Feb 212014
 
Print Friendly

 

Steaming rice bowl

Steaming rice bowl

What’s the latest from ‘GCP TV’? Plenty! With a world-favourite – rice – featuring high and hot on the menu.

Now serving our latest news, to tease your taste-buds with a tantalising and tingling potpourri of memorable cross-continental rice flavours, all captured on camera for our viewers…

Our brand-new series on YouTube serves up a healthy seven-course video feast inviting our viewers to sink their teeth into rice research at GCP.

First, we settle down for a tête-a-tête in the rice research kitchen with chef extraordinaire, Marie-Noëlle Ndjiondjop, Principal Investigator (PI) of GCP’s Rice Research Initiative in Africa, and Senior Molecular Scientist at Africa Rice Center. Target countries are Burkina Faso, Mali and Nigeria.

Photo: A Okono/GCP

Marie-Noëlle Ndjiondjop

Starters, palate and pocket
Marie-Noëlle opens the feast with a short but succulent starter, as she explains succinctly in 30 seconds just how rice is becoming a staple in Africa. In the second course, Marie-Noëlle chews over the questions concerning combatting constraints and boosting capacity in rice research in Africa.

The third course is pleasing to the eye, the palate and the pocket! Marie-Noëlle truly sells us the benefits of molecular breeding, as she extolls the virtues of the “beauty of the marker”. Why should you use molecular tools? They’ll save you time and money!

Rice as beautiful as the markers Marie-Noëlle uses in molecular breeding

Wherefore art thou, capacity building in rice research in Africa?
The Shakespearean language alludes to the why of capacity building in Africa, as does video episode number four, which also tackles the what of this fourth dish in our banquet. Course number five offers the viewer a light look at how capacity building in Africa is carried out.

In the 6th course, Marie-Noëlle takes us out of this world and into MARS: she teaches us that ‘two are better than three’, as she explains how the novel bi-parental marker-assisted recurrent selection (MARS) method is proving effective when it comes to duelling with drought, the tricky three-headed monster comprising physiological, genetic and environmental components.

Blooming rice in the field

Of stars and scoundrels
The 7th and final course offers us a riveting tale of heroes and villains, that is, many heroes and a single villain! Our rice raconteuse, Marie-Noëlle, praises the power of the team, as a crew from cross-continental countries come together, carefully characterise their combatant (drought), before striking with environment-specific drought-tolerant varieties! AfricaRice’s project partners are Burkina Faso’s Institut de l’environnement et de recherches agricoles (INERA); Mali’s Institut d’économie rurale (IER); and Nigeria’s National Cereals Research Institute (NCRI). Collaborators are France’s Centre de coopération internationale en recherche agronomique (CIRAD); the International Center for Tropical Agriculture (CIAT); and the International Rice Research Institute (IRRI).

We hope these tasty teasers are enough to whet your appetite – you can savour each of the courses individually à la carte, or, for those with a daring desire to try the ‘all you can eat’ buffet for true rice gourmets, all seven courses are presented as a single serving on our YouTube channel.

Jonaliza Lanceras-Siangliw

Jonaliza Lanceras-Siangliw

Tastes from Asia
To further please your palate with our rice bowl of delights, our next stop is Asia. We are  pleased to offer you the Asian flavour through a peek into the world of molecular rice breeding in the Mekong region. Our connection to this project is through a GCP-funded capacity-building project entitled A Community of Practice for strengthening rice breeding programmes by using genotyping building strategy and improving phenotyping capacity for biotic and abiotic stresses in the Mekong region led by PI Jonaliza Lanceras-Siangliw, of the National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand (see project poster, and slides on a related drought-tolerance project led by Boonrat Jongdee). BIOTEC’s partners in the Mekong rice breeding CoP are the Cambodian Agricultural Research and Development Institute (CARDI); LAO PDR’s National Agricultural and Forestry Research Institute (NAFRI);  Myanmar’s Department of Agricultural Research (DAR); and Thailand’s Kasetsart University and Ubon Ratchathani University). The video also features former GCP PI, Theerayut Toojinda (BIOTEC) whose project was similarly entitled The ‘Community of Practices’ concept applied to rice production in the Mekong region: Quick conversion of popular rice varieties with emphasis on drought, salinity and grain quality improvement.

BIOTEC

Boonrat Jongdee

Shifting gears: golden oldie
If all of this talk of eating has been a little overwhelming, we also offer you the perfect digestif: a ‘golden oldie’ in terms of GCP video history showing a 2012 BBC interview with former GCP PI, Sigrid Heuer, then at the International Rice Research Institute (IRRI), who explains how her project isolated the rice root-enhancing gene PSTOL1. Bon appétit!

 

Might you still have a corner of your mind yearning for more material on rice research? If so, check out the following:

  • Our lip-smacking selection of rice-related blogposts
  • A gorgeous gallery of PowerPoint presentations on rice research (SlideShare)
  • Check out our one-stop Rice InfoCentre for all things rice and nice, that we have online!

 

Dec 122013
 
Print Friendly

Down memory lane with Masdiar Bustamam, from generation to generation

Masdiar Bustamam

In some circles, Masdiar Bustamam (pictured right) is a mother figure of molecular breeding in Indonesia. In a marathon career spanning 37 years as a horticulturist and agricultural researcher, she helped develop and nurture the practice at the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD).  Staying with the marathon metaphor, this quote from a celebrated middle- and long-distance Kenyan champion runner, Kipchoge Keino, is very apt: “This life we have is short, so let us leave a mark for people to remember.”

