May 122014
 

 

Omari Mponda

Omari Mponda

After getting a good grounding on the realities of groundnut research from Vincent, our next stop is East Africa, Tanzania, where we meet Omari Mponda (pictured). Omari is a Principal Agricultural Officer and plant breeder at Tanzania’s Agricultural Research Institute (ARI), Naliendele, and country groundnut research leader for the Tropical Legumes I (TLI) project, implemented through our Legumes Research Initiative.  Groundnut production in Tanzania is hampered by drought in the central region and by rosette and other foliar diseases in all regions. But all is not bleak, and there is a ray of hope: “We’ve been able to identify good groundnut-breeding material for Tanzania for both drought tolerance as well as disease resistance,” says Omari. Omari’s team are also now carrying their own crosses, and happy about it. Read on to find out why they are not labouring under the weight of the crosses they carry…

…we have already released five varieties…TLI’s major investment in Tanzania’s groundnut breeding has been the irrigation system… Frankly, we were not used to being so well-equipped!”

Q: How  did you go about identifying appropriate groundnut-breeding material for Tanzania?
A: We received 300 reference-set lines from ICRISAT [International Crops Research Institute for the Semi-Arid Tropics], which we then genotyped over three years [2008– 2010] for both drought tolerance and disease resistance. After we identified the best varieties, these were advanced to TLII [TLI’s sister project] for participatory variety selection with farmers in 2011–2012, followed by seed multiplication. From our work with ICRISAT, we have already released five varieties.

Harvesting ref set collection at Naliendele_w

Harvesting the groundnut reference-set collection at Naliendele. A ‘reference set’ is a sub-sample of existing germplasm collections that facilitates and enables access to existing crop diversity for desired traits, such as drought tolerance or resistance to disease or pests.

ARI–Naliendele has also benefitted from both human and infrastructure capacity building. Our scientists and technicians were trained in drought phenotyping at ICRISAT Headquarters in India. One of our research assistants, Mashamba Philipo, benefitted from six-month training, following which he advanced to an MSc specialising in drought phenotpying using molecular breeding. In his work, he is now using drought germplasm received from ICRISAT. In terms of laboratory and field infrastructure, the station got irrigation equipment to optimise drought-phenotyping trials. Precision phenotyping and accurate phenotypic data are indispensable for effective molecular breeding. To facilitate this, ARI–Naliendele benefitted from computers, measuring scales, laboratory ware and a portable weather station, all in a bid to assure good information on phenotyping. But by far, TLI’s major investment in Tanzania’s groundnut breeding has been the irrigation system which is about to be completed. This will be very useful as we enter TLIII for drought phenotyping.

 

For us, this is a big achievement to be able to do national crosses. Previously, we relied on ICRISAT…we are advancing to a functional breeding programme in Tanzania… gains made are not only sustainable, but also give us independence and autonomy to operate..We developing-country scientists are used to applied research and conventional breeding, but we now see the value and the need for adjusting ourselves to understand the use of molecular markers in groundnut breeding.”

Omari (right), with Hannibal Muhtar (left), who was contracted by GCP to implement infrastructure improvement for ARI Naliendele. See http://bit.ly/1hriGRp

Flashback to 2010: Omari (right), with Hannibal Muhtar (left), who was contracted by GCP to implement infrastructure improvement for ARI Naliendele, and other institutes. See http://bit.ly/1hriGRp

Q: What difference has participating in TLI made?
A: Frankly, we were not used to being so well-equipped, neither with dealing with such a large volume as 300 lines! But we filtered down and selected the well-performing lines which had the desired traits, and we built on these good lines. The equipment purchased through the project not only helped us with the actual phenotyping and being able to accurately confirm selected lines, but also made it possible for us to conduct off-season trials.

We’re learning hybridisation skills so that we can use TLI donors to improve local varieties, and our technicians have been specifically trained in this area. For us, this is a big achievement to be able to do national crosses. Previously, we relied on ICRISAT doing the crosses for us, but we can now do our own crosses. The difference this makes is that we are advancing to a functional breeding programme in Tanzania, meaning the gains made are not only sustainable, but also give us independence and autonomy to operate. Consequently, we are coming up with other segregating material from what we’ve already obtained, depending on the trait of interest we are after.

Another big benefit is directly interacting with world-class scientists in the international arena through the GCP community and connections – top-rated experts not just from ICRISAT, but also from IITA, CIAT, EMBRAPA [Brazil], and China’s DNA Research Institute. We have learnt a lot from them, especially during our annual review meetings. We developing-country scientists are used to applied research and conventional breeding, but we now see the value and the need for adjusting ourselves to understand the use of molecular markers in groundnut breeding. We now look forward to TLIII where we expect to make impact by practically applying our knowledge to groundnut production in Tanzania.

Interesting! And this gets us squarely back to capacity building. What are your goals or aspirations in this area?
A: Let us not forget that TLI is implemented by the national programmes. In Africa, capacity building is critical, and people want to be trained. I would love to see fulltime scientists advance to PhD level in these areas which are a new way of doing business for us. I would love for us to have the capacity to adapt to our own environment for QTLs [quantitative trait loci], QTL mapping, and marker-assisted selection. Such capacity at national level would be very welcome. We also hope to link with advanced labs such as BecA [Biosciences eastern and southern Africa] for TLI activities, and to go beyond service provision with them so that our scientists can go to these labs and learn.

There should also be exchange visits between scientists for learning and sharing, to get up to date on the latest methods and technologies out there. For GCP’s Integrated Breeding Platform [IBP], this would help IBP developers to design reality-based tools, and also to benefit from user input in refining the tools.

Links

SLIDES by Omari on groundnut research and research data management in Tanzania

 

Mar 052014
 
Two peas in a pod, hand in hand, 

Elizabeth Parkes

In the past, the assumption was always that ‘Africa can’t do this.’ Now, people see that when given a chance to get round circumstances – as GCP has done for us through the provision of resources, motivation, encouragement and training – Africa can achieve so much!…GCP has made us visible and attractive to others; we are now setting the pace and doing science in a more refined and effective manner…Building human capacity is my greatest joy….I’ve pushed to make people recognise that women can do advanced agricultural science, and do it well. To see a talented woman researcher firmly established in her career and with her kids around her is thrilling….Rural families are held together by women, so if you are able to change their lot, you can make a real mark…” –  Elizabeth Parkes, cassava researcher, Ghana

Elizabeth’s PhD is on cassava genetic diversity, combining ability, stability and farmer preference in Ghana. But for Elizabeth, it is not the academic laurels and limelight but rather, a broader vision of social justice which really drives her: “I see African communities where poverty and hunger are seemingly huge problems with no way out; I’m fortunate to be working on a crop whereby, if I put in enough effort, I can bring some solutions. My primary target group in my research is the less privileged, and women in particular have been my friends throughout. Rural families are held together by women, so if you are able to change their lot, you can make a real mark.”

 

…agricultural research was a man’s job!”

