform.

‘Challenge’ is in GCP’s name. What are the major challenges that the Programme has so far overcome?
When GCP was being designed, there was no definition or case study for what a Challenge Programme had to do. The preliminary idea was that for projects to succeed and overcome major challenges, partnerships were key and no single institute could do it alone: they needed to do business differently, whether among the CGIAR Centres, or with partners outside the CGIAR. We had all these genebanks, all this diversity, genetic and genomic tools for some crops but not all crops. So, we put our heads together and asked ourselves, “What if we combine these modern molecular approaches used in one crop and apply them to another crop? Can we unlock the genetic diversity within it to improve quality and yield? How do we get all partners to work together towards a common goal?”

At the beginning, GCP had probably way too many facets and we were trying to move ahead on all the different fronts, so I think the mid-term reshaping and redefinition of the Programme helped it gain more focus to actually do what it set out to do.

GCP has built capacity, tools, methodologies and technologies. All these need to continue so as to increase and improve outputs and enhance outcomes.

What future challenges must the Programme overcome to remain sustainable?
Ensuring its achievements are sustained. While it was a time-bound programme from day one, the results and successes are not time-bound. They should be sustained and continued in other shapes and forms.

The challenge now is filtering these successes and figuring out how best to continue them. GCP has built capacity, tools, methodologies and technologies. All these need to continue so as to increase and improve outputs and enhance outcomes.

What are the main lessons learnt so far?
Partnerships are not easy. They take a lot of time. It’s one thing to write a proposal and say we will work together but it’s another thing to make that work effectively. I know GCP has had some instances where partners brought in have not been effective. I’m sure the GCP management has learnt lessons on how to deal with that.

People work together because they trust and respect one another and recognise and understand each other’s roles. They don’t view it as a competition. Some partnerships occur spontaneously, while others take time. They have to build trust, understanding and communication.

We’ve all learnt lessons from the research side, such as what does and doesn’t work. Focussing was a good lesson that GCP and all of us have learnt. At the beginning, we just spread ourselves too thin, trying to do too many things, making it very difficult to measure progress.

What is the most enjoyable aspect of your involvement with GCP?
I’ve been involved in GCP from day minus one. I used to be at CIMMYT and was involved in the ‘pre-pre-birth’ of the Programme, even before it had been conceptualised. Through the years since then, I’ve had different levels of engagement – and even periods of disengagement – but have always enjoyed my involvement.

It’s always been a good group of people working together, even when there have been problems. I think the Programme has scored high on successes. Jean-Marcel and his team deserve a lot of credit. They’ve really been able to keep the momentum going.

It’s equally exciting to be involved in the Programme’s closure, because I think that is even more important with regard to keeping its legacy alive.

People speak of GCP almost as if it were the 16th Centre. They speak of it with pride and respect. They understand the important role it can play.

GCP has a lot of credibility with national programmes… Ithink it’s been one of the more successful Challenge Programmes.

Jean-Marcel talks of the ‘GCP spirit’ and how successful partners share this spirit. What are your thoughts on this?
GCP definitely has a strong ‘entity’, although I’m not sure if this is a spirit! People speak of GCP almost as if it were the 16th Centre. They speak of it with pride and respect. They understand the important role it can play.

GCP has a lot of credibility with national programmes. When you go to GCP’s General Research Meetings, there’s clearly a feeling of being part of the community, and that we are all improving our efficiency because of the Programme.

I think it’s been one of the more successful Challenge Programmes.

Relevant links

 

Jul 022012
 

A walk down memory lane with Masa

Photo: JIRCASWe caught up with Masaru Iwanaga (pictured right), previously Director General of CIMMYT  from 2002 to 2008, and now President of the Japan International Research Center for Agricultural Sciences (JIRCAS), based in Tsukuba, Japan. CIMMYT is GCP’s host Centre. Here’s what Masa had to say about GCP’s early years, and where the Programme is today…

What was the vision for GCP at its foundation?
Our vision for GCP was to unlock genetic diversity through the application of modern science.

In 2002, as CIMMYT’s Director General, I proposed GCP to CGIAR. I’m proud that I was successful in convincing CGIAR to add GCP to its suite of Challenge Programmes.

GCP was based on partnerships. Partnerships were key because we wanted to mobilise modern science, both inside and outside CGIAR. We wanted to utilise modern science and CGIAR genetic resources for crop improvement.

Dave Hoisington and Peter Ninnes helped me draft the concept framework for how GCP would work.