Back to Masdiar: having retired in early 2012, we were recently lucky enough to gain a rare insight into Masdiar’s life, and to witness the mark she has already made, by simply tagging along when she checked in on two of her ICABIOGRAD charges and mentees whose PhD studies were supported by GCP – Wening Enggarin and Joko Prasetiyono. At ICABIOGRAD, Wening and Joko have both taken the torch from Masdiar for GCP projects, as well as for other projects.

She was the best teacher for me … instilled in me a spirit to never lose hope in the research I’m doing – Joko

She was a great role model… Her persistence and positive can-do nature was exactly what I needed as a young researcher … to not just offer me assistance in my work but also in life and religion. For me, she has become a second mother  – Wening

… That project really helped us out a lot and we are grateful to GCP  for recognising the potential in us and supporting it – Masdiar

Here’s more of what Masdiar (and her charges) had to say as we tagged along, and chatted her up…

Tell us about your early life
I grew up and lived in West Java for most of my life. My father was a farmer and my mother a housewife. I was their first of five children.

I went to Andalas University in Padang and graduated with a Bachelor in Biology in 1974. After graduating, I worked as a staff researcher at a local horticulture research institute focusing on pests and diseases, particularly fungi in tomato soils. I was lucky early in my career to have opportunities to visit research institutes in The Netherlands, Japan and USA, all of which enhanced my skills. While in USA, I completed my Masters in rice blast disease – a fungus-related disease, which severely hampers rice yields in Indonesia, and all around the world.

After my time in USA, I accepted a position at the International Rice Research Institute (IRRI) in The Philippines. This was the start of the second phase of my career, in which I began to focus on molecular biology. When I returned from The Philippines, I realised that we needed to improve our capacity to use molecular markers for breeding, which led me to take a job at ICABIOGRAD.

Setting up a lab – GCP lends a hand
When I first started at ICABIOGRAD we had empty benches. It took a lot of time and money to fill them with the equipment we have today. Rebecca Nelson from Cornell University in USA provided us with a lot of support in getting us started. We were involved in one of her GCP projects for two years working on blast resistance in rice.

We were also working on another GCP project led by Abdelbagi Ismail studying phosphorus-deficiency tolerance in rice too, dubbed the Pup1 project. Joko was actually my PhD student for that project and did a lot of the work.

Selecting Pup1 lines in farmers' fields in Sukabumi, West Java, in 2010. L–R: Masdiar Bustamam, Tintin Suhartini and Ida Hanarida Sumantri.

Selecting Pup1 lines in farmers’ fields in Sukabumi, West Java, in 2010. L–R: Masdiar Bustamam, Tintin Suhartini and Ida Hanarida Sumantri.

Both Rebecca and Adbdelbagi helped me draft a proposal to GCP in 2007 for a project to enhance our capacity in phenotyping and molecular analysis to develop elite rice lines suitable for Indonesia’s upland regions. We had the understanding to do the science, but needed to enhance our facilities to carry it out.

That project really helped us out a lot and we are grateful to GCP  for recognising the potential in us and supporting it.”

GCP recognised the need for such a project as many of Indonesia’s brightest researchers were leaving the country because of the lack of suitable facilities, and so funded the two-year ICABIOGRAD-defined capacity-building project. The grant covered – among other areas – intensive residential staff training at IRRI; PhD student support, which allowed Wening to complete her PhD; infrastructure such as a moist room, temperature-controlled centrifuge apparatus, computers and appropriate specialised software; and blast and inoculation rooms.

Writer’s note: The tailor-made grantee-driven capacity-building project above was a cornerstone of  GCP Phase I’s capacity-building strategy, and was dubbed ‘Capacity building à la carte’. With this historical note, we take an interlude here, to tour the facilities Masdiar has mentioned above.

Our first stop is the Rice Blast Nursery…

....Front view...

….Front view…

...side view...

…side view…

 

 

 

 

 

 

 

 

... and a close-up on the sign in the side view.

… and a close-up on the sign in the side view.

 

Next, we visit the Inoculation and Moist Rooms…

 

Inoculation and Moist Rooms

Inoculation and Moist Rooms…

 

Close-up

…and a close-up on the sign at the front.

 

 

 

 

 

 

 

After our tour of the facilities, Masdiar resumes her story: “That project really helped us out a lot and we are grateful to GCP  for recognising the potential in us and supporting it so that researchers like Wening bloom and blossom, now and into the future,” says Masdiar glowingly of one of her mentees and successors.

I’m proud of how they have matured and I’m really looking forward to when they and their teams produce new rice varieties, from the facilities I helped establish, that will help the farmers…I sacrificed what I enjoyed doing for a challenge whose benefits I recognised for my country.”

Mission-driven researcher, nurturer and mentor, all rolled into one
For Masdiar, it wasn’t work, but rather a passion and a hobby. “Throughout my career, I always enjoyed research, especially in plant pathogens,” she remembers. “Working with biotechnology was difficult because I didn’t have a background in the area. I sacrificed what I enjoyed doing for a challenge whose benefits I recognised for my country.”