A perennial passion for cassava, and walking with giants: Elizabeth with the pick of the crop for the 2014 cassava harvest season at  IITA, Ibadan, Nigeria.

A perennial passion for cassava, and walking with giants: Elizabeth with the pick of the crop for the 2014 cassava harvest season at IITA, Ibadan, Nigeria.

Prowess and prejudice: Breaking the mould and pioneering into pastures new
On first tentatively dipping her toe into the professional waters of crop science when growing up in her native Ghana, initial reactions from her nearest and dearest suggested that carving out a name for herself in her career of choice was never going to be a walk in the park: “As an only girl among eight  boys of whom three were half-siblings, and the youngest child, my father was not very amused; he thought agricultural research was a man’s job!” she recalls. Undeterred and ever more determined to turn this commonly held canard on its head, Elizabeth went on to bag a Bachelor’s degree in Agriculture, a diploma in Education, and an MPhil degree in Crop Science. During a stint of national service between academic degrees, she approached a scientist engaged in root and tuber projects at Ghana’s Council for Scientific and Industrial Research (CSIR) Crops Research Institute (CRI), offering to carry out some research on cassava, and soon establishing the institute’s first trials in Techiman, in the Brong Ahafo Region,where she was doing her national service. Recognising all the hallmarks of a great scientist, nurturer and leader, her CRI colleagues were quick to welcome this fresh talent into the fold as an Assistant Research Officer, with the full treasure trove of root tuber crops – from cassava to sweet potato to yam and cocoyam, among others – all falling under her remit. Not a bad start for the first woman to be assigned to the project!

Quickly proving herself as a fiercely cerebral researcher with a natural knack for the plant sciences, Elizabeth was encouraged by seasoned (then) GCP scientist, Martin Fregene (their paths had crossed during Elizabeth’s master’s degree thanks to research collaboration with the International Institute of Tropical Agriculture – IITA), to embark on a PhD degree with a focus on cassava. Coinciding with an era when links between Martin’s then home institute, the International Center for Tropical Agriculture (CIAT) and GCP were beginning to really take off the ground, it was a move that proved timely, and a path which Elizabeth pursued with her characteristic vigour and aplomb, climbing the GCP research ranks from multiple travel-grant recipient to a research fellow, and, more recently, to Lead Researcher for GCP’s cassava work in Ghana. Now a well established cassava connoisseur who regularly rubs shoulders with the crème de la crème of the global crop science community, Elizabeth specialises in drought tolerance and disease resistance in the GCP-related aspects of her work, whilst also turning her hand to biofortification research for GCP sister CGIAR Challenge Programme, HarvestPlus.

… it [biotechnology] was a breakthrough which Elizabeth spearheaded…”

Up, up and away! How a helping hand has led Elizabeth & Co to new professional and research heights
Life aboard the GCP ship, Elizabeth reveals, has offered a wealth of professional opportunities, both on personal and institutional levels. GCP-funded infrastructure, such as weather stations and irrigation systems, has helped to boost yields and enhance the efficiency of CRI trials, she observes. Professional development for herself and her team, she says, has been multifold: “Through our GCP work, we were able to build a lab and kick-start marker-assisted breeding – that ignited the beginning of biotechnology activities in CRI,” Elizabeth asserts.  It was a breakthrough which Elizabeth spearheaded, and which, happily, has since become run-of-the mill practice for the institute: “Now CRI scientists are regularly using molecular tools to do their work and are making cassava crosses on their own.” The positive domino effect of this change in tide cannot be underestimated: “Our once small biotechnology laboratory has evolved into a Centre of Excellence under the West Africa Agricultural Productivity Programme. Its first-class facilities, training courses and guiding hand in finding solutions have attracted countless visiting scientists, both from Ghana and internationally – this means that the subregion is also benefitting enormously.” The GCP’s Genotyping Support Service (GSS), Elizabeth affirms, has also proved an invaluable sidekick to these developments: “Through the GSS, our team learnt how to extract DNA as a first step, and later to re-enact all the activities that were initially done for us externally – data sequencing, interpretation and analysis for example – on a smaller scale in our own lab.” The collection and crunching of data has also become a breeze: “Thanks to GCP’s support, we have become a pace-setter for electronic data gathering using tablets, field notebooks and hand-held devices,” she adds.

….GCP gives you the keys to solving your own problems, and puts structures in place so that knowledge learnt abroad can be transferred and applied at home – it’s been an amazing journey!”

Ruth Prempeh, one of Elizabeth's charges, collecting data for her GCP-funded PhD on cassava post-harvest physiological deterioration. Ruth is one of those whose work–family balance Elizabeth celebrates. Ruth has since submitted her thesis awaiting results. As you'll hear in the accompanying podcast, both of Ruth's young children have each, er, sort of 'attended' two big  GCP events!

Ruth Prempeh, one of Elizabeth’s charges, collecting data for her GCP-funded PhD on cassava post-harvest physiological deterioration. Ruth is one of those whose work–family balance Elizabeth celebrates. Ruth has since submitted her thesis awaiting results. As you’ll hear in the podcast below, both of Ruth’s young children have each, er, sort of ‘attended’ two big GCP events!

People power: capacity building and work–life balance
Elizabeth lights up most when waxing lyrical about the leaps and bounds made by her many students and charges through the years, who – in reaping some of the benefits offered by GCP, such as access to improved genetic materials; forging links with like-minded colleagues near and far, and, critically, capacity building – have gone on to become established and often internationally recognised breeders or researchers, with the impacts of their work posting visible scores in the fight against global food insecurity. On the primordial role of capacity building, she says: “GCP gives you the keys to solving your own problems, and puts structures in place so that knowledge learnt abroad can be transferred and applied at home – it’s been an amazing journey!” Of her female students who’ve surmounted the work–family pendulum challenge, she says: “I’ve pushed to make people recognise that women can do advanced agricultural science, and do it well. To see a talented woman researcher firmly established in her career and with her kids around her is thrilling.”

At IITA, Elizabeth continues to be an inspiration on work–life balance for women working on their PhDs, and more so for young women whose work is on cassava. In a male-dominated environment (global statistics report that women researchers are a meagre 30 percent), this inspiration is critical. .

No ‘I’ in team: tight-knit community a must for kick-starting real and sustainable solutions
As Elizabeth well knows, one swallow does not a summer make: as demonstrated by the GCP’s Communities of Practice (CoPs), she says, strength really does come in numbers: “The GCP Cassava CoP has brought unity amongst cassava breeders worldwide; it’s about really understanding and tackling cassava challenges together, and bringing solutions home.” Bolstering this unified spirit, Elizabeth continues, is the GCP’s Integrated Breeding Platform (IBP): “With the initial teething problems mainly behind us, IBP is now creating a global community and is an excellent way of managing limited resources, reducing duplication of efforts and allowing people to be more focused.” On helping scientists inundated with information to spot the wood from the trees, she says: “Over the years, lots of data have been generated, but you couldn’t find them! Now, thanks to IBP, you have sequencing information that you can tap into and utilise as and where you need to. It’s very laudable achievement!”