GCP’s tagline – ‘Partnerships in modern crop breeding for food security’ – what does this mean for you?
I think we wanted to take advantage of our progress, especially in genomics to utilise genetic resources for the betterment of rural livelihoods. We wanted to utilise partnerships to enhance the gains made. I was involved in the establishment of GCP, overseeing the appointments of previous and current Directors, Bob Zeigler and Jean-Marcel Ribaut. GCP has made outstanding progress since its founding.

Practically all CGIAR activities are based on partnerships. Historically, CGIAR had been viewed in some quarters as technology-supply-driven – that technology was pushed on farmers who had to adapt to new varieties and adopt the technology that accompanied it. In the early years, GCP was viewed in the same light. I wanted to correct that view. Our objective was the effective utilisation of the genetic diversity that CGIAR is conserving –utilising this diversity for crop improvement. I had to work very hard to make people see this.

From what I’ve heard and been involved in, GCP has been one of the more successful Challenge Programmes in terms of meeting expectations. My view is very positive.

I left CIMMYT four years ago, and the progress that GCP has made during this time has astounded me.

For me, my life back then seems so distant to where I am now. But, recently I visited a national programme in a developing country, and the people I met had a positive view of GCP, saying it added value to their programme.

I’m currently head of the Japan International Research Center for Agricultural Sciences [JIRCAS, Tsukuba, Japan]. We conduct technical research activities.

I have mentioned partnership several times. This is because GCP is a partnership involving many organisations for the purpose of enhancing the capacity of national programmes to utilise advanced technology for crop improvement, taking advantage of genetic diversity.

Germplasm conservation by CGIAR Centres can be centralised but crop improvement needs to be decentralised because it is, of course, influenced by the local environment. It means we need to have capable crop breeders in national programmes. However, national programmes have been weakened in many developing countries, for various reasons.

By building capacity for developing-country breeders, we can contribute to stability by offering them the necessary resources, services and tools to progress and advance their work, and make them more efficient – and therefore more effective – in doing their work.

My fondest memory of my involvement with GCP was attending technical meetings and hearing the dialogue between a biotechnologist and a germplasm curator who were discussing how they could utilise each other’s strengths to conserve germplasm and enhance crop breeding.

What role did CIMMYT play then in supporting GCP?
In my role as Director of CIMMYT, I tried hard to make sure that CIMMYT was not misinterpreted as taking over GCP. Our role was to provide a management and administrative support framework for GCP to develop in its own way.

It’s been a real pleasure revisiting this chapter of my life.

Relevant links

Jul 012012
 

A shared vision

What is GCP all about and why is its work important? Why was GCP created? Read recollections from key people involved in GCP’s conceptualisation, and find out how realisation of the shared vision continues today. Featuring candid conversations with Masa Iwanaga, former Director General, CIMMYT; Dave Hoisington, Consortium Committee Chair; Andrew Bennett, Executive Board member; and Jean-Marcel Ribaut, GCP Director.

When was the last time you went to your local shop to buy something only to be told they’ve run out of it? How did you react? Like most of us, did you question how they could have run out – after all, isn’t it their business to adequately supply the demand?

Most likely you just went to another store. But what if there wasn’t another store around that had your product, or worse, there was actually a national shortage of your product? This is the reality that faces not just those after the latest iPad, but billions of people who just want something, anything, to eat.

With less productive land on which to grow crops, a more variable climate and more extreme weather events, farmers across all continents are struggling to produce crops, let alone increase yields to meet an ever-growing demand.

This scenario has continually raised its ugly head over the last 200 years as the world’s population has grown exponentially and shifted to urban surroundings. If not for the Green Revolution, inspired by the late Norman Borlaug’s agricultural development research within the Office of Special Studies in Mexico (now the International Maize and Wheat Improvement Center, more commonly known as CIMMYT, its Spanish acronym), the world population would have already suffered losses into the billions.

Even so, food insecurity is still recognised as a global challenge by the UN’s Food and Agriculture Organization (FAO). While there is debate over the cause for such insecurity, the advances of agricultural technology born from a Mexican-flavoured research programme are once again coming to the fore to meet the challenge.

Genebanks are not limited to conservation but are also a source of new alleles for crop improvement.

The genies in the genebank
Seedbank collections serve as insurance against unanticipated future threats to food security, the degradation of our environment and the loss of plant biodiversity.

But that is not all: the banks are not limited to conservation but are also a source of new alleles for crop improvement. The temperature-controlled CGIAR genebanks are a veritable treasure trove for plant breeding. Over the past four decades, their curators have scoured the planet, collecting, categorising and conserving more than 650,000 samples of crop, forage and agroforestry genetic resources, held in trust on behalf of humanity.