Photo: ICABIOGRAD

From generation to generation: Masdiar (2L) drops in on her charges and torch-bearers at ICABIOGRAD’s Molecular Biotechnology Lab. L–R: Wening Enggarini, Masdiar Bustamam, Tasliah Zulkarnaeni, Ahmad Dadang and Reflinur Basyirin.

In the later half of her career, Masdiar recollects how she enjoyed training and mentoring younger researchers like Joko and Wening. “I’m proud of how they have matured and I’m really looking forward to when they and their teams produce new rice varieties, from the facilities I helped establish, that will help the farmers.”

Both Joko and Wening attest that Masdiar’s support and supervision were vital for their professional development and consequent career advancement. “She was the best teacher for me. She taught me how to manage a project, how to forge international collaborations, and how to write a good publication,” remembers Joko. “She also instilled in me a spirit to never lose hope in the research I’m doing.”

“She was a great role model for me!” exclaims Wening proudly. “Her persistence and positive can-do nature was exactly what I needed as a young researcher who was just starting a career. Even more so was her ability to take time out of her busy day to not just offer me assistance in my work but also in life and religion. For me, she has become a second mother  in this life. I’m blessed to be so lucky!”

Clearly, Masdiar has made her mark, leaving a cross-generational living legacy in molecular breeding embodied in these young researchers.

Links

  • Masdiar’s project report, with a picture of the blast nursery under construction (p 156 in this PDF)
  • Photo-story on Facebook
  • Rebecca Nelson’s project, Targeted discovery of superior disease QTL alleles in the maize and rice genomes (p 16 in this PDF)
  • GCP’s capacity building

 

Nov 202013
 
Print Friendly
Chiedozie Egesi

Chiedozie Egesi

Despite the social injustice around me, I always thought there was opportunity to improve people’s lives…GCP helped us to build an image for ourselves in Nigeria and in Africa, and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.”
 
– Chiedozie Egesi, a would-have-been surgeon who switched sides to biology and crop genetics, and who got acquainted with GCP through the Internet.

Backdrop: A booming economy and a wealth of natural resources may be among some of the common preconceptions of the average Jane and Joe regarding Africa’s most populous nation. Lamentably, however, Nigeria, like numerous robust economies worldwide, is still finding its feet in addressing severe inequality and ensuring that the nation’s wealth also flows to the poorest and most marginalised communities.

It’s a problem Chiedozie Egesi (pictured above), a molecular plant breeder at Nigeria’s National Root Crops Research Institute (NRCRI), understands well: “Nigeria is an oil-producing country, but you still see grinding poverty in some cases. Coming from a small town in the Southeast of the country, I grew up in an environment where you see people who are struggling, weak from disease, poor, and with no opportunities to send their children to school,” he reveals. The poverty challenge, he explains, hits smallholder farmers particularly hard: “Urban ‘development’ caught up with them in the end: some of them don’t even have access to the land that they inherited, so they’re forced to farm along the street.”

Maturing cassava fruits.

Food first! A man with a mission and fire in his belly, determined to make a difference
For this gifted and socially conscious young man, however, the seemingly bleak picture only served to ignite a fierce determination and motivation to act: “Despite the social injustice around me, I always thought there was opportunity to improve people’s lives.” And thus, galvanised by the plight of the Nigerian smallholder, plans for a career in medical surgery were promptly shelved, and traded for biological sciences and a PhD in crop genetics, a course he interspersed with training stints at USA’s Cornell University and the University of Washington, Seattle, along the way, before returning to the motherland to accept a job as head of the cassava breeding team, and – following a promotion in 2010 – Assistant Director of the Biotechnology Department, at NRCRI.

As evident from the burgeoning treasure chest of research gems to his name, it was a professional detour which paid off, and which continues to bear fruit today.

Making a marked difference, cultivating new partnerships, and looking beyond subsistence
In 2010, work by Chiedozie and his NRCRI team resulted in the official release of Africa’s first molecular-bred cassava variety which was both disease-resistant and highly nutritious – an act they followed in 2012 with the release of a high-starch molecular-bred variety. The team’s astute navigation of molecular markers resulted in breeding Latin American cassava varieties resistant to cassava mosaic disease (CMD), leading to the release of CMD-resistant cassava varieties in the African continent for the first time. Genetic maps intended to enhance breeding accuracy for cassava – the first of their kind for the crop in Africa – have been produced, and quantitative trait loci (QTLs) for cassava breeding are in the making. In 2011, the team, together with their partners at the International Institute of Tropical Agriculture (IITA) and HarvestPlus (a CGIAR Challenge Programme), released three pro-vitamin A-rich varieties of cassava, which hold the potential to provide children under five and women of reproductive age with up to 25 percent of their daily vitamin A allowance – a figure Chiedozie and his team are now ambitiously striving to increase to 50 percent.

These new and improved varieties – all generated as a direct or indirect result of his engagement in GCP projects – are, Chiedozie says, worth their weight in gold: “Through these materials, people’s livelihoods can be improved. The food people grow should be nutritious, resistant and high-yielding enough to allow them sell some of it and make money for other things in life, such as building a house, getting a motorbike, or sending their kids to school.”