In the past, the assumption was always that ‘Africa can’t do this.’…GCP has made us visible and attractive to others; we are now setting the pace and doing science in a more refined and effective manner.” 

Clearly, keeping the company of giants is not new for Elizabeth (right). This giant cassava tuber is from a 2010 CRI trial crossing improved CIAT material with CRI landraces (traditional farmer varieties. The trial was part of Bright Boakye Peprah’s postgraduate work. Bright has since completed his GCP-funded masters on cassava breeding, and now a full time cassava breeder with CSIR–CRI. He is currently on study leave  pursuing a PhD on cassava biofortification in South Africa. On the left is Joseph Adjebeng-Danquah, a GCP-funded PhD student whose work centres on cassava drought tolerance. Our best quote from Joseph: “It is important to move away from the all too common notion that cassava is an ‘anywhere, anyhow’ crop.”

Clearly, keeping the company of giants is not new for Elizabeth (right). This giant cassava tuber is from a 2010 CRI trial crossing improved CIAT material with CRI landraces (traditional farmer varieties. The trial was part of Bright Boakye Peprah’s postgraduate work. Bright has since completed his GCP-funded master’s  degree on cassava breeding, and now a full time cassava breeder with CSIR–CRI. He is currently on study leave pursuing a PhD on cassava biofortification in South Africa. On the left is Joseph Adjebeng-Danquah, a GCP-funded PhD student whose work centres on cassava drought tolerance. Our best quote from Joseph: “It is important to move away from the all too common notion that cassava is an ‘anywhere, anyhow’ crop.”

Empowered and engaged: African cassava researchers reclaim the driving seat
The bedrock of GCP’s approach, Elizabeth suggests, is the facilitation of that magical much sought-after Holy Grail: self-empowerment. “When I first joined GCP,” she recalls, “I saw myself as somebody from a country programme being given a place at the table; my inputs were recognised and what I said would carry weight in decision-making.” It’s a switch she has seen gain traction at national and indeed regional levels: “In the past, the assumption was always that ‘Africa can’t do this.’ Now, people see that when given a chance to get round circumstances – as GCP has done for us through the provision of resources, motivation, encouragement and training – Africa can achieve so much!” Reflecting on the knock-on effect for African cassava researchers particularly, she concludes: “GCP has made us visible and attractive to others; we are now setting the pace and doing science in a more refined and effective manner.”

Paying it forward and sharing: Helping women, and thereby, communities
Armed with bundles of knowledge as she is, Elizabeth is a firm believer in paying it forward and sharing: “Building human capacity is my greatest joy,” she affirms, citing farmers, breeders, and a Ghanaian private-sector company as just a few of the fortunate beneficiaries of her expertise over recent years. And on sources of motivation, it is not the academic laurels or limelight but rather a broader vision of social justice which really drives her: “I see African communities where poverty and hunger are seemingly huge problems with no way out; I’m fortunate to be working on a crop whereby, if I put in enough effort, I can bring some solutions.” They are solutions which she hopes will be of lasting service to those closest to her heart: “My primary target group in my research is the less privileged, and women in particular have been my friends throughout. Rural families are held together by women, so if you are able to change their lot, you can make a real mark.”

We’re in a blessed and privileged era where cassava, an ancient and once orphan crop, is now receiving lots of attention… I encourage young scientists to come on board!”

Inspired, and inspiring: nurturing budding cassava converts, and seizing opportunities for impact
In terms of future horizons, Elizabeth – who after more than two decades of service at CRI is currently on leave of absence at IITA where she’s working on biofortification of cassava – hopes to thereby further advance her work on cassava biofortification, and perhaps later move into a management role, focusing on decision-making and leading agricultural research leaders with monitoring and evaluation specifically to “ensure that the right people are being equipped with skills and knowledge, and that those people are in turn teaching others.” She is also confident that any young, gifted researcher with an eye on the prize would be foolhardy to overlook what Elizabeth views as a golden opportunity for creating meaningful and lasting impacts: “We’re in a blessed and privileged era where cassava, an ancient and once orphan crop, is now receiving lots of attention. Every agricultural research lead we have in Africa is there to be seized – I encourage young scientists to come on board!” A clear and convincing clarion call to budding breeders or potential cassava converts if ever there was one…. who wants in, in this love-match where cassava and capacity building are truly two peas in a pod?

Like meets like in a fair match: Our cassava champion in a male-dominated environment, Elizabeth, meets her match in Farmer Beatrice who refused to take no for an answer, and beat Elizabeth hands down. Listen to this! 

 

Links

Mar 042014
 
‘Made (up) in Ghana’

In the world of crop research as in the fashion industry, there are super-models, mere models, spectators and rank outsiders. Make no bones about it, trusty old cassava (Manihot esculenta) is a crop of very modest beginnings, but now finally strutting the research catwalk alongside the biggest and the best.

Elizabeth Parkes

Elizabeth Parkes

An ancient crop thought to have been first domesticated in Latin America more than 10,000 years ago, it was exported by Portuguese slave traders from Brazil to Africa in the 16th century as a cheap source of carbohydrates. From there, today we travel half a millennium forward in time – and in space, on to Ghana – to catch up with the latest on cassava in the 21st century.

Come on a guided tour with Elizabeth Parkes (pictured), of Ghana’s Crops Research Institute (CRI, of the Council for Scientific and Industrial Research, CSIR), currently on leave of absence at the International Institute of Tropical Agriculture (IITA).

A hard-knock life, but still going strong
In keeping with its humble heritage, cassava is a crop which has long been reputed for being more than a little worn through at the elbows, commonly known as a “poor man’s crop” according to GCP cassava breeder and researcher, Elizabeth Parkes. However, much like a dishevelled duffle coat, what the crop lacks in shimmer and shine, it makes up for in sturdiness and dependability, rising to the occasion time and again by filling a critical gap – that of putting food in bellies – with a readiness and ease that its more sophisticated crop relatives have often struggled to keep up with. Elizabeth explains:  “It has kept people alive over the years.” By the same token, the crop – now one of Africa’s most important staples – is fondly known in Ghana as bankye, meaning a ‘gift from the government’, thanks to its reliability and capacity to meet needs that other crops cannot. There is even a popular song in the country which pays homage to the crop as an indefatigable evergreen, conquering even the most willful and wily of weeds!

