Jan 122015
 
James profile

James Gethi and one of the crops closest to his heart – maize. He also has a soft spot for hardy crop varieties that survive harsh and unforgiving drylands, such as Machakos, Kenya, where this June 2011 photo of him with drought-tolerant KARI maize was taken.

As we tell our closing stories on our Sunset Blog, in parallel, we’re also catching up on the backlog of stories still in our store from the time GCP was a going concern. Our next stop is Kenya, and the narrative below is from 2012, but don’t go away as it is an evergreen – a tale that can be told at any time, as it remains fresh as ever. At that time, and for the duration of the partnership with GCP, the Food Crops Research Institute of the Kenya Agricultural and Livestock Research Organisation (KALRO) was then known as the Kenya Agricultural Research Institute (KARI), and we shall therefore stay with this previous name in the story. KARI was also the the name of the Kenyan institute at the time when James Gethi (pictured) left for a sabbatical at the International Maize and Wheat Improvement Center (CIMMYT by its Spanish acronym). On to the story then, and please remember we’re travelling back in time to the year 2012. 

“I got into science by chance, for the fun of it,” muses James, maize breeder and former GCP scientist “With agricultural school promising a flight to overfly the country’s agricultural areas– this was an interesting prospect for a village guy. ‘This could be fun’, I thought!”

And it turned out to be a chance well worth taking.  His first step was getting the requisite education. And so he armed himself with a BSc in Agriculture from the University of Nairobi, Kenya, topped with a Master’s and PhD in Plant Breeding from the University of Alberta (Canada) and Cornell University (USA), respectively. Beyond academics, in the course of his crop science career, James has developed 13 crop varieties, that included maize and cassava, published papers in numerous peer-reviewed papers (including the 2003 prize for Best paper in the field of crop science in the prestigious Crop Science journal. And in leadership, James headed the national maize research programme in his native Kenya. These are just a few of the achievements James has garnered in the course of his career, traversing  and transcending not only the geographical frontiers initially in his sights, but also scientific ones, reaching professional heights that perhaps his younger self might never have dreamt possible.

As a Research Officer at KARI, a typical day sees James juggling his time between hands-on research (developing maize varieties resistant to drought, field and storage pests) and project administration, coordinating public–private partnerships and the maize research programme at both institutional and country level. What motivates the man shouldering much of the responsibility for the buoyancy of his nation’s staple crop? James explains, “Making a difference by providing solutions to farmers. That’s my passion and that’s what makes me get up in the morning and go to work. It’s hugely satisfying!”

Without GCP, I would not be where I am today as a scientist… [it] gave me a chance to work with the best of the best worldwide… You develop bonds and understanding that last well beyond the life of the projects.”

Rapid transitions: trainee to trainer to leader
It was this passion and unequivocal dedication to his vocation – not to mention a healthy dollop of talent – that GCP was quick to recognise back in 2004, when James first climbed aboard the GCP ship. Like a duck to water, he proceeded to engage in all manner of GCP projects and related activities, steadily climbing the ranks from project collaborator to co-Principal Investigator and, finally, Principal Investigator in his own right, leading a maize drought phenotyping project. Along the way, he also secured GCP Capacity building à la carte and Genotyping Support Service grants to further the maize research he and his team were conducting.

Combo1

FLASHBACK: At a GCP drought phenotyping course in mid-2006 at Montpellier, France. (1) James (left) pays keen attention during one of the practical sessions. (2) In the spirit of “All work and no play, etc”, taking a break from the course to take in some of the sights with colleagues. Clearly, James, “the guy from the village” is anything but a dull boy! Next to James, second left, is BM Prasanna, currently leader of CIMMYT’s maize programme.

DSC00606_w

From trainee to trainer and knowledge-sharer: James (behind the camera) training KARI staff on drought phenotyping in June 2009 at Machakos, in Kenya’s drylands.

The GCP experience, James reveals, has been immensely rewarding: “Without GCP, I would not be where I am today as a scientist,” he asserts. And on the opportunity to work with a capable crew beyond national borders, as opposed to operating as a solo traveller, he says: “GCP gave me a chance to work with the best of the best worldwide, and has opened up new opportunities and avenues for collaboration between developing-country researchers and advanced research institutes, creating and cementing links that were not so concrete before. This has shown that we don’t have to compete with one another; we can work together as partners to derive mutual benefits, finding solutions to problems much faster than we would have done working alone and apart from each other.”

The links James has in mind are not only tangible but also sustainable: “You develop bonds and understanding that last well beyond the life of the projects,” James enthuses, citing additional professional engagements (the African Centre for Crop Improvement in KwaZulu-Natal, South Africa, and the West Africa Centre for Crop Improvement, have both welcomed James and his team into their fold), as well as firm friendships with former GCP project colleagues as two key take-home benefits of his interaction with the Programme. These new personal and professional circles have fostered a happy home for dynamic debates on the latest news and views from the crop-science world, and the resultant healthy cross-fertilisation of ideas, James affirms.

Reflecting on what he describes as a ‘mentor’ role of GCP, and on the vital importance of capacity building in general, he continues: “By enhancing the ability of a scientist to collect germplasm, or to analyse that germplasm, or by providing training and tips on how to write a winning project proposal to get that far in the first place, you’re empowering scientists to make decisions on their own – decisions which make a difference in the lives of farmers. This is tremendous empowerment.”

Another potent tool, says James, is the software made available to him through GCP’s Integrated Breeding Platform (IBP), which is a handy resource package to dip into for – among other things – analysing data and selecting the right varieties at the right time. The next step for IBP, he feels, should be scaling up and aiming for outreach to the wider scientific community, forecasting that such a step could bring nothing but success: “The impacts could be enormous!” he projects, with a palpable and infectious enthusiasm.

People… don’t eat publications, they eat food… I’m not belittling knowledge, but we can do both”

Fast but not loose on the R&D continuum: double agent about?
For James, outreach and impacts are not limited to science alone. In parallel with his activities in upstream genetic science, James’ efforts are equally devoted to the needs of his other client base-–the development community and farmers. For this group, James’ focus is on putting tangible products on the table that will translate into higher crop yields and incomes for farmers. Yet whilst products from any highly complex scientific research project worth its salt are typically late bloomers, often years in the making on a slow burner as demanded by the classic linear R&D view that research must always precede development, adaptation and final adoption, James has been quick to recognise that actors in the world of development and the vulnerable communities they serve do not necessarily have this luxury of time.

 August 2008: a huge handful, and more where that came from in Kwale, Kenya. This farmer's healthy harvest came from KARI hybrids.

August 2008: a huge handful, and more where that came from in Kwale, Kenya. This farmer’s healthy harvest came from KARI hybrids.

His solution for this challenge? “Sitting where I sit, I realised from very early on that if I followed the traditional linear scientific approach, my development clients would not take it kindly if I still had no products for them within the three-year lifespan of the project. The challenge then was to deliver results for farmers without compromising or jeopardising their integrity or the science behind the product,” he recalls. In the project he refers to – a GCP-funded project to combat drought and disease in maize and rice – James applied a novel double-pronged approach to get around this seeming conundrum of the need for sound science on the one hand, and the need for rapid results for development on the other hand. Essentially, he simultaneously walked on both tracks of the research–development continuum.

The project – led by Rebecca Nelson of Cornell University and with collaborators including James’ team at KARI (leading the maize component), the International Rice Research Institute (IRRI), researchers in Asia, as well as other universities in USA – initially set out with the long-term goal of dissecting quantitative trait loci (QTLs) for rice and maize with a view to combating drought and disease in these crops. Once QTLs were dissected and gene crosses done, James and his team went about backcrossing these new lines to local parental lines, generating useful products in the short term. The results, particularly given the limited resources and time invested, have been impressive, with seven hybrid varieties developed for drylands and coastal regions having been released in Kenya by 2009, and commercialised from 2010.

James and his colleagues have applied the same innovative approach to other GCP projects, grappling to get a good grasp of the genetic basis of drought tolerance, whilst also generating intermediate products for practical use by farmers along the way. James believes this dual approach paves the way for a win-win situation: “People on the ground don’t eat publications, they eat food,” he says. “As we speak now, there are people out there who don’t know where their next meal will come from. I’m not belittling knowledge, but we can do both – boiled maize on the cob and publications on the boil. But let’s not stop at crop science  and knowledge dissemination – let’s move it to the next level, which means products,” he challenges, adding: “With GCP support, we were able do this, and reach our intended beneficiaries.”

It is perhaps this kind of vision and inherent instinct to play the long game that has taken James this far professionally, and that will no doubt also serve him well in the future.

As our conversation comes to a close, we ask James for a few pearls of wisdom for other young budding crop researchers eager to carve out an equally successful career path for themselves, James offers “Form positive links and collaborations with colleagues and peers. Never give up; never let challenges discourage you. Look for organisations where you can explore the limits of your imagination. Stay focused and aim high, and you’ll reach your goal.”

Upon completion of his ongoing sabbatical at CIMMYT in Zimbabwe, where he is currently working on seed systems, James plans to return to KARI, armed with fresh knowledge and ready to seize – with both hands – any promising collaborative opportunities that may come his way .

Certainly, prospects look plentiful for this ‘village lad’ in full flight, and who doesn’t look set to land any time soon!