Prior to my GCP work, I was more or less a plant breeder, and a conventional one at that. Whilst I’d been exposed to molecular tools during my early work on yam and other crops, I was not applying them in my work back then…GCP was not only there to provide technology but also to guide you in how to operate that technology… Now all our staff understand what is meant by good breeding, data analysis or applying genotypic data. My whole team benefitted.”

A chance ‘meeting’, with momentous manifold connections
Having first stumbled across the GCP website by chance when casually surfing the internet one day in a cyber café back in 2004, Chiedozie’s attention was caught by an announcement for a plant breeders’ training course in South Africa, an opportunity which he applied for on the off chance…and for which, hey presto!, he was accepted! Thus, his GCP ‘adventure’ began!

Chiedozie Egesi (left) and Emmanuel Okogbenin (right) in a cassava field.

Chiedozie Egesi (left) and Emmanuel Okogbenin (right) in a cassava field.

Promptly revealing an exceptional craftsmanship for all things cassava, Chiedozie soon became engaged in subsequent opportunities, including a one-year GCP fellowship at the International Centre for Tropical Agriculture (CIAT) in Colombia, a number of GCP Capacity building à la carte-facilitated projects, and, more recently, a major role as a Principal Investigator in the GCP Cassava Research Initiative (RI), teaming up with NRCRI colleague and Cassava RI Product Delivery Coordinator, Emmanuel Okogbenin. The Cassava RI is where Chiedozie’s energies are primarily invested at present, with improving and deploying markers for biotic stresses in cassava being the name of the game.

The significance of his GCP engagements was, Chiedozie affirms, momentous: “Prior to my GCP work, I was more or less a plant breeder, and a conventional one at that. Whilst I’d been exposed to molecular tools during my early work on yam and other crops, I was not applying them in my work back then.”

Collaboration in a GCP-funded project with CIAT led to the development of a new laboratory space for NRCRI, bolstered by support for basic materials as well as training. “GCP was not only there to provide technology but also to guide you in how to operate that technology,” Chiedozie comments. (For more on how it all began, see At home and to go and Molecular bonds in pp 26–29 in this e-book)

GCP’s Integrated Breeding Platform (IBP), he says, has played a vital role in this regard: “By opening the door to training, generation of data, analysis of data, and by giving support in making decisions, GCP’s IBP serves as a one-stop shop for cassava breeding.” It’s a sentiment shared by his NRCRI colleagues, he says: “GCP is providing a comprehensive full-package deal. Besides myself, several colleagues have been trained at NRCRI. Now all our staff understand what is meant by good breeding, data analysis or applying genotypic data. My whole team benefitted.”

A real deal-breaker is the facilitation of self-empowerment amongst national programmes, and the new avenues unfolding for enhanced collaboration at the local, national and regional level…What we’re seeing is a paradigm shift. In the past there was a general belief that this kind of advanced molecular science was only feasible in the hands of CGIAR Centres or developed-country research institutes – the developing-country programmes were never taken seriously. When the GCP opportunity to change this came up we seized it, and now the developing-country programmes have the boldness and capacity to do molecular breeding and accurate phenotyping for themselves.”

Growth in numbers, capital, capacity, collaboration, reach and impact
Strength in numbers, Chiedozie says, is a vital lifeline for cassava, a crop which has suffered years of financial neglect. As such, a real deal-breaker in Chiedozie’s eyes is the facilitation of self-empowerment amongst national programmes, and the new avenues unfolding, thanks to his involvement in the GCP cassava breeding Community of Practice (CoP), for enhanced collaboration at the local, national and regional level: “We now have a network of cassava breeders that you can count on and relate with in different countries. This has really widened our horizons and also made work more visible,” he offers, citing effective links formed with Ghana, Sierra Leone, Liberia, Mozambique, Malawi and Côte d’Ivoire, amongst several other cassava-breeding neighbours near and far.

Cassava leaf

Cassava leaf

The achievements amongst this mushrooming community are, he stresses, unprecedented: “Participation in the CoP means many countries can now create their own hybrids and carry out their own selection, which they could not do before,” he affirms.

And it’s a milestone Chiedozie and colleagues are justifiably proud of: “What we’re seeing is a paradigm shift. In the past there was a general belief that this kind of advanced molecular science was only feasible in the hands of CGIAR Centres or developed-country research institutes – the developing-country programmes were never taken seriously. When the GCP opportunity to change this came up we seized it, and now the developing-country programmes have the boldness and capacity to do molecular breeding and accurate phenotyping for themselves,” Chiedozie confirms.

GCP helped us to build an image for ourselves in Nigeria and in Africa, and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.” 

Building on success, going from strength to strength as the sands shift

With internal capacity now blossoming of its own accord – in no small measure due to the leading role played by NRCRI in the sensitisation of cassava plant breeders throughout Nigeria and beyond – the sands are certainly shifting: “GCP helped us to build an image for ourselves in Nigeria and in Africa, and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.”

Anthony Pariyo (left) of NaCRRI, Uganda

Visitors with working clothes on: NaCRRI Uganda’s Anthony Pariyo (left) and Williams Esuma (right) visiting NRCRI Umudike on a breeder-to-breeder visit in July 2012. Williams’ postgraduate studies were funded by GCP through the cassava CoP.