One such temperature-controlled genebank is located just outside the sweltering Mexico City: the CIMMYT genebank holds more than 150,000 unique samples of wheat and its relatives from more than 100 countries – said to be the largest collection of a single crop.

While genebank ‘stocks’ have always been open to plant breeders, it wasn’t until 2002 that CGIAR researchers embarked on a more structured and systematic approach using modern technologies to tap their breeding potential, thereby elevating the genebanks beyond their traditional collection and conservation role. Prior to that, far-sighted individual pioneering researchers had been studying (termed ‘screening’ in breeder-speak) the stocks for solutions to breeding problems and to improve crops, but the turning point for a concerted ‘institutional’ effort, would come in the early noughties.

By studying the genes of wild versions of, let’s say, wheat, researchers can find genes that could help cultivated wheat to better battle drought.

The dawn of a new generation
One of these researchers was Dave Hoisington (pictured), then with CIMMYT, and now Chair of GCP’s Consortium Committee, and ICRISAT’s Director of Research. Dave worked with the then newly appointed CIMMYT Director General, Masa Iwanaga, and helped draft a joint proposal with other institutes to CGIAR to form a Challenge Programme that could use the recent advances in molecular biology to harness their rich global stocks of crop genetic resources to create and provide a new generation of plants to meet farmers’ needs. This successfully gave rise to the CGIAR Generation Challenge Programme.

“GCP’s first task was to go in and identify the genetic wealth held within the CGIAR banks,” says Dave.

“To do this, we wanted to use the most recent molecular tools, like molecular markers, to help scan the genomes and discover genes in species related to crops of interest that could help increase yield.”

Let’s use an analogy from a familiar medium – text: think of this story you are now reading as the plant’s genome, its words as its genes and a molecular marker as a text highlighter. You can use different markers to highlight different keywords in this story. Once you can see these keywords, you can then study them in more detail, and, in the case of genes, see what they control in the plant, and how they affect its different aspects.

Photo: JIRCASBy studying the genes of wild versions of, let’s say, wheat, researchers can find genes that could help cultivated wheat to better battle drought.

“At that time, we recognised that a Centre like CIMMYT could no longer undertake this tremendously complex task on its own,” recounts Masa (pictured).”We needed to work within a programme that could concentrate on the task and that rallied together various CGIAR Centres as well as research institutes outside CGIAR, especially in developing countries.”

Partnerships with spirit
Partnerships have always been a key ingredient to success. At the same time, they have led to the downfall of many projects.

Back in the early noughties, CGIAR recognised their business model and research system were not actively fostering partnerships between their different research Centres as much as they should have been, nor were they vigorously encouraging Centres to seek collaboration outside CGIAR.

This was one of the fundamental reasons for establishing the Challenge Programmes, says Jean-Marcel Ribaut (pictured), who, in his role as GCP Director, has been credited by the Board and Committee for the significant time he has taken to broker, nurture and manage GCP’s partnerships.

“One of our major outputs has been the human assets,” says Jean-Marcel with great pride. “We have created this amazing chain of people from the lab to the field.”

In fact, GCPs greatest asset – its ‘crown jewel’ – is its network of people and the capacity the Programme provides them with to buttress all the hard work, particularly in countries where the end products (crops) will be of most benefit.

…the GCP Spirit’ … is visible and palpable: you can recognise people working with us have a spirit that is typical of the Programme.”

“To make a difference in rural development, to truly contribute to improved food security through crop improvement and income for poor farmers, we knew we had to build capacity in these areas,” observes Jean-Marcel.

“I see our management style as fairly ‘paternal’, in the positive sense of wanting to see these groups of people succeed, and us helping them to do so. If a research site needs a pump for fieldwork, we work with a local or international consultant who will visit the partner and evaluate their needs, advise them on what type of pump they need, as well as other infrastructure they’ll need for the whole system to be sustainable. We’ll then provide training on how to use the pump most effectively. It’s an investment in the people as much as in the products they are working on because we are trying to change the system of how science within partnerships is conducted and supported, as much as we are trying tap genetic diversity and breed resilient crops for the developing world.”

We were attracted to GCP because of its strong facilitating role, which offered considerable support to addressing the bottlenecks associated with research programmes that researchers and CGIAR identified.”

This support and change have been major selling points for potential partners who have resonated with what Jean-Marcel calls ‘the GCP Spirit’ – partners open to sharing their skills, tools and knowledge, willing to sacrifice their views and leadership and, most importantly, support one another.