DSC03659_w

In full flight – Montpellier, Brazil, Benoni, Bangkok, Bamako, Hyderabad… our boy voyaged from the village to Brazil and back, and far beyond that. Sporting the t-shirt from GCP’s Annual Research Meeting in Brazil in 2006, which James attended, he also attended the same meeting the following year, in Benoni, South Africa, in 2007, when this photo was taken. James is a regular at these meetings which are the pinnacle on  GCP’s calendar (http://bit.ly/I9VfP4). But he always sings for his supper and is practically part of the ‘kitchen crew’, but just as comfortable in high company. For example, he was one of the keynote speakers at the 2011 General Research Meeting (see below).

Links:

 

 

Oct 242014
 

OAweek2014By Eloise Phipps

Imagine the scene: it is the dead of night, and you are engaged on a dangerous mission. You are tense, alert for any noise. You must complete your task without being seen, or risk the shame and humiliation of failure… but it is not a pleasant undertaking!

Your mission? A critical matter of honour. To dispose of your family’s cassava peelings – not with the rest of your household waste, but smuggled into the murky depths of the pit latrine. Why?

“The stigma about cassava is mostly among the Kikuyu people of central Kenya,” explains Henry Ngugi, Kenyan scientist and former Maize Pathologist for Latin America at the International Maize and Wheat Improvement Center (CIMMYT). “Traditionally, the Kikuyu are very proud, and self-sufficiency in basic needs such as food is an important factor in this. That is, you cannot be proud if you cannot feed yourself and your family. Now, the other part of the equation regarding cassava is that, traditionally, cassava was eaten during seasons of severe food shortages. It is a hardy and drought-tolerant crop so it would be available when the ‘good food’ was not. This also meant that it was associated with hunger and poverty – inability to feed oneself.”

“Another factor that may have played a role in the way the Kikuyu view cassava is that some of the traditional cultivars produced high levels of cyanide and were toxic [if not properly cooked], so as a crop it was not very highly regarded to start with. Improved cultivars have been bred to remove this problem. But because of these issues, many people would not want their neighbours to know they were so hungry they had to rely on cassava, and would go to great lengths to conceal any evidence!”

The story is not the same everywhere: graceful and strong, this farmer tends her field of cassava, in the village of Tiniu, near Mwanza, northern Tanzania.

Opening up for Open Access Week

This year, 20–26 October is Open Access Week, a global event celebrating, promoting and sharing ideas on open access – that is, making research results, including both publications and data, freely and publicly available for anyone to read, use and build upon. Even more exciting for us, this year’s theme is ‘Generation Open’, reflecting the importance of students and researchers as advocates for open access – a call that falls on fertile ground at the Generation Challenge Programme  (video below courtesy of UCMerced on YouTube).

We at GCP have been reflecting this week on different virtues of openness and transparency, and the perils of shame and secrecy. But before we go on, we’re sticking with cassava (carrying over from World Food Week!) but crossing the globe to China to celebrate the latest open-access publication to join the GCP parade. ‘Cassava genome from a wild ancestor to cultivated varieties’ by Wang et al is still practically a newborn, published on the 10th of October 2014.

The article presents draft genome sequences of a wild ancestor and a domesticated variety of cassava, with additional comparative analyses with other lines. It shows, for example, that genes involved in starch accumulation have been positively selected in cultivated cassava, and those involved in cyanogenic (ie, cyanide-producing) glucoside formation have been negatively selected. The authors hope that their results will contribute to better understanding of cassava biology, and provide a platform for marker-assisted breeding of better cassava varieties for farmers.

The research was carried out by a truly international team, led by scientists from the Chinese Academy of Tropical Agriculture Sciences (CATAS) and Chinese Academy of Sciences (CAS). Authors Wenquan Wang of CATAS and Bin Liu of CAS are delighted that their publication will be freely available, particularly in a journal with the prestige and high impact of the Nature family. As they observe, the open access to the paper will spread their experience and knowledge quickly to every corner of China and of the world where people have internet connections.

The work incorporated and partially built upon previous work mapping the cassava genome, which was funded by GCP in our project on Development of genomic resources for molecular breeding of drought tolerance in cassava (G3007.03), led by Pablo Rabinowicz, then with the University of Maryland, USA. This provides a perfect example of the kind of constructive collaboration and continuation that open access and sharing of research results can facilitate: by building on what has already been done, rather than re-inventing the wheel or working in isolation, we share, disseminate and amplify knowledge more rapidly and efficiently, with win–win outcomes for all involved.

Cassava farmers in Vietnam.

One thing that makes the latest research even more special is that it was published in Nature Communications, which marked Open Access Week by going 100 percent open access from the 20th of October, making it an open-access flagship within the Nature Publishing Group – a clear indicator of the ever-increasing demand for and credibility of open-access publishing. We congratulate all of our open-access authors for making their work publicly available, and Nature Communications for its bold decision!

A matter of perspective: turning shame to pride and fears to opportunities

No shame here: a little girl clutches a cassava root in Kenya.

Of course, human beings worrying about their social status is old as humanity itself and nothing new. Food has never been an exception as an indicator. Back in mediaeval Europe, food was a hugely important status symbol: the poor ate barley, oats and rye, while only the rich enjoyed expensive and prestigious wheat. Although our ideas about what is luxurious have changed – for example, sugar was considered a spice thanks to its high cost – rare imported foods were something to boast about just as they might be today.

But why are we ashamed of eating the ‘wrong foods’ – like cassava – when we could take pride in successfully feeding our families? Many of the things we tend to try to hide are really nothing to be ashamed of, and a simple change in perspective can turn what at first seem like weaknesses into sources of pride (and there are two sides to the cassava saga, as we shall see later).

Throughout its existence, GCP has been characterised by its openness and transparency. We have worked hard to be honest about our mistakes as well as our successes, so that both we and others can learn from them. The rewards of this clear-eyed approach are clearly noted in our Final External Review: “GCP has taken an open and pro-active attitude towards external reviews – commissioning their own independent reviews (the case of the current one) as well as welcoming a number of donor reviews. There have been clear benefits, such as the major governance and research reforms that followed the EPMR [External Programme and Management Review] and EC [European Commission] Reviews of 2008. These changes sharply increased the efficiency of GCP in delivering benefits to the poor.”

Transparent decision-making processes for determining choices of methods have also improved the quality of our science, while open, mutually respectful relationships – including open data-sharing – have underpinned our rich network of partnerships.

One aspect of this open approach is, of course, our commitment to open access. All of our own publications are released under Creative Commons licences, and we encourage all GCP grant recipients to do the same, or to pursue other open-access options. When exploring our research publications you will note that many are directly available to download. Our website will act as an archive for the future, ensuring that GCP publications remain online in one place after GCP’s closure in December this year. See our Global Access Policy and our policy on data-sharing.

“Open access journals are just terrific,” says Jean-Marcel Ribault, Director of GCP. “It’s great to enable access to publications, and it’s important to promote sharing of data and open up analysis too. The next big challenge is data management, and assuring the quality of that data. At the end of the day, the quality of the information that we share with others is fundamental.”

Proud in pink and polka dots: a farmer shows off a healthy cassava leaf in a plantation in Kampong Cham, Cambodia.

That’s a challenge that many other organisations are also grappling with. Richard Fulss, Head of Knowledge Management at our host CIMMYT is currently working on standards and approaches for the quality and structure of data, with the aim of implementing open access to all data within five years, meeting guidelines being put in place across CGIAR. “The issues to resolve are threefold,” he explains. “You have a licence issue, a technology issue – including building the right platform – and a cultural issue, where you need to build a culture of knowledge sharing and make open access publishing the norm rather than the exception.”

Our partners at the International Center for Tropical Agriculture (CIAT) already have a strong open-access policy, and are debunking some cherished open-access myths.

It’s good to talk: saying no to secrecy

Back to cassava, and of course not everyone feels the same way about the same crop, as there are many sides to any story. In China, demand for cassava is soaring – for food, for animal feed and most of all as a raw material for starch and biofuel production – making breeding of resilient, productive cassava varieties even more important. Even within Kenya, there are those who are quicker to see the crop’s virtues. The Luhya people of western Kenya often mix cassava with finger millet or sorghum to make flour for ugali (a stiff porridge or dough eaten as a staple food in vast swathes of Eastern and Southern Africa). As Henry explains “one reason was that such ugali ‘stayed longer in the stomach’ in literal translation from local parlance meaning it kept you full for longer – which is scientifically sound because cassava has a crude starch that takes longer to digest, and lots of fibre!”

Meanwhile, watch the delightful Chiedozie Egesi, Nigerian plant breeder and molecular geneticist, in the video below to hear all about the high potential of cassava, both as a food in itself and as a raw material to make flour and other products – something some farmers have already spotted. “Cassava can really sustain a nation… we’ve seen that it can,” he says. “You have in Nigeria now some of the Zimbabwean farmers who left Zimbabwe, got to Nigeria, and they changed from corn [maize] to cassava, because they see the potential that it has.”

The power of openness is already showing itself in the case of cassava, as well as other root, tuber and banana crops. Check out RTBMaps, an online atlas developed by the CGIAR Research Program on Roots, Tubers and Bananas (RTB), using ‘scientific crowdsourcing’ to combine data on a wide range of variables, shared by many researchers, in a single map. Putting all that information together can help people make better decisions, for example on how to target breeding, or where disease threats are likely to be strongest. And for a sweet serving, here’s our humble contribution from Phase I to a world-favourite dessert!