And the beauty of it, Chiedozie continues, is that the cassava crew is going from strength to strength: “Nigeria is seen as a really strong cassava-breeding team, not only within Africa but also globally. And we have not yet realised all the benefits and potential – these are still unfolding,” he enthuses.

Also yet to unfold are Chiedozie’s upcoming professional plans, which, he reveals, will soon see him engaging with the USA’s Cornell University, the Bill & Melinda Gates Foundation, the International Institute of Tropical Agriculture (IITA) and Uganda’s National Crop Resources Research Institute (NaCRRI) in an initiative which, through its focus on genomic selection in cassava breeding, promises to be, Chiedozie reveals, “at the frontier of cutting-edge technology.” Genomic selection for this initiative is already underway.

Readers intrigued by this tantalising taster of what to expect in Chiedozie’s next professional chapter are encouraged to watch this space over the coming years…Judging by his remarkable research record to date, we feel confident that future installments will not disappoint!

Meantime, here’s Chiedozie’s presentation at the GCP General Research Meeting in September 2013. We are also working on videos of Chiedozie and his work. Yet more reason to watch this space!

Links
  • For a picture of Chiedozie’s work near the beginning in 2006, see pp 26–29 here (At home and to go and Molecular bonds)
  • More recent updates are on the Cassava InfoCentre

 

Feb 282013
 
Print Friendly

Drought stalks, some die
Despite the widespread cultivation of beans in Africa, yields are low, stagnating at between 20 and 30 percent of their potential. Drought brought about by climate change is the main culprit, afflicting 70 percent of Africa’s major bean-producing regions in Southern and Eastern Africa.Bean plant by R Okono

Today we turn the spotlight on Zimbabwe, where drought is a serious and recurrent problem. Crop failure is common at altitudes below 800 meters, and livestock death from shortage of fodder and water are all too common. In recent history, nearly every year is a drought year in these low-lying regions frequently plagued by delayed rains, as well as by intermittent and terminal drought.

The ‘battleground’ and ‘blend’
Zimbabwe is divided into five Natural Regions or agroecological zones. More than 70 percent of smallholder farmers live in Natural Region 3, 4 and 5, which jointly account for 65 percent of Zimbabwe’s total land area (293,000 km2). It is also here that the searing dual forces of drought and heat combine to ‘sizzle’  and whittle bean production.

The rains are insufficient for staple foods such as maize, and some of their complementary legumes such as groundnuts. In some areas where temperatures do not soar too high (less than 30oC), beans blend perfectly into the reduced rainfall regime that reigns during the growing season.

A deeper dig: the root of the matter

Godwill Makunde

Godwill Makunde

Research from Phase I of the Tropical Legumes I (TLI) project under GCP’s Legume Research Initiative showed that deep rooting is one of the ways to confer drought tolerance in common beans. High plant biomass at pod-filling stage also confers drought tolerance. “These important findings from TLI refined our breeding objectives, as we now focus on developing varieties combining deep roots and high plant biomass,” reveals Godwill Makunde (pictured), a bean breeder at Zimbabwe’s Crop Breeding Institute (CBI), which falls under the under the country’s Department of Research & Specialist Services. Zimbabwe is one the four target countries in Eastern and Southern Africa for GCP’s bean research (the other three being Ethiopia, Kenya and Malawi).

From America to Africa…the heat is on, so is the battle…

The battle is on to beat the heat: through the project, CBI received 202 Mesoamerican and Andean bean breeding lines from the reference set collection held by the International Center for Tropical Agriculture (CIAT, by its Spanish acronym). A ‘reference set’ is a sub-sample of existing germplasm collections that facilitates and enables access to existing crop diversity for desired traits, such as drought tolerance or resistance to disease or pests. The Institute also embarked on bringing in more techniques to breed for heat tolerance.

Kennedy Simango

Kennedy Simango

Drought, pests and disease
“We embraced mutation breeding in collaboration with the International Atomic Energy Agency, and we primarily look for heat tolerance in small-seeded beans,” says Kennedy Simango (pictured right and below), a plant breeder at CBI. “Preliminary results suggested that just like drought, the reproductive stages of common bean are when the crop is most sensitive to heat. Flower- and pod-drop are common. Yield components and yields are severely reduced. In addition, we also focus on developing pest- and disease-resistant varieties.”

 

Kennedy Simango at work a the Crop Breeding Institute.
Kennedy Simango at work a the Crop Breeding Institute.

The CBI project’s primary diseases and pests of focus are angular leaf spot (ALS), common bacterial blight (CBB), rust and bean stem maggot, and aphids. “This came from our realisation that drought co-exists with heat, diseases and pests,” Kennedy adds. “So, a variety combining drought, heat, disease and pest tolerance all together would increase common bean productivity under harsh environments or drought-prone areas.”

At first glance, piling up all these vital survival traits may appear insurmountable, but it is all feasible, thanks to advances in plant science. “Breeding methods are changing rapidly, and it is vital that we keep up with the technology,” says Kennedy.

The CBI team is using molecular breeding to identify drought-tolerant parents, and then cross them into preferred bean varieties to confer to the ‘offspring’ the best of both worlds – drought tolerance and market appeal.