However, as cassava experts such as Elizabeth know only too well, behind this well-intentioned lyrical window dressing is the poignant story of a crop badly in need of a pressing pick-me-up. Hardy as it may seem on the surface, cassava is riddled with myriad problems of a political, physiological, environmental and socioeconomic nature, further compounded by the interactions between these. For starters, while it may be a timeless classic and a must-have item at the family table for a good part of Africa, à la mode it is not, or at least not for short-sighted policy-makers looking first and foremost to tighten their purse strings in straitened times, or for quick-fix, rapid-impact,  silver-bullet solutions: “African governments don’t invest many resources in research. Money is so meager, and funds have mostly come from external agencies looking to develop major cereals such as rice. Cassava has been ignored and has suffered a handicap as a result – it’s more or less an orphan crop now,” Elizabeth laments. Besides having to bear witness to their favourite outfit being left on the funding shelf, cassava breeders such as Elizabeth are also faced with a hotchpotch of hurdles in the field: “In addition to factors such as pests and disease, cassava is a long-season and very labour-intensive crop. It can take a whole year before you can expect to reap any rewards, and if you don’t have a strong team who can step in at different points throughout the breeding  process, you can often find unexpected results at the end of it, and then you have to start all over again,” Elizabeth reveals. Robust as it may be, then, cassava is no easy customer in the field: “After making crosses, you don’t have many seeds to move you to the next level, simply because with cassava, you just don’t get the numbers: some are not compatible, some are not flowering; it’s a real bottleneck that needs to be overcome,” she affirms.

No time for skirting the issue
And at the ready to flex their research muscles and rise to these considerable challenges was Elizabeth and her Ghanaian CRI  team, who – with GCP support and in unison with colleagues from across Africa and the wider GCP cassava community – have been working flat out to put cassava firmly back on the research runway.

Thanks to funders such as GCP, who recognised that we couldn’t afford to turn a blind eye to the plight of this struggling crop, cassava has been given a voice…cassava is no longer just a poor man’s staple” 

A cassava farmer in Northern Ghana.

A  cassava farmer in Northern Ghana.

Elizabeth walks us through the team’s game plan: “GCP socioeconomist Glenn Hyman and team undertook a study to identify the best area in Ghana for supporting cassava flowering [Editor’s note: Glenn works at the International Center for Tropical Agriculture, CIAT]. Armed with that information, we have been applying grafting techniques, using hormones to induce flowering in Ghana and beyond.” The initiative is starting to bear fruit: “At the IITA–Nigeria Ubiaja site, for example, flowering is underway at factory-like efficiency – it’s a great asset. The soil has also greatly improved – we haven’t been able to pinpoint the exact cause yet, but what we’ve seen is that all cultivars there will now flower,” she reveals. Elizabeth’s team has been making steady progress in biotechnological techniques such as DNA extraction: thanks to work led by then GCP cassava comrade Martin Fregene (then with the International Center for Tropical Agriculture, CIAT, and now with the Donald Danforth Plant Science Center) and colleagues, focusing on the development of more reliable and robust simple sequence repeat (SSR) markers, Elizabeth was able to carry out genetic diversity diagnosis work on cassava, collecting germplasm from all over Ghana for the global GCP cassava reference set. [Editor’s note: A ‘reference set’ is a sub-sample of existing germplasm collections that facilitates and enables access to existing crop diversity for desired traits, such as drought tolerance or resistance to disease or pests]

Similar work was also conducted in Nigeria and Guatemala. So has this tremendous and tenacious teamwork proved strong enough to drag cassava out of the doldrums? Elizabeth certainly seems to think so: “Thanks to funders such as GCP, who recognised that we couldn’t afford to turn a blind eye to the plight of this struggling crop, cassava has been given a voice. Having worked together to understand the peculiarities of this crop, cassava is no longer just a poor man’s staple: beyond subsistence, it is becoming a crop of high starch quality, and of real use for industry, confectionary and even biofuels,” she enthuses.

Thankfully, it’s a most welcome change of tide that shows no sign of abating any time soon.  Human capacity, Elizabeth says, is going from strength to strength, with three GCP-funded Ghanaian postgraduate students advancing well, two of them working on PhDs in what would normally be considered, according to Elizabeth, a ‘no-go area’ of cassava research – that is, cassava drought tolerance and post-harvest physiological deterioration (PPD), as well as bio-fortification. Efforts by the CRI team have resulted in the release of some 14–15 new drought-tolerant and PPD-resistant varieties in Ghana to date; all are anticipated to have a long shelf-life, and other varieties are also in the pipeline. Biofortified seeds are in the making, with a view to soon mainstream biofortification in the team’s breeding activities. The biofortification work is in collaboration with a sister CGIAR Challenge Programme, HarvestPlus.

The impact of our GCP-supported research on cassava has been remarkable. Above all, it’s been the community spirit which has moved things forward so effectively; in this respect, I think researchers working on other crops might want to borrow a leaf from the cassava book!”

Molecular masterstrokes, a leaf to lend despite cold shoulder, and a ‘challenge crop’ befitting Challenge Programmes
Forthcoming plans for Elizabeth and her cassava companions in Ghana include a GCP Cassava Challenge Initiative project which will seek to unearth new marker populations and materials which are drought-tolerant and resistant to cassava mosaic virus and cassava bacterial blight. The team has successfully introgressed materials from CIAT into their landraces, and the next step will be to gauge how best the new genes will react to these traits of interest. In terms of people power, the CRI biotechnology laboratory built with GCP support – and now a regionally accredited ‘Centre of Excellence’ – is a hive of activity for local and international scientists alike, and is consequently bolstering cassava research efforts in the wider subregion. “The impact of our GCP-supported research on cassava has been remarkable. Above all, it’s been the community spirit which has moved things forward so effectively; in this respect, I think researchers working on other crops might want to borrow a leaf from the cassava book!” Elizabeth ventures.

Reflecting back on the conspicuous cocktail of constraints which mired the crop in the early days of her research career – challenges which often resulted in a cold shoulder from many of her research peers over the years – Elizabeth recalls affectionately: “At first, people didn’t want to work on cassava since it’s truly a challenge crop: the genetics of cassava are really tricky. Colleagues from around the globe often asked me: ‘Why not go for a smooth crop which is friendly and easy?’” Her commitment, however, has been unfaltering throughout: “I’ve stuck with cassava because that’s my destiny! And now I see SNPs being developed, as well as numerous other resources. Once you clean something up it becomes more attractive, and my thanks go out to all those who’ve remained dedicated and helped us to achieve this.”

Thus, dusted down and  ‘marked-up’ with a molecular make-over well underway, all evidence now suggests that this once old-hat subsistence crop is en route to becoming the next season’s big research hit, with shiny new cassava varieties soon to be released at a field station near you! Go, Ghana, go!

Links

 

Feb 242014
 
For this ‘IBP story-telling season’, our next stop is  very fittingly Africa, and her most populous nation, Nigeria. Travel with us!

Having already heard the Integrated Breeding Platform (IBP) story on data from Arllet (spiced with a brief detour through Asia’s sun-splashed rice paddies), and on IBP’s Breeding Management System from Mark (where we perched on a corner on his Toulouse workbench of tools and data), we next set out to get an external narrative on IBP, and specifically, one from an IBP user. Well, we got more than we had bargained for from our African safari

Yemi Olojede

Yemi Olojede

Yemi Olojede (pictured) is much more than a standard IBP user. An agronomist by training with a couple of decades-plus experience, he not only works closely with breeders and other crop scientitsts, but is also a research coordinator and data manager. As you can imagine, this made for a rich and insightful conversation, ferrying us far beyond the frontiers of Yemi’s base in Nigeria, to the rest of West Africa,  further out to Africa , and as far afield as Mexico, in his travels and travails with partners. We now bring to you some of this captivating conversation…

Yemi  has been working for the last 23 years (since 1991) at Nigeria’s National Root Crops Research Institute (NRCRI) at Umudike in various capacities. After heading NRCRI’s Minor Root Crops Programme for 13 years, he was last year appointed Coordinator-in-Charge of the Cassava Research Programme.