We leave you with one final thought. It is not just cassava that is plagued with pride and prejudice; many foods attract high or low statuses in different regions – or even just variations of the same food. People in Asia and North America, for example, tend to prefer yellow maize, while Africans like their maize white. In fact, yellow maize still carries a powerful stigma in many parts of Africa, as this was the colour of the maize that arrived as external  aid in periods of famine, oftentimes perceived in Africa as animal fodder and not human food in the countries it was sourced from. And thus yellow maize became synonymous with terrible times and the suffering and indignity of being unable to feed oneself and one’s family. Consequently, some of the famine-stricken families would only cook the yellow ‘animal-fodder’  maize in the dead of night, to avoid ‘detection’ and preserve family pride and honour.

This might at first blush appear to be a minor curiosity on colour and coloured thinking, were it not for the fact that when crops – such as sweet potato, cassava, or indeed maize – are bred to be rich in pro-vitamin A, and so provide plenty of the vitamin A that is particularly crucial for young children and pregnant women, they take on a golden yellow-orange hue. When promoting the virtues of this enriched maize in parts of Africa, it’s vital to know that as ‘yellow maize’ it would fall flat on its face, but as ‘orange maize’ or ‘golden maize’ it is a roaring success. A tiny difference in approach and label, perhaps, but one that is a quantum leap in nutritional improvement, and in ‘de-stigmatisation’ and accelerating adoption. Ample proof then that sharing details matters, and that it’s good to talk – even about the things we are a little ashamed of, thereby breathing substance into the spirit of the theme ‘Generation Open’.

Do have some of these uncomfortable but candid conversations this Open Access Week and live its spirit to the fullest every day after that! As for us here at GCP, we shall continue to sow and cultivate the seeds of Generation next for plant breeding into the future, through our Integrated Breeding Platform which will outlive GCP.

A little girl in Zambia gets a valuable dose of vitamin A as she eats her orange maize.

Eyes dancing with past, present or future mischief, two cheeky young chappies from Mozambique enjoy the sweet taste of orange sweet potato enriched with pro-vitamin A.

Links:

Sep 012014
 

Scouring the planet for breeding solutions

Bindiganavile Vivek

Bindiganavile Vivek

Bindiganavile Vivek (pictured) is a maize breeder working at the International Maize and Wheat Improvement Center (CIMMYT), based in Hyderabad, India. For the past five years, Vivek and his team have been developing drought-tolerant germplasm for Asia using relatively new molecular-breeding approaches – marker-assisted recurrent selection (MARS), applied in a genomewide selection (GWS) mode. Their work in the Asian Maize Drought-Tolerance (AMDROUT) project is implemented through GCP’s Maize Research Initiative, with Vivek as the AMDROUT Principal Investigator.

Driven by consumer demand for drought-tolerant maize varieties in Asia, the AMDROUT research team has focussed on finding suitable drought-tolerant donors from Africa and Mexico. Most of these donors are white-seeded, yet in Asia, market and consumer preferences predominantly favour yellow-seeded maize. Moreover, maize varieties are very site-specific and this poses yet another challenge. Clearly, breeding is needed for any new target environments, all the while also with an eye on pronounced market and consumer preferences.

(1) Amazing maize and its maze of colour. Maize comes in many colours, hues and shapes. (2) Steeped in saffron: from this marvellous maize mix and mosaic, the Asian market favours yellow maize.

(1) Amazing maize and its maze of colour. Maize comes in many colours and hues. (2) Steeped in saffron: from this marvellous maize mix and mosaic, the flavour in Asia favours yellow maize.

Stalked by drought, tough to catch, but still the next big thing

Around 80 per cent of the 19 million hectares of maize in South and Southeast Asia is grown under rainfed conditions, and is therefore susceptible to drought, when rains fail. Tackling drought can therefore provide excellent returns to rainfed maize research and development investments. As we shall see later, Vivek and his team have already made significant progress in developing drought-tolerant maize.

Drough in Asia_Vivek slide_GRM 2013_w

The stark reality of drought is illustrated in this warning sign on a desiccated drought-scorched landscape, showing the severity of drought in Asia

But they are after a tough target: drought tolerance is dodgy since it is a highly polygenic trait, making it difficult for plant scientists to pinpoint genes for the trait (see this video with an example from rice in Africa). In other words, to make a plant drought-tolerant, many genes have to be incorporated into a new variety. As one would expect, the degree of difficulty is directly proportional to the number of genes involved. In the private-sector seed industry, MARS  (PDF) has been successfully used in achieving rapid progress towards high grain yield under optimal growth conditions. Therefore, a similar approach could be used to speed up the process of introducing drought tolerance into Asian crops – the reason why the technique is now being used by this project.

AMDROUT Meeting Penang Dec2010_w

More than India: the AMDROUT project also comprises research teams in China, Indonesia, Thailand, The Philippines and Vietnam. In this photo taken during the December 2010 annual project meeting in Penang, Malaysia, the AMDROUT team assessed the progress made by each country team, and  team members were trained in data management and drought phenotyping. They also realised that there was a need for more training in genomic selection, and did something about it, as we shall see in the next photo. Pictured here, left to right: Luo Liming, Tan jing Li, Villamor Ladia, V Vengadessan, Muhammad Adnan, Le Quy Kha, Pichet Grudloyma, Vivek, IS Singh, Dan Jeffers (back), Eureka Ocampo (front), Amara Traisiri and Van Vuong.

The rise of maize: clear chicken-and-egg sequence…

Vivek says that the area used for growing maize in India has expanded rapidly in recent years. In some areas, maize is in fact displacing sorghum and rice. And the maize juggernaut rolls beyond India to South and Southeast Asia. In Vietnam, for example, the government is actively promoting the expansion of  maize acreage, again displacing rice. Other countries involved in the push for maize include China, Indonesia and The Philippines.

So what’s driving this shift in cropping to modern drought-tolerant maize? The curious answer to this question lies in food-chain dynamics. According to Vivek, the dramatic increase in demand for meat – particularly poultry – is the driver, with 70 percent of maize produced going to animal feed, and 70 percent of that going into the poultry sector alone.

GCP gave us a good start… the AMDROUT project laid the foundation for other CIMMYT projects”

 Show and tell: posting and sharing dividends

As GCP approaches its sunset in December 2014, Vivek reports that all the AMDROUT milestones have been achieved. Good progress has been made in developing early-generation yellow drought-tolerant inbred lines. The use of MARS by the team – something of a first in the public sector – has proved to be useful. In addition, regional scientists have benefitted from broad training from experts on breeding trial evaluation and genomic selection (photo-story on continuous capacity-building). “GCP gave us a good start. We now need to expand and build on this,” says Vivek.

AMDROUT trainees at Cambridge_w

AMDROUT calls in on Cambridge for capacity building. AMDROUT country partners were at Cambridge University, UK, in March 2013, for training in quantitative genetics, genomic selection and association mapping. This was a second training session for the team, the first having been September 2012 in India.
Pictured here, left to right – front row: Sri Sunarti, Neni Iriany, Hongmei Chen;
middle row: Ian Mackay (Cambridge), Muhammad Azrai, Le Quy Kha, Artemio Salazar;
back row: Roy Efendy, Alison Bentley (who helped organise, run and teach on the course, alongside Ian) and Suriphat Thaitad.AMDROUT country partners are from China’s Yunnan Academy of Agricultural Sciences (YAAS); the Indonesian Cereals Research Institute (ICERI); the Institute of Plant Breeding at the Unversity of Philppines at Los Baños (UPLB); Thailand’s Nakhon Sawan Field Crops Research Center (NSFCRC); Vietnam’s National Maize Research Institute (NMRI); and private-sector seed companies in India, such as Krishidhan Seeds.Curious on who proposed to whom for this AMDROUT–Cambridge get-together? We have the answer: a Cambridge callout announced the training, and AMDROUT answered by calling in, since course topics were directly relevant to AMDROUT’s research approach. 

 

 

According to Vivek, the AMDROUT project laid the foundation for other CIMMYT projects  such as the Affordable, Accessible, Asian (AAA) Drought-Tolerant Maize (popularly known as the ‘Triple-A project’) funded by the Syngenta Foundation for Sustainable Agriculture. This Triple-A project is building on the success of AMDROUT, developing yet more germplasm for drought tolerance, and going further down the road to develop hybrids.

 

Outputs from the AMDROUT project will be further refined, tested and deployed through other projects”

Increasing connections, and further into the future

Partly through GCP’s Integrated Breeding Platform (IBP), another area of success has been in informatics. Several systems such as the Integrated Breeding FieldBook, the database Maize Finder and the International Maize Information System (IMIS) now complement each other, and allow for an integrated data system.

There is now also an International Maize Consortium for Asia (IMIC–Asia), coordinated by CIMMYT, comprising a group of 30 commercial companies (ranging from small to large; local to transnational). Through this consortium, CIMMYT is developing maize hybrids for specific environmental conditions, including drought. IMIC–Asia will channel and deploy the germplasms produced by AMDROUT and other projects, with a view to assuring impact in farmers’ fields.