All-round capacity and competence
GCP’s support does not stop at enabling access to breeding lines alone, or introduction to molecular breeding. “We got a lyophiliser, which is specialised equipment that enables us to extract DNA and send it for genotyping,” says Kennedy. “From the genotyping exercise, we hope to be able to trace the relationships among breeding lines so that we design better crossing programmes, and thereby maximise the diversity of our breeding lines. In addition, we hope to select recombinants carrying desirable genes in a short period of time, and at times without even needing to test them in the target environment.” GCP assists with genotyping through its Genotyping Support Service offered through the Integrated Breeding Platform.

For phenotyping, CBI has benefitted from a mobile weather station, a SPAD meter (for measuring chlorophyll content), a leaf porometer (for measuring leaf stomatal conductance) and water-marks (probes for measuring soil moisture).

Human resources have not been forgotten either. Godwill Makunde, a CBI bean breeder, is studying for a TLII-funded PhD in Plant Breeding at the University of the Free State, South Africa. A group of four scientists (Godwill and Kenedy,  plus Charles Mutimaamba, and Munyaradzi Mativavarira) are in GCP’s three-year Integrated Breeding Multi-Year Course (IB–MYC). The curriculum includes design of experiments, data collection, analysis and interpretation, molecular breeding and data management techniques. In addition, GCP also trains research technicians. For CBI, Clever Zvarova, Anthony Kaseke, Mudzamiri and Chikambure have attended this training. Their course also includes phenotyping protocols (data collection and use of electronic tablets in designing field-books). To date, CBI has received five tablets for digital data collection , of which two are outstanding.

Photo: CBI

Godwill doing what he does best: bean breeding.

Bringing it all together, and on to farms
But how relevant are all these breeder-focused R&D efforts to the farmer? Let’s review this in proper context: in the words of Mr Denis Mwashita, a small-scale farmer at the Chinyika Resettlement Scheme in Bingaguru, Zimbabwe, “Beans have always carried disease, but from the little we harvest and eat, we and our children have developed stomachs.”

“What Mr Mwashita means is that despite the meagre harvests, farm families fare better in terms of health and nutrition for having grown beans,” explains Godwill.

With this solid all-round support in science, working partnerships, skills and infrastructure, the CBI bean team is well-geared to breed beans that beat both heat and disease, thereby boosting yields, while also meeting farmer and market needs. Trials are currently underway to select lines that match these critical needs which are the clincher for food security.

“The Zimbabwe market is used to the sugar type, which is however susceptible to drought. We hope to popularise other more drought-tolerant types,” says Kennedy. “We plan to selected a few lines in the coming season and test them with farmers prior to their release. Our goal is to have at the very least one variety released to farmers by mid-2013.”

A noble goal indeed, and we wish our Zimbabwe bean team well in their efforts to improve local food security.

VIDEO: The ABCs of bean breeding in Africa and South America, with particular focus on Ethiopia, Kenya, Malawi and Zimbabwe

Related blogposts

Other links

 

 

Dec 212012
 
Print Friendly

I’ve always enjoyed my job, particularly teaching students and young researchers, but this project has made me think about how I can do more practical science.” – Zeba Seraj, Biochemistry and Molecular Biology Professor, University of Dhaka, Bangladesh

Zeba Seraj

Growing up with a botanist as a father, Zeba Seraj was nurtured to look at plants in a scientific light. But at one stage in her life, she took a different fork on the road: she was more interested in rat livers and cow eyes, before becoming a ‘late bloomer’ in applied science and molecular plant breeding, which is her current niche.

Taking that fork: rats seduced, cows made eyes, but both lost…
Having completed her Undergraduate and Master’s in Biochemistry at the University of Dhaka, Bangladesh, during the 70s and 80s, she moved to Scotland for a PhD at the University of Glasgow. After being persuaded that molecular biology and recombinant DNA technology were not likely to be too different in animals and plants, she focused on the separation of nuclear proteins involved in post-transcriptional processing in the rat liver system.

“I then went on to work as a postdoc at the University of Liverpool, UK, for 18 months, where I worked on a bovine retina cDNA [complementary DNA] library,” Zeba recalls. “I was exposed to a number of recombinant DNA techniques and was pleasantly surprised to find DNA much easier to work with compared to proteins! I enjoyed it, but when I returned to the Bangladesh, there was no work in that field, so I turned to plants.”

The rise of rice, propelled by ‘Petrra’ project and petri dish
Back at her old University, one of Zeba’s first projects was working on salt tolerance in rice which allowed her to set up plant tissue culture facilities and establish a modest molecular biology laboratory. Zeba thereafter worked with the International Rice Research Institute (IRRI) and the Bangladesh Rice Research Institute (BRRI) on the Petrra project (poverty elimination through rice research assistance). The project was funded by the Department for International Development, UK. Meanwhile, she also spent a couple of months in the laboratory of the illustrious Dr John Bennett at IRRI, learning the latest technology in DNA markers and polymerase chain reaction (PCR) technology. This inital work would, in a way, lead her to GCP.

Meeting GCP, and banking on potential
Zeba joined the GCP community in 2005, working on the rice Saltol (salt tolerance) project. She was a focal collaborator in Bangladesh for this IRRI-led project that aimed to revitalise marginal ricelands by discovering and breeding into popular rice varieties ‘survival’ genes to enable rice to not only survive but also thrive on saline or phosphorus-poor soils.