“It is visible and palpable: you can recognise people working with us have a spirit that is typical of the Programme,” says Jean-Marcel.

Funders like the Swiss Agency for Development and Cooperation (SDC) are attracted to, and impressed by, GCP’s approach as an honest and impartial ‘broker’.

“We were attracted to GCP because of its strong facilitating role, which offered considerable support to addressing the bottlenecks associated with research programmes that researchers and CGIAR identified,” says Carmen Thönnissen (pictured), Senior Advisor at SDC.

“GCP is also in line with SDC’s internal guidelines on Green Biotechnology, where it is our aim not to support single-donor initiatives but to work in larger programmes that have a clear focus on strengthening the national partner capacities too.”

At the beginning, most project leaders were from developed nations and CGIAR Centres. … now more than half of our projects are led by scientists in developing countries.”

A structured revolution within an evolution: aiming for products and sustainable change
GCP was designed in two phases over its 10-year life. The first was about the research and using genetic plant breeding techniques. The second and current phase focuses more on accessing modern breeding technologies and building capacity in developing countries to do the research for themselves.

Within nine years, GCP has produced useful tools and products from its studies of genetic resources.
These products have contributed to advancing knowledge, and will continue to do so into the future, particularly in plant breeding.

“At the very beginning, most project leaders were from established universities and institutes  in developed nations, and CGIAR Centres. However, over time there has been a major shift and now we are proud that more than half of our projects are led by scientists in developing countries,” says Jean-Marcel. “They’ve moved from the position of implementers to the role of leaders, while the CGIAR Centres and institutes in developed countries have evolved more into mentors and teachers. We hope this empowerment will allow national programmes to grow and establish themselves to be sustainable when the funding dries up.”

Challenges within the Challenge Programme
All this talk about spirit, collaboration and partnerships does make it sound as if GCP has found the winning formula, but Jean-Marcel is quick to counter such notions, and there have been constant course corrections in charting the Programme’s path. “If anything, our strength comes from recognising our weaknesses, acknowledging that we don’t have it all worked out, and embracing change where it is needed.”

A mid-term external review was conducted in 2008 to audit the Programme’s weaknesses, strengths and lessons learnt from both. This review resulted in some governance reforming, bringing about the Consortium Committee and an independent Executive Board.

“It’s a major improvement that we have an independent Board, allowing for focus, and without any conflict of interest. I think they are doing a great job,” says Jean-Marcel. “They are monitoring and evaluating what we are doing, providing plenty of feedback and ideas on how to move forward, and contributing a lot to the success of the Programme.”

The Board’s focus now turns to auditing the Programme and mapping a strategy to sustain its successful partnerships and systems, so they can continue to deliver products and capacity to the developing world.

Bird’s eye view from the Board
With more than 45 years of experience in international development and disaster management and, having worked in development programmes in Africa, Asia, Latin America, the Pacific and the Caribbean, Andrew Bennett (pictured) was a perfect candidate for the Board Chair.

“We are committed to the role that can be played by science in development, and to the Programme,” says Andrew. “We have offered advice and helped the Programme’s Consortium Committee and management refocus the Programme. By all accounts, they seem happy with how things have evolved.”

Advice and helping aren’t normally the words associated with how a Board works but, like so much of the GCP family, this isn’t a classical board.

Andrew explains “Because GCP is hosted by CIMMYT, the Board does not have to deal with any policy issues. That is the responsibility of the Consortium Committee. Our role is more to provide advice and to help with decision-making and implementation, which is great as we’ve been able to focus on the Programme’s science and people.”

That focus now turns to auditing the Programme and mapping a strategy to sustain its successful partnerships and systems, so they can continue to deliver products and capacity to the developing world.

Turning sunset to sunrise
With only two-and-a-half years left to run, Jean-Marcel and his team are working just as passionately on sustaining the partnerships, projects and outputs that GCP has created.

“We knew we weren’t going to be around forever, so we had a plan from early on to hand over the managerial reins to other institutes, including CGIAR,” says Jean-Marcel, with the slight affliction of a parent helping their child move out of home.

“We have begun integrating projects into the CGIAR Research Programmes (CRPs) which we hope will allow them to continue to grow and work effectively towards the goals set.”

At the same time, the Management Team, Committee and Board are all busy auditing the successes and failures of the Programme to quantify the achievements of what has been termed as one of the CGIAR’s more successful Challenge Programmes, and on how to make GCP products freely accessible to other research institutes and programmes.

Relevant links

Links to external websites

 

cheap ghd australia