Overall, Vivek’s experience with GCP has been very positive, with the funding allowing him to focus on the agreed milestones, but with adaptations along the way when need arose: Vivek says that GCP was open and flexible regarding necessary mid-course corrections that the team needed to make in their research.

But what next with GCP coming to a close? Outputs from the AMDROUT project will be further refined, tested and deployed through other projects such as Triple A, thus assuring product  sustainability and delivery after GCP winds up.

Links

As our Maize Research Initiative does not have a Product Delivery Coordinator, Vivek graciously stepped in to coordinate the maize research group at our General Research Meeting in 2013, for which we thank him yet again. Below are slides summing up the products from this research, and the status of the projects then.

Mar 072014
 
Women in science

“Women can do advanced agricultural science, and do it well!” Elizabeth Parkes, cassava researcher, Ghana

Being a woman scientist in today’s world (or at any time in history!) is no mean feat, science traditionally having been the domain of men. We are therefore drawn to this sub-theme: Inspiring change, in addition to the global theme Equality for women is progress for all, To mark International Women’s Day tomorrow, UNESCO has developed an interactive tool which collates facts and figures from across the world on women in science. The cold scientific truth displayed in the attractive petri dish design shows that only 30 percent of researchers worldwide are women.

At GCP, we have been fortunate enough to have a cross-generational spectrum of, not only women scientists, but that even rarer species, women science leaders – who head a project or suite of projects and activities, and who actively nurture and mentor future science leaders – to ultimately contribute to the fulfilment of our mission: Using genetic diversity and advanced plant science to improve crops for greater food security in the developing world. The United Nations has designated 2014 as the Year of Family Farming. GCP’s women researchers have contributed to improving the lives of their farming counterparts the world over, especially in the developing world where on average, 43 percent of the agricultural labour force are women, rising to 60 percent and 70 percent in some regions. (FAO)

Please mind the gap…to leap to that all-important initiation into science

UNESCO's Women in Science interactive tool

UNESCO’s Women in Science interactive tool

The UNESCO tool mentioned above and embedded to the left allows users to “explore and visualise gender gaps in the pipeline leading to a research career, from the decision to get a doctorate degree to the fields of science that women pursue and the sectors in which they work” with this affirmation: “Perhaps most importantly, the data tool shows just how important it is to encourage girls to pursue mathematics and science at a young age.”

In our International Women’s Day multimedia expo, we profile the life and work of a selection of our smart scientific sisters through words, pictures and sound, to explain just how they overcame obstacles, from taking that first hurdle to study science at an early age, to mobility up the research rungs to reach the very top of their game, all the while balancing work, life and family.

A blogpost fest to introduce our first special guests

Masdiar Bustamam

Masdiar Bustamam

We begin our show with a blogpost fest, and first up is GCP’s original Mother Nature, renowned scientist and constant gardener of the molecular breeding plot, Masdiar Bustamam. After a virtual world-tour of research institutes early on in her career, Masdiar took the knowledge of molecular breeding back home, to the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD), where she personally took up the challenge to work with the fledgling world of biotechnology, set up a lab, and helped establish molecular breeding in her country. In an amazing 37-years-odd research career, Masdiar tended not only tender rice shoots, but also budding blossoms in the form of her many students, whom she nurtured and mentored throughout their studies, and who have now seamlessly inherited her mantle to carry on the mission with the same ever-bright spirit. More

Rebecca Nelson

Rebecca Nelson

We now skip continents and oceans  to meet the feisty, continent- and crop-hopping scientist, Rebecca Nelson (Cornell University, USA). “I wanted to get out into the world and try and have a practical impact instead of doing research for the sake of research,” Rebecca says – and that she did, first leaving her native USA to work in the International Rice Research Institute (IRRI) in the Philippines. There she teamed up with friend and colleague, Masdiar Bustamam, to establish Masdiar’s laboratory at ICABIOGRAD, Indonesia. The American continent then called her back, where she moved countries and institutes, and switched from rice to maize research, marking the launch of her GCP experience – which simultaneously introduced her to her a whole new network of international crop researchers. This rich research tapestry was  woven together by a poignant pain deep in her heart, as a mother herself, of “so many mothers not being able to feed their families.” Rebecca wanted to combat this problem,  and crop science is her weapon. More

Zeba Seraj

Zeba Seraj

Next, we meet another true mother of molecular plant breeding, Zeba Seraj (University of Dhaka, Bangladesh). Zeba, whose mind is perpetually on call in the pursuit of science, has been around the world, and from plants to animals and back again in the course of her multifaceted science career. During her PhD and postdoc experience in the UK, still with fauna, she cultivated her expertise in molecular biology and recombinant DNA technology, but a lack of opportunities in that field back in Bangladesh saw her enter the world of crop science, where she has remained ever since. Back at her alma mater, the University of Dhaka, she founded a molecular biology lab, and has nurtured and inspired generations of young biochemists. Her GCP project, using molecular markers to develop salt-tolerant rice, was a real eye-opener for her, and allowed her to truly ‘see’ how applied science and such a practical project would have a direct impact on her country’s food security, now and in the future. More

Sigrid Heuer

Sigrid Heuer

Our next scientist is also truly motivated by putting theory into practice through the application of upstream research all the way down the river, and directly into farmers’ fields. Sigrid Heuer (now with the Australian Centre for Plant Functional Genomics), a German national, has pursued her scientific ventures in Europe, Africa, Asia, and now Oceania, with many challenges along the way. Enter the Generation Challenge Programme, and the chance for Sigrid (then at IRRI)  to lead a major project, the Pup1 rice phosphorus uptake project, which taught Sigrid the A–Z of project management, and gave her ample scope for professional growth. Her team made a major scientific breakthrough, which was not only documented in international journals, but was also widely covered by global media.  From this pinnacle, Sigrid  passed on the baton to other scientists and moved on to new conquests. More

Arllet Portugal

Arllet Portugal

Now, all this research we’ve been celebrating generates a massive amount of data, as you can well imagine. What exactly can our scientists do with all that data, and how can they organise them? GCP’s Arllet Portugal, hailing from The Philippines, gives us the lowdown on smart and SHARP data management whilst also giving us some insights into how she started out on the long and winding road to leading data management for GCP’s Integrated Breeding Platform. In particular, Arllet describes the considerable challenge of changing researchers’ mindsets regarding the importance of effective data management in the context of their research, and enthuses over the excitement with which developing-country researchers welcome the GCP-funded electronic tablets they now use to collect and record data directly in the field. More

Armin Bhuiya

Armin Bhuiya

If there were a muse for young women scientists, it might very well be the subject of our next blogpost profile, Armin Bhuiya (Bangladesh Rice Research Institute). After completing her master’s degree on hybrid rice in her native Bangladesh, Armin was already thinking like a true change-catalyst scientist, trying to discover what line of research would be the most useful for her country and the world. After much deliberation, she embarked on a PhD focusing on developing salt- and submergence-tolerant rice. This wise choice would take her to study under the expert eye of Abdelbagi Ismail at IRRI, in The Philippines, with the helping hand of a GCP–DuPont postgraduate fellowship. There, she learnt much in the way of precise and meticulous research, while also taking advantage to self-train in modern molecular plant breeding methods. Our bright resourceful student has now advanced to the patient erudite teacher – as she takes home her knowledge of high-tech research methods to share with her colleagues and students in Bangladesh. More

Elizabeth Parkes

Elizabeth Parkes

Hello Africa! Switching continents and media, we now we move from the written medium to tune in to the melodic tones of Elizabeth Parkes (Crops Research Institute [CRI] of Ghana’s Council for Scientific and Industrial Research [CSIR], currently on leave of absence at the International Institute of Tropical Agriculture [ IITA]). We’re now at profile number seven in GCP’s gallery of women in science. Elizabeth, who is GCP’s Lead Cassava Researcher in Ghana, narrates an all-inclusive engaging story on the importance to agriculture of women scientists, women farmers, and cassava the wonder crop – all captured on memorable sound waves in this podcast.

If the gravity of words inscribed holds more weight, you can also read in depth about Elizabeth in a blogpost on this outstanding sister of science. Witness the full radiance of Elizabeth’s work in the life-changing world in which she operates; as she characteristically says, “I’ve pushed to make people recognise that women can do advanced agricultural science, and do it well.” And she is no exception to her own rule, as she grew professionally, apparently keeping pace with some of the giant cassava she has helped to develop through the years. But it is her role as nurturer, mentor and teacher that really raises her head-and-shoulders above the rest, from setting up a pioneering biotech lab at CRI–CSIR to conscientiously mentoring her many students and charges in work as in life, because, for Elizabeth, capacity building and cassava are inextricably coupled! More

Marie-Noëlle Ndjiondjop

Marie-Noëlle Ndjiondjop

In the wake of some recent high-profile screen awards, we close our multimedia expo with impressions of our science sisterhood through the medium of the seventh art: the magic visual world of the movies!  A good fit for a Friday!

The following tasteful and tasty (you’ll see why!) blogpost takes our film fans right onto the red carpet to rub shoulders with our scientific screen stars!

The first screen star you’ll meet is Marie-Noëlle Ndjiondjop (Africa Rice Center), Principal Investigator (PI) of GCP’s Rice Research Initiative, who opens the video-viewing session with seven succulent slices of rice research delight. Her movies are set in the rice-growing lands of Africa, where this savoury cereal is fast becoming a staple, and tackles the tricky topics of rice-growing constraints, capacity building, molecular breeding methods, and the colossal capacity of community in collaborative research projects.