“We were introduced to the project through the Principal Investigator, Abdel Ismail,” recalls Zeba. “Our lab was not very modern, but we did have all the facilities to do marker work, as well as a firm grasp on the theory, so IRRI and GCP must have seen potential in us.”

 …doing the research helped me understand the practical application better… It was a real eye-opener.”

Transiting from theory to practice
After 15 years of working as an associate professor and professor at the University of Dhaka (DU), mainly nurturing young biochemists, Zeba was re-energised by the thought of working on such a practical project that would have a direct impact on her country’s food security, and on its farmers’ livelihoods.

In the background, genotyping in progress at the Department of Biochemistry and Molecular Biology, University of Dhaka. In thef oreground, student– supervisor consultations. Pictured (left to right) are: Zeba I Seraj, Roman, Adnan, Sarwar, Debashis,Rabin, Dost, Mishu, Shamim and Rejbana.

Nearly one million hectares along the Bangladesh coast are affected by varying degrees of salinity which has severely limited the introduction of modern high-yielding rice varieties, as few of these are saline-tolerant. Given Bangladesh’s high population, farmers need as bountiful yields as possible, and minimum risk of failure.

“After reading and teaching theory for so long, it was really exciting to actually put it into practice and work towards a practical outcome,” says Zeba.

“Actually doing the research helped me understand the practical application better too. It was a real eye-opener.”

 Using molecular markers allowed us to at least halve the time it would take to release stress-tolerant rice.” 

Gaining time: the ‘miracles’ and ‘magic’ of molecular makers
Zeba’s lab was responsible for the molecular evaluation and selection of rice lines bred by BRRI for insertion of the genomic region containing Saltol (discovered to confer salt toleranceby the previous IRRI-led GCP-funded project).

Md Sazzadur Rahman of BRRI assesses progress on a salt-tolerant rice variety in the field.

“We collected leaf samples from the BRRI-bred lines which were a combination of popular rice landraces and a Saltol donor.” explains Zeba ‘Landraces’ is ‘breeder-speak’ for varieties grown by, and popular with, farmers, but not necessarily improved by selective scientific breeding. Zeba continues, “We then used molecular markers which would indicate the presence of the Saltol genomic region.”

“The information we gathered guided the breeders at BRRI to select rice plants with the Saltol region. Selected plants were then further analysed with markers, to maximise the presence of popular alleles,” she adds. Allele is one of two, or more, forms of a gene – the alternative form of a gene responsible for a trait producing different effects.

“Using molecular markers allowed us to at least halve the time it would take to release stress-tolerant rice,” Zeba reveals.

 I will be the happiest person on earth the day they release the new lines, knowing that I’d helped to make a difference.”

Seven years on, what next?
Zeba is grateful that she and her lab were active partners in GCP projects for seven consecutive years: first in the IRRI-led project in 2005 to 2009, then in a follow-up supplementary capacity-building DU-led project from 2010 to 2011, for which Zeba was the Principal Investigator.

Nirmal Sharma and Jamal emasculate the first backcross population of a crosscombination for a second backcross at BRRI

“I don’t think we could have done the work without the various GCP networks. Several times in the project we would lag behind and they’d offer us support to get us back on track,” says Zeba. “They also instilled in us the importance of proper data management, and we have now implemented their system to collect, store and report data for all of our projects. We also now have all the equipment and processes in place, meaning that we’re now able to accommodate similar projects, now and into the future.”

Personally Zeba feels the project has given her a new direction in her career that she’s keen to further explore. “I’ve always enjoyed my job, particularly teaching students and young researchers, but this project has made me think about how I can do more practical science,” confides Zeba.

As for the Saltol project, she is keeping a close eye on the application waiting for the news of high-yield salt-tolerant lines becoming accessible to all Bangladeshi rice farmers.

“I will be the happiest person on earth the day they release the new lines, knowing that I’d helped to make a difference.”

Links

  • More on Zeba Seraj on page 40 here
  • The road behind us: read on the early days (2005/2006) of the rice salt-tolerance work:
    • on pages 36–39 here
    • on pages 28–30 here
    • on page 6 here
  • Profile: Abdel Ismail, Principal Investigator of the salt tolerance project

 

Jun 202012
 
Print Friendly

Breathing life into support services

By addressing the needs at the heart of quality agricultural research, right there on the station, GCP was the first to cotton on to a crucial missing link between researcher, research station, and support services.” – Hannibal Muhtar (pictured)

“One thing that really energises me,“ enthuses GCP Consultant Hannibal Muhtar, “is seeing people understand why they need to do the work, and being given the chance to do the how.”

And so was born another wonderfully fruitful GCP collaboration. Hannibal, who describes the assignment as “a breath of fresh air,” was asked to identify, together with GCP project Principal Investigators, African research sites of ongoing or potential GCP Research Initiative projects where effective scientific research might be hampered by significant gaps in one fundamental area: infrastructure, equipment and support services. As at June 2012, 19 sites had been selected.

Meet Hannibal Muhtar (audio clip)

Embarking on the voyage to change, storms ‘n’ all
In 2010 and 2011, Hannibal visited these stations, meeting staff at all levels and functions, for an in-depth analyses and appropriate recommendations to assure high-quality field evaluations for GCP-funded projects. With funding from GCP’s Integrated Breeding Platform (IBP), and with the openness, commitment and energy of station staff to implement these recommendations, the efforts are, starting to bear fruit.