But his involvement in agriculture goes much further back than NRCRI: Yemi says he “was born into farming”. His father, to whom he credits his love for agriculture, was a cocoa farmer. “I enjoy seeing things grow. When I see a field of crops …what a view!” Yemi declares.

Yemi is also the Crop Database Manager for NRCRI’s GCP-funded projects. He spent time at GCP headquarters in Mexico in February 2012 to sharpen his skills and provide user insights to the IBP team on the cassava database, on the then nascent Integrated Breeding Fieldbook, and on the tablet that GCP was considering for electronic field data collection and management.

To meet the farmers’ growing need for improved higher-yielding and stress-tolerant varieties, plant breeders are starting to incorporate molecular-breeding techniques to speed up conventional breeding.

Flashback to 2010: GCP was then piloting and testing small handheld devices for data collection. Field staff going through a training session for these under Yemi's watchful eye (right).

Flashback to 2010: GCP was then piloting and testing small handheld devices for data collection. Field staff going through a training session for these under Yemi’s watchful eye (right).

But for this to happen effectively, cassava breeders require consistent and precise means to collect and upload research and breeding data, and secure facilities to upload that data into the requisite databases and share it with their peers. Eighty percent of farmers in Africa have less than a hectare of land – that’s roughly two football fields! With so little space, they need high-value crops that consistently provide them with viable yields, particularly during drought. For this reason, an increasing number of Nigerian farmers are adopting cassava. It is not as profitable as, say, wheat, but it has the advantage of being less risky. The Nigerian government is encouraging this change and is implementing a Cassava Transformation Agenda, which will improve cassava markets and value chains locally and create a sustainable export market. All this is designed to encourage farmers to grow more cassava.

Enter GCP’s Integrated Breeding Platform (IBP), which has been working closely with NRCRI and other national breeding programmes to develop the right informatic tools and support services for the job. The International Cassava Information System (ICASS), the Integrated Breeding Fieldbook and the tablet are all part of the solution, backed up by a variety of bioinformatic tools for data management, data analysis and breeding decision support that have been developed to meet the specific needs of the users.

I enjoy working with the team. They pay attention to what we as breeders want and are determined to resolve the issues we raise”

Fastfoward to 2012: Based on feedback, a larger electronic tablet was favoured over the smaller handheld device. Yemi (centre) takes field staff through the paces in tablet use.

Fastfoward to 2012: Based on feedback, a larger electronic tablet was favoured over the smaller handheld device. Yemi (centre) takes field staff through the paces in tablet use.

The database and IB Fieldbook
“When I received the tablet I was excited! I had heard so much about it but only contributed ideas for its use through Skype and email,” Yemi remembers, echoing a sentiment that is frequently expressed by many partners who have been introduced to the device. “I experimented with the Integrated Breeding Fieldbook software focusing on pedigree management, trait ontology management, template design ‒ testing how easy it was to input data into the program and database.”  Yemi noted a few problems with layout and data uploading and suggested a number of additional features. The IBP Team found these insights particularly useful and worked hard to implement them in time for the 2nd Scientific Conference of the Global Cassava Partnership for the 21st Century (GCP21 II), held in Kampala, Uganda, in June, 2012.

“I enjoy working with the team. They pay attention to what we as breeders want and are determined to resolve the issues we raise,” says Yemi. He believes the IB FieldBook and the tablet, on which it runs, will greatly benefit breeders all over the world, but particularly in Africa. “At the moment, our breeders and researchers have to write down their observations in a paper field book, take that book back to their computer, and enter the data into an Excel spreadsheet,” he notes. “We have to double-handle the data and this increases the possibility of mistakes, especially when we are transferring it to our computers. The IB Fieldbook will streamline this process, minimising the risk of making mistakes, as we enter our observations straight into the tablet, using specified terms and parameters, which will upload all the data to the shared central database when it’s connected to the internet.”

The whole room was wide-eyed and excited when they first saw the tablets”

Bringing the tablet to Africa
After his trip to Mexico, Yemi was concerned that some African breeders would be put off using the IB Fieldbook and accompanying electronic tablet because both require some experience with computers. “I found the tablet and the FieldBook quite easy to use because I’m relatively comfortable with computers,” says Yemi. “The program is very similar to MS-Excel, which many breeders are comfortable with, but I still thought it would be difficult to introduce it given that computer literacy across the continent is very uneven.”

Slim, portable and nearly invisible. A junior scientist at NRCRI Umudike tries out the tablet during the 2012 training session.

Slim, elegant, portable and nearly invisible is this versatile tool. A junior scientist at NRCRI Umudike tries out the tablet during the 2012 training session.

At the GCP21 II meeting in Uganda, Yemi helped the IBP team run IB Fieldbook workshops for plant breeders from developing countries, with an emphasis on data quality and sharing. “The whole room was wide-eyed and excited when they first saw the tablets. They initially had trouble using them and I thought it was going to be a very difficult workshop, but by the end they all felt confident enough to use them by themselves and were sad to have to give them back!”

They … go back to their research institutes and train their colleagues, who are more likely to listen and learn from them than from someone else.”

Providing extra support, cultivating trust
Yemi recounts that attendees were particularly pleased when they received a step-by-step ‘how-to’ manual to help them train other breeders in their institutes, with additional support to be provided by the IBP or Yemi’s team in Nigeria. “They were worried about post-training support,” says Yemi. “We told them if they had any challenges, they could call us and we would help them. I feel this extra support is a good thing for the future of this project, as it will build confidence in the people we teach. They can then go back to their research institutes and train their colleagues, who are more likely to listen and learn from them than from someone else.”

In developing nations, it is important that we share data, because we don’t all have the capacity to carry out molecular breeding at this time, and data sharing would facilitate the dissemination of the benefits to a wider group”

Sharing data to utilise molecular breeding
Yemi asserts that incorporating elements of molecular breeding has helped NRCRI a great deal. With conventional breeding, it would take six to 10 years to develop a variety before release, but with integrated breeding (conventional breeding that incorporates molecular breeding elements) it is possible to develop and release new varieties in three to four years ‒ half the time. Farmers would hence be getting new varieties of cassava that will yield 20‒30 percent more than the lines they are currently using in a much shorter time.

“In developing nations, it is important that we share data, because we don’t all have the capacity to carry out molecular breeding at this time, and data sharing would facilitate the dissemination of the benefits to a wider group,” says Yemi. “I enjoy helping people with this technology because I know how much it will make their job easier.”