Jonaliza Lanceras-Siangliw

Jonaliza Lanceras-Siangliw

The following feature introduces the talented GCP PI Jonaliza Lanceras-Siangliw (BIOTEC, Thailand), whose community-minded project, set in the Mekong region, focused on strengthening rice breeding programmes by using a genotyping building strategy and improving phenotyping capacity for biotic and abiotic stresses. Though this title is something of a spoiler alert, we hope you tune in to this comprehensive reel to see the reality of molecular rice breeding in the Mekong. More

Soraya Leal-Bertioli

Soraya Leal-Bertioli

Last, and by no means least, is a captivating collage of clips featuring GCP researcher, Soraya Leal-Bertioli (EMBRAPA, Brazil) waxing lyrical about that hard genetic nut to crack: the groundnut, and how GCP’s Tropical Legumes I (TLI) project was crucial in getting the crop breeding community to share genetic resources, molecular markers, knowledge, and tools on a cross-continental initiative breaking boundaries in multiple ways. Video collage

Links

Mar 052014
 
Two peas in a pod, hand in hand, 

Elizabeth Parkes

In the past, the assumption was always that ‘Africa can’t do this.’ Now, people see that when given a chance to get round circumstances – as GCP has done for us through the provision of resources, motivation, encouragement and training – Africa can achieve so much!…GCP has made us visible and attractive to others; we are now setting the pace and doing science in a more refined and effective manner…Building human capacity is my greatest joy….I’ve pushed to make people recognise that women can do advanced agricultural science, and do it well. To see a talented woman researcher firmly established in her career and with her kids around her is thrilling….Rural families are held together by women, so if you are able to change their lot, you can make a real mark…” –  Elizabeth Parkes, cassava researcher, Ghana

Elizabeth’s PhD is on cassava genetic diversity, combining ability, stability and farmer preference in Ghana. But for Elizabeth, it is not the academic laurels and limelight but rather, a broader vision of social justice which really drives her: “I see African communities where poverty and hunger are seemingly huge problems with no way out; I’m fortunate to be working on a crop whereby, if I put in enough effort, I can bring some solutions. My primary target group in my research is the less privileged, and women in particular have been my friends throughout. Rural families are held together by women, so if you are able to change their lot, you can make a real mark.”

 

…agricultural research was a man’s job!”

A perennial passion for cassava, and walking with giants: Elizabeth with the pick of the crop for the 2014 cassava harvest season at  IITA, Ibadan, Nigeria.

A perennial passion for cassava, and walking with giants: Elizabeth with the pick of the crop for the 2014 cassava harvest season at IITA, Ibadan, Nigeria.

Prowess and prejudice: Breaking the mould and pioneering into pastures new
On first tentatively dipping her toe into the professional waters of crop science when growing up in her native Ghana, initial reactions from her nearest and dearest suggested that carving out a name for herself in her career of choice was never going to be a walk in the park: “As an only girl among eight  boys of whom three were half-siblings, and the youngest child, my father was not very amused; he thought agricultural research was a man’s job!” she recalls. Undeterred and ever more determined to turn this commonly held canard on its head, Elizabeth went on to bag a Bachelor’s degree in Agriculture, a diploma in Education, and an MPhil degree in Crop Science. During a stint of national service between academic degrees, she approached a scientist engaged in root and tuber projects at Ghana’s Council for Scientific and Industrial Research (CSIR) Crops Research Institute (CRI), offering to carry out some research on cassava, and soon establishing the institute’s first trials in Techiman, in the Brong Ahafo Region,where she was doing her national service. Recognising all the hallmarks of a great scientist, nurturer and leader, her CRI colleagues were quick to welcome this fresh talent into the fold as an Assistant Research Officer, with the full treasure trove of root tuber crops – from cassava to sweet potato to yam and cocoyam, among others – all falling under her remit. Not a bad start for the first woman to be assigned to the project!

Quickly proving herself as a fiercely cerebral researcher with a natural knack for the plant sciences, Elizabeth was encouraged by seasoned (then) GCP scientist, Martin Fregene (their paths had crossed during Elizabeth’s master’s degree thanks to research collaboration with the International Institute of Tropical Agriculture – IITA), to embark on a PhD degree with a focus on cassava. Coinciding with an era when links between Martin’s then home institute, the International Center for Tropical Agriculture (CIAT) and GCP were beginning to really take off the ground, it was a move that proved timely, and a path which Elizabeth pursued with her characteristic vigour and aplomb, climbing the GCP research ranks from multiple travel-grant recipient to a research fellow, and, more recently, to Lead Researcher for GCP’s cassava work in Ghana. Now a well established cassava connoisseur who regularly rubs shoulders with the crème de la crème of the global crop science community, Elizabeth specialises in drought tolerance and disease resistance in the GCP-related aspects of her work, whilst also turning her hand to biofortification research for GCP sister CGIAR Challenge Programme, HarvestPlus.

… it [biotechnology] was a breakthrough which Elizabeth spearheaded…”

Up, up and away! How a helping hand has led Elizabeth & Co to new professional and research heights
Life aboard the GCP ship, Elizabeth reveals, has offered a wealth of professional opportunities, both on personal and institutional levels. GCP-funded infrastructure, such as weather stations and irrigation systems, has helped to boost yields and enhance the efficiency of CRI trials, she observes. Professional development for herself and her team, she says, has been multifold: “Through our GCP work, we were able to build a lab and kick-start marker-assisted breeding – that ignited the beginning of biotechnology activities in CRI,” Elizabeth asserts.  It was a breakthrough which Elizabeth spearheaded, and which, happily, has since become run-of-the mill practice for the institute: “Now CRI scientists are regularly using molecular tools to do their work and are making cassava crosses on their own.” The positive domino effect of this change in tide cannot be underestimated: “Our once small biotechnology laboratory has evolved into a Centre of Excellence under the West Africa Agricultural Productivity Programme. Its first-class facilities, training courses and guiding hand in finding solutions have attracted countless visiting scientists, both from Ghana and internationally – this means that the subregion is also benefitting enormously.” The GCP’s Genotyping Support Service (GSS), Elizabeth affirms, has also proved an invaluable sidekick to these developments: “Through the GSS, our team learnt how to extract DNA as a first step, and later to re-enact all the activities that were initially done for us externally – data sequencing, interpretation and analysis for example – on a smaller scale in our own lab.” The collection and crunching of data has also become a breeze: “Thanks to GCP’s support, we have become a pace-setter for electronic data gathering using tablets, field notebooks and hand-held devices,” she adds.

….GCP gives you the keys to solving your own problems, and puts structures in place so that knowledge learnt abroad can be transferred and applied at home – it’s been an amazing journey!”

Ruth Prempeh, one of Elizabeth's charges, collecting data for her GCP-funded PhD on cassava post-harvest physiological deterioration. Ruth is one of those whose work–family balance Elizabeth celebrates. Ruth has since submitted her thesis awaiting results. As you'll hear in the accompanying podcast, both of Ruth's young children have each, er, sort of 'attended' two big  GCP events!

Ruth Prempeh, one of Elizabeth’s charges, collecting data for her GCP-funded PhD on cassava post-harvest physiological deterioration. Ruth is one of those whose work–family balance Elizabeth celebrates. Ruth has since submitted her thesis awaiting results. As you’ll hear in the podcast below, both of Ruth’s young children have each, er, sort of ‘attended’ two big GCP events!

People power: capacity building and work–life balance
Elizabeth lights up most when waxing lyrical about the leaps and bounds made by her many students and charges through the years, who – in reaping some of the benefits offered by GCP, such as access to improved genetic materials; forging links with like-minded colleagues near and far, and, critically, capacity building – have gone on to become established and often internationally recognised breeders or researchers, with the impacts of their work posting visible scores in the fight against global food insecurity. On the primordial role of capacity building, she says: “GCP gives you the keys to solving your own problems, and puts structures in place so that knowledge learnt abroad can be transferred and applied at home – it’s been an amazing journey!” Of her female students who’ve surmounted the work–family pendulum challenge, she says: “I’ve pushed to make people recognise that women can do advanced agricultural science, and do it well. To see a talented woman researcher firmly established in her career and with her kids around her is thrilling.”

At IITA, Elizabeth continues to be an inspiration on work–life balance for women working on their PhDs, and more so for young women whose work is on cassava. In a male-dominated environment (global statistics report that women researchers are a meagre 30 percent), this inspiration is critical. .

No ‘I’ in team: tight-knit community a must for kick-starting real and sustainable solutions
As Elizabeth well knows, one swallow does not a summer make: as demonstrated by the GCP’s Communities of Practice (CoPs), she says, strength really does come in numbers: “The GCP Cassava CoP has brought unity amongst cassava breeders worldwide; it’s about really understanding and tackling cassava challenges together, and bringing solutions home.” Bolstering this unified spirit, Elizabeth continues, is the GCP’s Integrated Breeding Platform (IBP): “With the initial teething problems mainly behind us, IBP is now creating a global community and is an excellent way of managing limited resources, reducing duplication of efforts and allowing people to be more focused.” On helping scientists inundated with information to spot the wood from the trees, she says: “Over the years, lots of data have been generated, but you couldn’t find them! Now, thanks to IBP, you have sequencing information that you can tap into and utilise as and where you need to. It’s very laudable achievement!”

In the past, the assumption was always that ‘Africa can’t do this.’…GCP has made us visible and attractive to others; we are now setting the pace and doing science in a more refined and effective manner.” 

Clearly, keeping the company of giants is not new for Elizabeth (right). This giant cassava tuber is from a 2010 CRI trial crossing improved CIAT material with CRI landraces (traditional farmer varieties. The trial was part of Bright Boakye Peprah’s postgraduate work. Bright has since completed his GCP-funded masters on cassava breeding, and now a full time cassava breeder with CSIR–CRI. He is currently on study leave  pursuing a PhD on cassava biofortification in South Africa. On the left is Joseph Adjebeng-Danquah, a GCP-funded PhD student whose work centres on cassava drought tolerance. Our best quote from Joseph: “It is important to move away from the all too common notion that cassava is an ‘anywhere, anyhow’ crop.”

Clearly, keeping the company of giants is not new for Elizabeth (right). This giant cassava tuber is from a 2010 CRI trial crossing improved CIAT material with CRI landraces (traditional farmer varieties. The trial was part of Bright Boakye Peprah’s postgraduate work. Bright has since completed his GCP-funded master’s  degree on cassava breeding, and now a full time cassava breeder with CSIR–CRI. He is currently on study leave pursuing a PhD on cassava biofortification in South Africa. On the left is Joseph Adjebeng-Danquah, a GCP-funded PhD student whose work centres on cassava drought tolerance. Our best quote from Joseph: “It is important to move away from the all too common notion that cassava is an ‘anywhere, anyhow’ crop.”

Empowered and engaged: African cassava researchers reclaim the driving seat
The bedrock of GCP’s approach, Elizabeth suggests, is the facilitation of that magical much sought-after Holy Grail: self-empowerment. “When I first joined GCP,” she recalls, “I saw myself as somebody from a country programme being given a place at the table; my inputs were recognised and what I said would carry weight in decision-making.” It’s a switch she has seen gain traction at national and indeed regional levels: “In the past, the assumption was always that ‘Africa can’t do this.’ Now, people see that when given a chance to get round circumstances – as GCP has done for us through the provision of resources, motivation, encouragement and training – Africa can achieve so much!” Reflecting on the knock-on effect for African cassava researchers particularly, she concludes: “GCP has made us visible and attractive to others; we are now setting the pace and doing science in a more refined and effective manner.”

Paying it forward and sharing: Helping women, and thereby, communities
Armed with bundles of knowledge as she is, Elizabeth is a firm believer in paying it forward and sharing: “Building human capacity is my greatest joy,” she affirms, citing farmers, breeders, and a Ghanaian private-sector company as just a few of the fortunate beneficiaries of her expertise over recent years. And on sources of motivation, it is not the academic laurels or limelight but rather a broader vision of social justice which really drives her: “I see African communities where poverty and hunger are seemingly huge problems with no way out; I’m fortunate to be working on a crop whereby, if I put in enough effort, I can bring some solutions.” They are solutions which she hopes will be of lasting service to those closest to her heart: “My primary target group in my research is the less privileged, and women in particular have been my friends throughout. Rural families are held together by women, so if you are able to change their lot, you can make a real mark.”

We’re in a blessed and privileged era where cassava, an ancient and once orphan crop, is now receiving lots of attention… I encourage young scientists to come on board!”

Inspired, and inspiring: nurturing budding cassava converts, and seizing opportunities for impact
In terms of future horizons, Elizabeth – who after more than two decades of service at CRI is currently on leave of absence at IITA where she’s working on biofortification of cassava – hopes to thereby further advance her work on cassava biofortification, and perhaps later move into a management role, focusing on decision-making and leading agricultural research leaders with monitoring and evaluation specifically to “ensure that the right people are being equipped with skills and knowledge, and that those people are in turn teaching others.” She is also confident that any young, gifted researcher with an eye on the prize would be foolhardy to overlook what Elizabeth views as a golden opportunity for creating meaningful and lasting impacts: “We’re in a blessed and privileged era where cassava, an ancient and once orphan crop, is now receiving lots of attention. Every agricultural research lead we have in Africa is there to be seized – I encourage young scientists to come on board!” A clear and convincing clarion call to budding breeders or potential cassava converts if ever there was one…. who wants in, in this love-match where cassava and capacity building are truly two peas in a pod?

Like meets like in a fair match: Our cassava champion in a male-dominated environment, Elizabeth, meets her match in Farmer Beatrice who refused to take no for an answer, and beat Elizabeth hands down. Listen to this! 

 

Links

Feb 262014
 
Something old, something new; Plenty borrowed, and just a bit of  blue…

Why did the Integrated Breeding Platform (IBP) come to be, and what’s the latest offer from the five-year-old Platform? The answers are in this tell-all post on the bright and the bleak in IBP – beauty spots, blues, warts and all! Having heard on data management, breeding, and putting IBP tools, tips and services into use, let’s now take a couple of steps back and appraise the big picture: the IBP concept itself, candidly retold by an IBP old hand, in a captivating chronicle capturing the highs and lows, the drama and the humdrum, and befittingly capping our current season of IBP stories. Do read on…

We want to put informatics tools in the hands of breeders, be they in the public or private sector including small- and medium-scale enterprises, because we know they can make a huge difference”

Graham McLaren

Graham McLaren

Curtain up on BMS version 2, and back to basics on why IBP
January 2014 was a momentous month for our Integrated Breeding Platform, marking the release of version 2 of the Breeding Management System (BMS). After the flurry and fanfare of this special event, we caught up with Graham McLaren (pictured), GCP’s Bioinformatics and Crop Information Leader, Chair of the IBP Workbench Implementation Team and a member of the IBP Development Team. Graham has been intimately involved in taking IBP from an idea in 2008‒2009 to its initial launch in late 2009.

But what’s the background to all this, and why the need for IBP? Graham fills us in, explaining that in the 1980s and 1990s, informatics was the major contributor to successful plant breeding in large companies like Pioneer and Monsanto. After that, molecular technologies became the main contributors. “But to advance with molecular technologies, you need to have the informatics systems in place,” he says. “One of the biggest constraints to the successful deployment of molecular technologies in public plant breeding, especially in the developing world, is a lack of access to informatics tools to track samples, manage breeding logistics and data, and analyse and support breeding decisions.”

This is why IBP was set up. “We want to put informatics tools in the hands of breeders, be they in the public or private sector including small- and medium-scale enterprises, because we know they can make a huge difference.”

…breeders will not only find… information, but also the tools, services and support to put this information into use, in the context of their local crop-breeding projects…  [the information breeders] have accumulated over the years is mostly held in their heads, in institutional repositories, or in books and published papers. There are few common places for them to share these riches and tap into those of others… IBP  provides one such place.”

Breeding rice with optimised phosphorus uptake in The Philippines. See post: http://bit.ly/NgIH9C

The script: common sense, and working wonders
Plant breeders throughout the developing world have a wealth of information on adapting crops to the challenges of their particular environments. They work wonders in their experimental fields to develop crops that help local farmers deal with pests, diseases and less-than-ideal conditions such as drought, floods and poor soils. But this valuable information they have accumulated over the years is mostly held in their heads, in institutional repositories, or in books and published papers. There are few common places for them to share these riches and tap into those of others. The Integrated Breeding Platform (IBP) provides one such place, where breeders will not only find this information, but also the tools, services and support to put this information into use, in the context of their local crop-breeding projects.

Action! Setting the stage for a forward spring, and taking a leap of faith
IBP tackles the information management issues that are at the heart of many breeding processes, goals, pursuits and problems. “Informatics problems are not crop-specific” Graham says. “What GCP is doing is to put in place a generic system for plant breeders to manage and share information. This means they can collaborate and make better decisions about strains of the crops they are breeding and that they use in their programmes. It’s setting the stage for a big leap forward in plant breeding in developing countries.”

The proposal for a crop information system applicable to a wide range of crops attracted the attention of the Bill & Melinda Gates Foundation, which provided core funding for IBP.

According to Graham, the initial five-year USD 12 million grant from the Foundation was “the biggest single investment in an informatics project in CGIAR. It was half of what was needed, and other funders joined in with the other half.” These are the European Commission and the UK’s Department for International Development.

It’s been harder than we imagined… we really needed to employ the strategies used to build aeroplanes! … some of our partners are good at solving research problems but not at developing informatics tools… Our partnership with the software company was pretty unusual…Usually, you draw up the specifications for what you want and the company comes back with the product, like giving a builder an architect’s plans and getting the keys when the building is completed. But it wasn’t like that at all…”

Collaborative construction and conundrum – going off the script, winging it and winning it
Graham describes the hurdles that the team had to overcome along the way. “It’s been harder than we imagined because of the number of partners to coordinate. It’s like building a complicated machine with many parts. The parts built by different people in different places all need to fit when they are put together. It’s so complex, we really needed to employ the strategies used to build aeroplanes!”

It’s been a matter of encouraging all those involved to do what they do best. “I’ve learnt that some of our partners are good at solving research problems but not at developing informatics tools. We were fortunate to find a private company partner to do the software engineering and to have the backing of the Gates Foundation to change our strategy along the way.”