Links

Jul 082012
 

Inside GCP today

Do a deep dive with Jean-Marcel into GCP’s ‘engine room’. What makes the Programme work? How is it structured and governed? For a geographically dispersed Programme with multi-institutional teams, what’s the trick that keeps the different parts moving and well-oiled to maintain forward motion and minimise friction? Get acquainted (and hopefully ‘infected’) with the ‘GCP Spirit’…

Jean-Marcel Ribaut (pictured) is the GCP Director. His work involves coordinating the research activities and overseeing finances, ensuring that at the end of the day that the overall Programme objectives are met. This means much multitasking, a great asset in running a multi-institutional partnership-based Programme. Jean-Marcel comes from a research background, although the research team he led while at CIMMYT was nothing the size of GCP…

…we’ve moved from exploration to application…underpinned by services and capacity building. To make a difference in rural development, to truly contribute to improved food security through crop improvement and incomes for poor farmers, we knew that building capacity had to be a cornerstone in our strategy.”

How long have you been GCP Director?
Since 2005. My first two years were a steep learning curve!

The GCP tagline – ‘Partnerships in modern crop breeding for food security’  – what does this mean for you?
GCP is a very dynamic Programme. The kind of research that we were doing in 2005 is quite different from what we are doing today. As we implement our strategy, we’ve moved from exploration to application. We therefore revised our tagline to match this evolution, with the Programme now focussing much more on modern crop breeding and related aspects. We had naturally started by looking for diversity in the alleles, then evolved to gene discovery and developing supporting tools and markers alongside capacity building. Now, our focus is on application – using this diversity, markers and tools to progress to the next level, and boost the genetic gains for our nine key crops in challenging environments.

This application is underpinned by a service component through our Integrated Breeding Platform, as well as a strong capacity-building component for both human resources and infrastructure.

To make a difference in rural development, to truly contribute to improved food security through crop improvement and incomes for poor farmers, we knew that building capacity had to be a cornerstone in our strategy.

We take an integrated approach … exploring new avenues but exercising due caution …we are not promoting molecular breeding as the magic bullet and only solution – it’s an additional useful tool for arriving at educated breeding decisions.

One of our objectives was to bridge the gap between upstream and downstream research in the teams we brought together. While we did have some failures where groups worked together for the project duration alone and didn’t continue their collaboration, we have had other cases where the teams we forged then have not only grown but also continued to work together – with or without us.”

Why is GCP’s work important?
Through our Research Initiatives, we focus on several crops, with relatively limited funding for each of them compared, say, to other much larger crop-specific initiatives supported for example by the Bill & Melinda Gates Foundation. So,  we operate on a proof-of-concept model: our goal is to demonstrate the use of new technologies and the application of out-of- the-box strategies which – if proven effective – will be funded and expanded by other agencies, including governments.

We take an integrated approach to problem-solving, exploring new avenues but exercising due caution while so doing. For example, for modern crop breeding which is our current focus, we are not promoting molecular breeding as the magic bullet and only solution – it’s an additional useful tool for arriving at educated breeding decisions.

…more than half our projects are led by scientists in developing countries

…The ‘GCP Spirit’ is visible and palpable: you can recognise people working with us have a spirit that is typical of the Programme.”

For you, what have been the major outcomes of the Programme so far?
Seeing developing-country partners come to the fore, and take the reins of project leadership. During Phase I, most project leaders were from CGIAR and advanced research institutes. However, over time, there has been a major shift and we are proud that today, more than half our projects are led by scientists in developing countries. They’ve moved from the position of implementers to the role of leaders, while CGIAR Centres and universities have taken a back seat, being more in a supporting role as mentors or tutors.

We have created this amazing chain of people, stretching  from the labs to the fields. This ‘human’ component is a terrific living asset, but it is also very difficult to scientifically quantify. Perhaps the best way I can describe it is as a ‘GCP Spirit’ created by the researchers we work with. The Programme’s ‘environment’ is friendly, open to sharing and is marked by a strong sense of community and ‘belonging’. The ‘GCP Spirit’ is visible and palpable: you can recognise people working with us have a spirit that is typical of the Programme.

One of our objectives was to bridge the gap between upstream and downstream research in the teams we brought together. While we did have some failures where groups worked together for the project duration alone and didn’t continue their collaboration, we have had other cases where the teams we forged then have not only grown but also continued to work together – with or without us.

A number of the partnerships we’ve forged have had a win–win outcome for players at opposite ends of the research–development spectrum. For example, academia tends to place a high premium on publications and theory, and relatively lower value on application and the real-world context. GCP provides a window for academics to apply their expertise, which benefits developing-country partners.

GCP’s relationship with project ppartners goes beyond funding. We are not just giving money; we are engaged in partnership with our project teams. We in management consult with them, interact and grapple over the technical issues with them in candour, and we toast and celebrate the successes together. I see our management style as fairly ‘paternal’, particularly for projects led by scientists from developing countries, but paternal in the positive sense of wanting to see these groups of people succeed, and us helping them to do so.

If a research site needs a pump for fieldwork, we work with a local or international consultant who will visit the partner and evaluate their needs, advise them on what type of pump they need, as well as other infrastructure they’ll need for the whole system to be sustainable. We’ll then provide training on how to use the pump most effectively.

It’s an investment in the people as much as in the products they are working on because we are trying to change the system of how science within partnerships is conducted and supported, as much as we are trying tap genetic diversity and breed resilient crops for the developing world.

Our successes have only been possible because of our ‘slim’ structure and the structural support we have enjoyed. With governance and advisory roles vested in an Executive Board and Consortium Committee, and with CIMMYT providing us with a legal and administrative home, we have minimal overheads and much flexibility. This agility has allowed us to adjust rapidly to changes when needed than, say, a classic research institute which would – quite rightly – have more rigid and elaborate obligatory steps, over a much longer time horizon.

…advocacy, persuasion and presenting a compelling business case are all necessary ingredients. Because we cannot be ‘directive’ with our partners in the manner their own institutes can be since they don’t ‘belong’ to us, we need to demonstrate success and convince people to adopt new business models.

How will GCP ensure sustainability?
Through our project Delivery Plans which link up a chain of users of our research products, and our Transition Strategy which shows how our research activities are embedded in the new CGIAR Research Programmes. We also hope to see our nascent communities of practice confer a sense of ownership to community members, and therefore sustainability. All that is on the ‘systematic’ and ‘documentation’ side of things.

Even more compelling is something I mentioned earlier, on the ‘organic’ and community side of things. Although it is completely outside our control, so to speak, it is wonderful to see that some of the partnerships we brought together have acquired a life of their own, and the teams we constituted are working together in other areas that have nothing to do with their GCP projects.

What are some of the lessons learnt so far?
The first one was focus. It’s very difficult to coordinate too many tasks, carried out by too many partners. Midstream in 2008, we had to review the way we were working and change course.

People management is the other. Cultivating relationships with people is critical. The trick is in balancing: by being cordial and friendly managers, we perhaps erode some of our authority over some of our project partners!