Working with a private-sector company was a first on both sides. “Our partnership with the software company was pretty unusual,” Graham recalls. “Usually, you draw up the specifications for what you want and the company comes back with the product, like giving a builder an architect’s plans and getting the keys when the building is completed. But it wasn’t like that at all. We didn’t know exactly what we wanted in terms of the final system, learning and adapting as we went along. Fortunately, the company was flexible and worked with us step by step. We would describe to them what we wanted, they would go off and work something up, then they would come back and we would dissect it and then they would go away again and rework. This way, they produced the system we wanted. Involving a private company brought us very handsome returns for money: it meant the project could deliver on time, and on budget.”

Breeders in developing countries and small- and medium-sized companies are looking at it… a revenue stream could be secured in a win–win relationship with companies also working to develop agriculture in the developing world”

Act II: going global, and continuous improvement
Now that the alpha version of BMS has been launched, the Bill & Melinda Gates Foundation is encouraging GCP to deploy the Platform more broadly. Graham explains, “Breeders in developing countries and small- and medium-sized companies are looking at it and, of course, they are coming up with ideas of their own. We’ve taken these on board in developing BMS version 2. In anticipation of yet more user feedback on version 2, we anticipate the third version will be released in June 2014.”

Electronic data collection for cassava breeding at Nigeria's National Root Crops Research Institute. GCP is promoting the use of digital tablets for data collection. See story: http://bit.ly/1fpeJON

Electronic data collection at Nigeria’s National Root Crops Research Institute. GCP is promoting the use of digital tablets for data collection. See story: http://bit.ly/1fpeJON

He continues: “Deployment will involve training people to use IBP, maintaining the system and developing new tools. We’re talking to the Gates Foundation, and others, about funding for IBP Phase II. While our primary objective is to make the Platform affordable – even free – for public-sector plant breeders in developing countries, we recognise that the system needs to be maintained, supported and upgraded over the years. The question is, will small- and medium-sized plant-breeding enterprises be willing to pay for the system so that some of this maintenance and support can be recovered and the system can become sustainable in the long run? In our GoToMarket Plan, the Marketing Director is canvassing a range of companies asking what services they need and how much they would pay for them. There is a strong need for such a system in this sector and it is clear that a revenue stream could be secured in a win–win relationship with companies also working to develop agriculture in the developing world.”

Graham is convinced that rolling out IBP will have a significant impact on plant breeding in developing countries. “Because IBP has a very wide application, it will speed up crop improvement in many parts of the world and in many different environments. What this means is that new crop varieties will be developed in a more rapid and therefore more efficient manner.”

Links

Feb 242014
 
For this ‘IBP story-telling season’, our next stop is  very fittingly Africa, and her most populous nation, Nigeria. Travel with us!

Having already heard the Integrated Breeding Platform (IBP) story on data from Arllet (spiced with a brief detour through Asia’s sun-splashed rice paddies), and on IBP’s Breeding Management System from Mark (where we perched on a corner on his Toulouse workbench of tools and data), we next set out to get an external narrative on IBP, and specifically, one from an IBP user. Well, we got more than we had bargained for from our African safari

Yemi Olojede

Yemi Olojede

Yemi Olojede (pictured) is much more than a standard IBP user. An agronomist by training with a couple of decades-plus experience, he not only works closely with breeders and other crop scientitsts, but is also a research coordinator and data manager. As you can imagine, this made for a rich and insightful conversation, ferrying us far beyond the frontiers of Yemi’s base in Nigeria, to the rest of West Africa,  further out to Africa , and as far afield as Mexico, in his travels and travails with partners. We now bring to you some of this captivating conversation…

Yemi  has been working for the last 23 years (since 1991) at Nigeria’s National Root Crops Research Institute (NRCRI) at Umudike in various capacities. After heading NRCRI’s Minor Root Crops Programme for 13 years, he was last year appointed Coordinator-in-Charge of the Cassava Research Programme.

But his involvement in agriculture goes much further back than NRCRI: Yemi says he “was born into farming”. His father, to whom he credits his love for agriculture, was a cocoa farmer. “I enjoy seeing things grow. When I see a field of crops …what a view!” Yemi declares.

Yemi is also the Crop Database Manager for NRCRI’s GCP-funded projects. He spent time at GCP headquarters in Mexico in February 2012 to sharpen his skills and provide user insights to the IBP team on the cassava database, on the then nascent Integrated Breeding Fieldbook, and on the tablet that GCP was considering for electronic field data collection and management.

To meet the farmers’ growing need for improved higher-yielding and stress-tolerant varieties, plant breeders are starting to incorporate molecular-breeding techniques to speed up conventional breeding.

Flashback to 2010: GCP was then piloting and testing small handheld devices for data collection. Field staff going through a training session for these under Yemi's watchful eye (right).

Flashback to 2010: GCP was then piloting and testing small handheld devices for data collection. Field staff going through a training session for these under Yemi’s watchful eye (right).

But for this to happen effectively, cassava breeders require consistent and precise means to collect and upload research and breeding data, and secure facilities to upload that data into the requisite databases and share it with their peers. Eighty percent of farmers in Africa have less than a hectare of land – that’s roughly two football fields! With so little space, they need high-value crops that consistently provide them with viable yields, particularly during drought. For this reason, an increasing number of Nigerian farmers are adopting cassava. It is not as profitable as, say, wheat, but it has the advantage of being less risky. The Nigerian government is encouraging this change and is implementing a Cassava Transformation Agenda, which will improve cassava markets and value chains locally and create a sustainable export market. All this is designed to encourage farmers to grow more cassava.

Enter GCP’s Integrated Breeding Platform (IBP), which has been working closely with NRCRI and other national breeding programmes to develop the right informatic tools and support services for the job. The International Cassava Information System (ICASS), the Integrated Breeding Fieldbook and the tablet are all part of the solution, backed up by a variety of bioinformatic tools for data management, data analysis and breeding decision support that have been developed to meet the specific needs of the users.

I enjoy working with the team. They pay attention to what we as breeders want and are determined to resolve the issues we raise”

Fastfoward to 2012: Based on feedback, a larger electronic tablet was favoured over the smaller handheld device. Yemi (centre) takes field staff through the paces in tablet use.

Fastfoward to 2012: Based on feedback, a larger electronic tablet was favoured over the smaller handheld device. Yemi (centre) takes field staff through the paces in tablet use.

The database and IB Fieldbook
“When I received the tablet I was excited! I had heard so much about it but only contributed ideas for its use through Skype and email,” Yemi remembers, echoing a sentiment that is frequently expressed by many partners who have been introduced to the device. “I experimented with the Integrated Breeding Fieldbook software focusing on pedigree management, trait ontology management, template design ‒ testing how easy it was to input data into the program and database.”  Yemi noted a few problems with layout and data uploading and suggested a number of additional features. The IBP Team found these insights particularly useful and worked hard to implement them in time for the 2nd Scientific Conference of the Global Cassava Partnership for the 21st Century (GCP21 II), held in Kampala, Uganda, in June, 2012.

“I enjoy working with the team. They pay attention to what we as breeders want and are determined to resolve the issues we raise,” says Yemi. He believes the IB FieldBook and the tablet, on which it runs, will greatly benefit breeders all over the world, but particularly in Africa. “At the moment, our breeders and researchers have to write down their observations in a paper field book, take that book back to their computer, and enter the data into an Excel spreadsheet,” he notes. “We have to double-handle the data and this increases the possibility of mistakes, especially when we are transferring it to our computers. The IB Fieldbook will streamline this process, minimising the risk of making mistakes, as we enter our observations straight into the tablet, using specified terms and parameters, which will upload all the data to the shared central database when it’s connected to the internet.”

The whole room was wide-eyed and excited when they first saw the tablets”

Bringing the tablet to Africa
After his trip to Mexico, Yemi was concerned that some African breeders would be put off using the IB Fieldbook and accompanying electronic tablet because both require some experience with computers. “I found the tablet and the FieldBook quite easy to use because I’m relatively comfortable with computers,” says Yemi. “The program is very similar to MS-Excel, which many breeders are comfortable with, but I still thought it would be difficult to introduce it given that computer literacy across the continent is very uneven.”

Slim, portable and nearly invisible. A junior scientist at NRCRI Umudike tries out the tablet during the 2012 training session.

Slim, elegant, portable and nearly invisible is this versatile tool. A junior scientist at NRCRI Umudike tries out the tablet during the 2012 training session.

At the GCP21 II meeting in Uganda, Yemi helped the IBP team run IB Fieldbook workshops for plant breeders from developing countries, with an emphasis on data quality and sharing. “The whole room was wide-eyed and excited when they first saw the tablets. They initially had trouble using them and I thought it was going to be a very difficult workshop, but by the end they all felt confident enough to use them by themselves and were sad to have to give them back!”

They … go back to their research institutes and train their colleagues, who are more likely to listen and learn from them than from someone else.”

Providing extra support, cultivating trust
Yemi recounts that attendees were particularly pleased when they received a step-by-step ‘how-to’ manual to help them train other breeders in their institutes, with additional support to be provided by the IBP or Yemi’s team in Nigeria. “They were worried about post-training support,” says Yemi. “We told them if they had any challenges, they could call us and we would help them. I feel this extra support is a good thing for the future of this project, as it will build confidence in the people we teach. They can then go back to their research institutes and train their colleagues, who are more likely to listen and learn from them than from someone else.”

In developing nations, it is important that we share data, because we don’t all have the capacity to carry out molecular breeding at this time, and data sharing would facilitate the dissemination of the benefits to a wider group”

Sharing data to utilise molecular breeding
Yemi asserts that incorporating elements of molecular breeding has helped NRCRI a great deal. With conventional breeding, it would take six to 10 years to develop a variety before release, but with integrated breeding (conventional breeding that incorporates molecular breeding elements) it is possible to develop and release new varieties in three to four years ‒ half the time. Farmers would hence be getting new varieties of cassava that will yield 20‒30 percent more than the lines they are currently using in a much shorter time.

“In developing nations, it is important that we share data, because we don’t all have the capacity to carry out molecular breeding at this time, and data sharing would facilitate the dissemination of the benefits to a wider group,” says Yemi. “I enjoy helping people with this technology because I know how much it will make their job easier.”

Links

Feb 182014
 

Mark Sawkins

Mark Sawkins

Mark the man in the middle, and of the markers…

Today, we talk to Mark Sawkins (pictured), the ‘middleware’ man in our Integrated Breeding Platform (IBP) so to speak, seeing as he is the human ‘interface’ between crop breeders on the one hand, and the developers of our Integrated Breeding Platform (IBP) on the other hand. Mark is the ‘bridge’ that connects IBP users and IBP developers – a special position which gives him a privileged and fascinating perspective on both sides of the coin, with a dash of public–private sector pragmatic partnership thrown in too. Here’s more on Mark, in this dispatch from and on his special perch on the bench…

Bridge to bench, abuzz on BMS: A ‘tinker’ at Toulouse…
Mark Sawkins is always busy tinkering away on his Workbench at his base in Toulouse in southern France. It’s not your traditional wooden workbench, covered in sawdust, soil or splattering of paint. Nor is it one carpeted in documents lit by the warm glow of a computer monitor. In fact, the workbench Mark is working on is virtual, having no physical form and residing solely online, or on a user’s computer, once downloaded.

Known as the Breeding Management System (BMS) the Workbench, comprising software tools linked to a database for access to pedigree, phenotypic and genotypic data, has been developed by GCP’s Integrated Breeding Platform. The BMS has what a crop breeder would require to conduct an analysis of phenotypic and genotypic data generated as part of a crop-breeding or evaluation experiment, covering a broad spectrum of needs from conventional breeding to advanced molecular breeding applications. Version 2 of the Breeding Management System was released just last month.

… it [BMS] will be of most help to breeders both in the public and private sector in Africa and Asia who, up to now, have had little or no access to tools and data to allow them to shift gears in their breeding programme…The BMS has a lot of tools and all the foundational data necessary for a breeder’s routine day-to-day activities…The BMS is also anticipated to have enormous positive impact on food security in developing countries in the years ahead, enabling crop breeders to evaluate their progenies using the most sophisticated statistical methods available”

A hands-on BMS orientation workshop underway for breeders in Africa, held in Ethiopia in July 2013 under the auspices of the GCP-funded cassava breeding community of practice. Standing, Yemi Olojode, of Nigeria’s National Root Crops Research Institute (NRCRI), Umidike, who was one of the trainers.

Previously known as the Integrated Breeding Workflow System (IBWS), the BMS incorporates both statistical analysis tools and decision-support tools. The tools are assembled in a way that data can flow seamlessly from one application to the next in tandem with the various stages of the crop-breeding process. It allows the breeder to accurately collect, securely store and efficiently analyse and synthesise their data on a local private database, and also share, or compare, their data with other breeders via a central public crop database.

“The BMS has a lot of tools and all the foundational data necessary for a breeder’s routine day-to-day activities,” explains Mark, a plant geneticist who joined IBP in 2011. “Any breeder can use it, but it will be of most help to breeders both in the public and private sector in Africa and Asia who, up to now, have had little or no access to tools and data to allow them to shift gears in their breeding programme, particularly in adopting modern breeding practices, including the use of molecular markers.”

The BMS is also anticipated to have enormous positive impact on food security in developing countries in the years ahead, enabling crop breeders to evaluate their progenies using the most sophisticated statistical methods available, and make selections on which lines to advance to the next phase of development in the progression towards more productive and resilient crop varieties.

Phenotyping and field trials are becoming the most expensive part of the breeding process… The biggest hurdle in the public sector in the past was the massive investment required to set up genotyping laboratory facilities… outsourcing, we believe, will help convince breeders to consider integrating molecular techniques into their breeding programmes”

Why integrated breeding?
For almost 30 years, the private sector has been implementing molecular-breeding approaches in developing more productive and resilient crops. These approaches allow breeders to select for plant characteristics (traits) early in the breeding process and then test whether a plant has the targeted trait, which they cannot visually identify.

“Phenotyping and field trials are becoming the most expensive part of the breeding process,” says Mark. “Using molecular markers is a way to reduce the investment in that process. By using markers, early in the development of a given crop line, you can reduce the number of plants you need to grow and test, reducing the time and cost associated with field trials.”

Mark hopes that the Workbench will in time enable breeders, in under-resourced public breeding institutes to access some of the leading molecular-marker databases, and make use of the markers therein for the desired traits they are breeding for, along with technical support from molecular breeders to guide them in making their breeding decisions.

“The biggest hurdle in the public sector in the past was the massive investment required to set up genotyping laboratory facilities,” explains Mark “but now there are plenty of professional service providers that people can send their samples to and get back good results at a very reasonable cost. This time- and cost-saving reality of outsourcing, we believe, will help convince breeders to consider integrating molecular techniques into their breeding programmes.”

We are currently conducting a three-year course to train scientists from national programmes in West and Central Africa, East and Southern Africa and South and Southeast Asia, who we hope will promote and support the adoption of modern breeding in their institutes and countries.”

An IB-MYC training course in session in April 2013 for the West and Central Africa group. Clarissa Pimentel, IBP's Data Manager/Training Specialist, at the front, traching trainees tricks on using Fieldlab in the tablet for data collection.

An Integrated Breeding Multiyear Course (IB-MYC) training course in session in April 2013 for the West and Central Africa group. Clarissa Pimentel, IBP’s Data Manager/Training Specialist, at the front, giving trainees tricks and tips on using FieldLab on the electronic tablet for field data collection.

Running with champions
Mark knows that giving breeders the tools and means to integrate molecular breeding into their programmes is one thing. To actually have them adopt them is another. But he has a plan.

In keeping with the core mission of GCP, which is to build sustainable capacity in developing-country breeding programmes, Mark proposes to recruit and train selected breeders in molecular-breeding techniques and set them up as champions and advocates for their particular crop or region.

Marker implementation methods can be varied but the tools required need to help the breeder make a quick informed decision on what to take forward to the next generation: What plants need to be crossed? Which plants should be kept and which ones discarded? The decision-support tools provided by the IB Workbench will help the breeder make these decisions.

“We are currently conducting a three-year course to train scientists from national programmes in West and Central Africa, East and Southern Africa and South and Southeast Asia, who we hope will promote and support the adoption of modern breeding in their institutes and countries,” Mark enthusiastically explains. The three-year training programme is known as the Integrated Breeding Multiyear Course (IB–MYC). Mark continues, “We believe that people will be more willing to listen to someone who is right there on the ground, whom they know and trust and can easily get in contact with if they need help.”

While the champions concept is still in its infancy, Mark believes it has real merit but must overcome two major barriers – time and confidence. “Identifying the champions won’t be hard,” he observes, “What will be hard is getting them to add this extra task to their already busy agenda. It will require buy-in from management at the institutional level to enable the champions to carry out their mission. It will also be individually hard for each champion, who will only be successful when they have the confidence in their own integrated breeding and extension skills. This confidence would be the thing that would really help sell the message.”

Engaging the private sector
Mark oversees the design, testing and deployment of the system that underpins the BMS, ensuring that both the system and the tools embedded in it are easy to use and meet the needs and expectations of the breeders. However, he and his team have had some trouble getting feedback on the system from the breeders it is intended for, due to their inexperience with such tools and systems. That is why he has called on his private-sector contacts, developed when he was at Syngenta where he worked for five years prior to his current assignment.

“We hope to show them what we’ve been doing in IBP with the Workbench, and hopefully get some private-sector buy-in and see how they can help us – not in developing tools, but with feedback on functionality and usability of the tools we are developing,” he explains. “We don’t have a core set of breeders who are routinely using markers in their breeding programme amongst the partners we are working with on the IBP project. So we are tapping into the private sector which has teams of molecular breeders who are more familiar with the types of breeding workflows and tools we are developing. We’re hoping that we can take advantage of their knowledge and experience to get some really useful feedback, which we will use to improve the usability and effectiveness of our tools.”

To maximise adoption and use, GCP has been actively engaged in extensive capacity building, and this will be reinforced with a comprehensive awareness-creation and communication effort immediately before and after a projected mid-year release of a newer BMS version incorporating the all-essential user feedback. The impact of the analytical pipeline in developing countries will be particularly enhanced with the availability of efficient user support services, which Mark will be overseeing.

Access the Breeding Management System (no-cost registration required)

More information

VIDEO: IBP’s comparative advantage for developed countries, while also relevant for developed countries.

SLIDES: IBP’s Breeding Management System

 

cheap ghd australia