Another big lesson is that if it’s not working, don’t push it. Learn the lesson, cut your losses, and move on. Two main lessons have come from both our research and service aspects. For research, we invested in a massive fingerprinting exercise to characterise reference sets for all our 18 mandate crops at the time. [Editor’s note: A ‘reference set’ is a sub-sample of existing germplasm collections that facilitates and enables access to existing crop diversity for desired traits, such as drought tolerance or resistance to disease or pests]

The results were not great, the documentation was poor, and it was very difficult reconciling the different datasets from the work. We ended up incurring extra costs for genotyping, to salvage the investment. Then for building the Integrated Breeding Platform, we’d initially involved all major actors in developing the ‘middleware’ – the ‘invisible’ part that links the tools, services and resources IBP provides to breeders, with the respective crop databases. This did not work, and we subcontracted the work to an external service provider.

In both cases, we erred on the side of inclusiveness since we wanted to have all the players on board, and to also facilitate their capacity-building-by-engagement. We have learnt the need to strike a balance between inclusiveness and capacity building on the one hand, and outsourcing to get the job done on the other.

Then there is behaviour change – changing people’s mindsets to adopt technology, since people tend to be naturally conservative. We’ve learnt that developing the tools and techniques is the easy part. The human component – changing how people do business, getting them to adopt a corporative and cooperative over an institutional focus – is a real challenge, and needs to be strongly demand-driven with clear short-term benefits.

Data management and quality control, their documentation, publication and sharing continue to dog us and it’s probably the greatest challenge, although not unique to GCP.

Finally, advocacy, persuasion and presenting a compelling business case are all necessary ingredients. Because we cannot be ‘directive’ with our partners in the manner their own institutes can be since they don’t ‘belong’ to us, we need to demonstrate success and convince people to adopt new business models.

What is the most enjoyable aspect of your position at GCP?
More than one, actually.

We enable people, research teams and institutes to grow, thrive and stand on their own, and this is deeply gratifying; it is very rewarding to see people from developing countries growing and becoming leaders.

Working on different crops, with different partners, in different circumstances, and of different capacities is highly stimulating and brings a lot of diversity. My job is anything but boring!

I also appreciate being sheltered from the administrative burden our multi-institutional approach carries. The administrative load is ably borne by CIMMYT. This allows me to dedicate more of my time to supporting our research partnerships, institutional relationships and services to researchers.

I work with a small and dedicated team. As you can imagine, things are not always rosy, since a small team also means we operate in a ‘tight’ space and occasionally knock knuckles, and we also come from different cultures, but all these work to the good. This cultural diversity is actually a big plus, bringing a broader array of perspectives to the table. And the benefit of the ‘tight’ space is that, when there is a task to be done, the team spirit is incredible – everyone in the group, from management to office assistants, apply themselves to the task at hand. This is a fantastic experience!

Beyond the management and staff group, there is also the real GCP that is out there, which is highly stimulating, and I will end by sharing an excerpt from the external mid-term review report:

“Perhaps the most important value of GCP thus far, is the opportunities it has provided for people of diverse backgrounds to think collectively about solutions to complex problems, and, in the process, to learn from one another.”

Related blogposts

GCP website

External links

 

 

 

Jul 012012
 

A shared vision

What is GCP all about and why is its work important? Why was GCP created? Read recollections from key people involved in GCP’s conceptualisation, and find out how realisation of the shared vision continues today. Featuring candid conversations with Masa Iwanaga, former Director General, CIMMYT; Dave Hoisington, Consortium Committee Chair; Andrew Bennett, Executive Board member; and Jean-Marcel Ribaut, GCP Director.

When was the last time you went to your local shop to buy something only to be told they’ve run out of it? How did you react? Like most of us, did you question how they could have run out – after all, isn’t it their business to adequately supply the demand?

Most likely you just went to another store. But what if there wasn’t another store around that had your product, or worse, there was actually a national shortage of your product? This is the reality that faces not just those after the latest iPad, but billions of people who just want something, anything, to eat.

With less productive land on which to grow crops, a more variable climate and more extreme weather events, farmers across all continents are struggling to produce crops, let alone increase yields to meet an ever-growing demand.

This scenario has continually raised its ugly head over the last 200 years as the world’s population has grown exponentially and shifted to urban surroundings. If not for the Green Revolution, inspired by the late Norman Borlaug’s agricultural development research within the Office of Special Studies in Mexico (now the International Maize and Wheat Improvement Center, more commonly known as CIMMYT, its Spanish acronym), the world population would have already suffered losses into the billions.

Even so, food insecurity is still recognised as a global challenge by the UN’s Food and Agriculture Organization (FAO). While there is debate over the cause for such insecurity, the advances of agricultural technology born from a Mexican-flavoured research programme are once again coming to the fore to meet the challenge.

Genebanks are not limited to conservation but are also a source of new alleles for crop improvement.

The genies in the genebank
Seedbank collections serve as insurance against unanticipated future threats to food security, the degradation of our environment and the loss of plant biodiversity.

But that is not all: the banks are not limited to conservation but are also a source of new alleles for crop improvement. The temperature-controlled CGIAR genebanks are a veritable treasure trove for plant breeding. Over the past four decades, their curators have scoured the planet, collecting, categorising and conserving more than 650,000 samples of crop, forage and agroforestry genetic resources, held in trust on behalf of humanity.

One such temperature-controlled genebank is located just outside the sweltering Mexico City: the CIMMYT genebank holds more than 150,000 unique samples of wheat and its relatives from more than 100 countries – said to be the largest collection of a single crop.

While genebank ‘stocks’ have always been open to plant breeders, it wasn’t until 2002 that CGIAR researchers embarked on a more structured and systematic approach using modern technologies to tap their breeding potential, thereby elevating the genebanks beyond their traditional collection and conservation role. Prior to that, far-sighted individual pioneering researchers had been studying (termed ‘screening’ in breeder-speak) the stocks for solutions to breeding problems and to improve crops, but the turning point for a concerted ‘institutional’ effort, would come in the early noughties.

By studying the genes of wild versions of, let’s say, wheat, researchers can find genes that could help cultivated wheat to better battle drought.

The dawn of a new generation
One of these researchers was Dave Hoisington (pictured), then with CIMMYT, and now Chair of GCP’s Consortium Committee, and ICRISAT’s Director of Research. Dave worked with the then newly appointed CIMMYT Director General, Masa Iwanaga, and helped draft a joint proposal with other institutes to CGIAR to form a Challenge Programme that could use the recent advances in molecular biology to harness their rich global stocks of crop genetic resources to create and provide a new generation of plants to meet farmers’ needs. This successfully gave rise to the CGIAR Generation Challenge Programme.

“GCP’s first task was to go in and identify the genetic wealth held within the CGIAR banks,” says Dave.

“To do this, we wanted to use the most recent molecular tools, like molecular markers, to help scan the genomes and discover genes in species related to crops of interest that could help increase yield.”

Let’s use an analogy from a familiar medium – text: think of this story you are now reading as the plant’s genome, its words as its genes and a molecular marker as a text highlighter. You can use different markers to highlight different keywords in this story. Once you can see these keywords, you can then study them in more detail, and, in the case of genes, see what they control in the plant, and how they affect its different aspects.

Photo: JIRCASBy studying the genes of wild versions of, let’s say, wheat, researchers can find genes that could help cultivated wheat to better battle drought.

“At that time, we recognised that a Centre like CIMMYT could no longer undertake this tremendously complex task on its own,” recounts Masa (pictured).”We needed to work within a programme that could concentrate on the task and that rallied together various CGIAR Centres as well as research institutes outside CGIAR, especially in developing countries.”

Partnerships with spirit
Partnerships have always been a key ingredient to success. At the same time, they have led to the downfall of many projects.

Back in the early noughties, CGIAR recognised their business model and research system were not actively fostering partnerships between their different research Centres as much as they should have been, nor were they vigorously encouraging Centres to seek collaboration outside CGIAR.

This was one of the fundamental reasons for establishing the Challenge Programmes, says Jean-Marcel Ribaut (pictured), who, in his role as GCP Director, has been credited by the Board and Committee for the significant time he has taken to broker, nurture and manage GCP’s partnerships.

“One of our major outputs has been the human assets,” says Jean-Marcel with great pride. “We have created this amazing chain of people from the lab to the field.”

In fact, GCPs greatest asset – its ‘crown jewel’ – is its network of people and the capacity the Programme provides them with to buttress all the hard work, particularly in countries where the end products (crops) will be of most benefit.

…the GCP Spirit’ … is visible and palpable: you can recognise people working with us have a spirit that is typical of the Programme.”

“To make a difference in rural development, to truly contribute to improved food security through crop improvement and income for poor farmers, we knew we had to build capacity in these areas,” observes Jean-Marcel.

“I see our management style as fairly ‘paternal’, in the positive sense of wanting to see these groups of people succeed, and us helping them to do so. If a research site needs a pump for fieldwork, we work with a local or international consultant who will visit the partner and evaluate their needs, advise them on what type of pump they need, as well as other infrastructure they’ll need for the whole system to be sustainable. We’ll then provide training on how to use the pump most effectively. It’s an investment in the people as much as in the products they are working on because we are trying to change the system of how science within partnerships is conducted and supported, as much as we are trying tap genetic diversity and breed resilient crops for the developing world.”

We were attracted to GCP because of its strong facilitating role, which offered considerable support to addressing the bottlenecks associated with research programmes that researchers and CGIAR identified.”

This support and change have been major selling points for potential partners who have resonated with what Jean-Marcel calls ‘the GCP Spirit’ – partners open to sharing their skills, tools and knowledge, willing to sacrifice their views and leadership and, most importantly, support one another.

“It is visible and palpable: you can recognise people working with us have a spirit that is typical of the Programme,” says Jean-Marcel.

Funders like the Swiss Agency for Development and Cooperation (SDC) are attracted to, and impressed by, GCP’s approach as an honest and impartial ‘broker’.

“We were attracted to GCP because of its strong facilitating role, which offered considerable support to addressing the bottlenecks associated with research programmes that researchers and CGIAR identified,” says Carmen Thönnissen (pictured), Senior Advisor at SDC.

“GCP is also in line with SDC’s internal guidelines on Green Biotechnology, where it is our aim not to support single-donor initiatives but to work in larger programmes that have a clear focus on strengthening the national partner capacities too.”

At the beginning, most project leaders were from developed nations and CGIAR Centres. … now more than half of our projects are led by scientists in developing countries.”

A structured revolution within an evolution: aiming for products and sustainable change
GCP was designed in two phases over its 10-year life. The first was about the research and using genetic plant breeding techniques. The second and current phase focuses more on accessing modern breeding technologies and building capacity in developing countries to do the research for themselves.

Within nine years, GCP has produced useful tools and products from its studies of genetic resources.
These products have contributed to advancing knowledge, and will continue to do so into the future, particularly in plant breeding.

“At the very beginning, most project leaders were from established universities and institutes  in developed nations, and CGIAR Centres. However, over time there has been a major shift and now we are proud that more than half of our projects are led by scientists in developing countries,” says Jean-Marcel. “They’ve moved from the position of implementers to the role of leaders, while the CGIAR Centres and institutes in developed countries have evolved more into mentors and teachers. We hope this empowerment will allow national programmes to grow and establish themselves to be sustainable when the funding dries up.”

Challenges within the Challenge Programme
All this talk about spirit, collaboration and partnerships does make it sound as if GCP has found the winning formula, but Jean-Marcel is quick to counter such notions, and there have been constant course corrections in charting the Programme’s path. “If anything, our strength comes from recognising our weaknesses, acknowledging that we don’t have it all worked out, and embracing change where it is needed.”

A mid-term external review was conducted in 2008 to audit the Programme’s weaknesses, strengths and lessons learnt from both. This review resulted in some governance reforming, bringing about the Consortium Committee and an independent Executive Board.

“It’s a major improvement that we have an independent Board, allowing for focus, and without any conflict of interest. I think they are doing a great job,” says Jean-Marcel. “They are monitoring and evaluating what we are doing, providing plenty of feedback and ideas on how to move forward, and contributing a lot to the success of the Programme.”

The Board’s focus now turns to auditing the Programme and mapping a strategy to sustain its successful partnerships and systems, so they can continue to deliver products and capacity to the developing world.

Bird’s eye view from the Board
With more than 45 years of experience in international development and disaster management and, having worked in development programmes in Africa, Asia, Latin America, the Pacific and the Caribbean, Andrew Bennett (pictured) was a perfect candidate for the Board Chair.

“We are committed to the role that can be played by science in development, and to the Programme,” says Andrew. “We have offered advice and helped the Programme’s Consortium Committee and management refocus the Programme. By all accounts, they seem happy with how things have evolved.”

Advice and helping aren’t normally the words associated with how a Board works but, like so much of the GCP family, this isn’t a classical board.

Andrew explains “Because GCP is hosted by CIMMYT, the Board does not have to deal with any policy issues. That is the responsibility of the Consortium Committee. Our role is more to provide advice and to help with decision-making and implementation, which is great as we’ve been able to focus on the Programme’s science and people.”

That focus now turns to auditing the Programme and mapping a strategy to sustain its successful partnerships and systems, so they can continue to deliver products and capacity to the developing world.

Turning sunset to sunrise
With only two-and-a-half years left to run, Jean-Marcel and his team are working just as passionately on sustaining the partnerships, projects and outputs that GCP has created.

“We knew we weren’t going to be around forever, so we had a plan from early on to hand over the managerial reins to other institutes, including CGIAR,” says Jean-Marcel, with the slight affliction of a parent helping their child move out of home.

“We have begun integrating projects into the CGIAR Research Programmes (CRPs) which we hope will allow them to continue to grow and work effectively towards the goals set.”

At the same time, the Management Team, Committee and Board are all busy auditing the successes and failures of the Programme to quantify the achievements of what has been termed as one of the CGIAR’s more successful Challenge Programmes, and on how to make GCP products freely accessible to other research institutes and programmes.

Relevant links

Links to external websites

 

cheap ghd australia