Photos: AgCommons

Flashback to 2010. Photo 1: Hannibal (centre) at a planning session at Sega, Western Kenya, with Samuel Gudu of Moi University  (right) and Onkware Augustino (left). Photo 2: Similarly, at Tanzania’s Agricultural Research Institute, Naliendele, with Omari Mponda (right).

But it has not all been smooth sailing, and the storms encountered along en route should not be underestimated.

Weeds, wear and tear, and a walk on the wild side
“The real challenge,” says GCP’s Director of Research, Xavier Delannay (pictured), “is not in the science, but rather in the real nuts-and-bolts of getting the work done in local field conditions.” The obstacles, are often mundane – missing or faulty, weather stations or irrigation systems; weed-infested fields ravaged, or poor drainage, for example. Yet such factors compromise brilliant research. Take unfenced plots for example – equipment gets stolen, and animals roam freely.

Getting down to the brass tacks of local empowerment, and aiming higher
The overarching objective is, in Xavier’s words, “The effective running of local stations, for facilitating local research, improving local crops, and ultimately leading to empowerment and self-reliance of local farming communities.”

In tackling the matter, Hannibal employed a multi-faceted customised approach, based on the needs of each site, for both equipment and training for technicians, tractor operators and station managers. The dedication of the managers to both learn and continue these efforts after the training was particularly gratifying, since it assures sustainability.

“At the end of the day, it’s about achieving food security and improving livelihoods… which pave the way for healthy families and profitable agriculture,” concludes Hannibal.

Lights, curtain… action!
Much like in theatre, with all the ‘props’ in place, field trials are now performing well, thanks to streamlined ‘backstage’ support. Hannibal likens the positive feedback from the partners he has worked with to “A glass of cold water, after a long day in the sun!”

“With proper infrastructure in place, and with research station staff duly equipped with the hands-on expertise and practical know-how to utilise and apply this infrastructure and training, we’re now seeing field experiments being conducted as they should be, and getting good-quality phenotyping data as a result,” says Xavier. “Moreover,” he continues, “by providing glass-houses or the capacity to irrigate in the dry season, we are enabling breeders to accelerate their breeding cycles, so that they can work all year round, rather than having to wait until the rain comes.”
Examples include sites in Kenya, Mali and Nigeria.

The missing link
As the nuts-and-bolts begin to fall in place for, Hannibal reveals: “By addressing the needs at the heart of quality agricultural research, right there on the station, GCP was the first to cotton on to a crucial missing link between researcher, research station, and support services.”

…and yet another missing link…
But the job is not quite done. One crucial gap is the sensitisation of upper management – those at the helm of national research institutes and research station Directors – to support and sustain infrastructure, training and related services. In some cases, costs could be easily met by utilising a priceless asset that most institutes already have, and which they could put to greater us – land and a controlled environment.

Upper management needs to be actively on board. “A research institute should work like a good sewing machine,” says Hannibal. “All well-oiled, all parts working well, and everybody knowing what they need to do.”

In the meantime, however, results from the field suggest that researchers in GCP projects are already reaping the benefits from improved infrastructure and support services, and are already off to a good start.

The ‘stage’ is therefore set: ‘backstage’ and ‘props’ are well primed, performance trials are acting like they should, and the ‘theatre directors’ have an eye on sustainability after GCP’s final curtain call in 2014.

So, long may the show go on, with a cautionary word, however, to continually seek ways to not only maintain but also enhance performance!

Want more details? Read the extended version of this story

Relevant links

  • PODCASTS: You can also listen to Hannibal, by tuning into Episode 2 for the entire interview, or zooming in on your particular area of interest in the mini-podcasts labelled Episodes 2.1 to 2.7 c here.
  • Capacity building
  • Research Initiatives
  • Integrated Breeding Platform website
Jun 202012
 
Print Friendly

Breathing life into support services

By addressing the needs at the heart of quality agricultural research, right there on the station, GCP was the first to cotton on to a crucial missing link between researcher, research station, and support services.” – Hannibal Muhtar

Want to cut to the chase and only need the bare bones of this story? Skip over to the short version

“One thing that really energises me,” enthuses GCP Consultant Hannibal Muhtar, “is seeing people understand why they need to do the work, and being given the chance to do the how.” And so was born another wonderfully fruitful GCP collaboration. Hannibal, who describes the assignment as “a breath of fresh air,” was asked to identify, together with GCP project Principal Investigators, African research sites of ongoing or potential GCP Research Initiative projects where effective scientific research might be hampered by significant gaps in one fundamental area: infrastructure, equipment and support services.

Meet Hannibal Muhtar (Audio clip)

As at June 2012, the 19 sites selected were:

Burkina Faso – L’Institut de l’environnement et de recherches agricoles sites at :
1.  Banfora
2.  Farako-Bâ Regional Centre
Ethiopia
3.  Hawassa Agricultural Research Station
4.  The Southern Agricultural Research Institute
Ghana – Council for Scientific and Industrial Research, Crops Research Institute sites at:
5.  Kumasi
6.  Tamale
Kenya
7.    Moi University (site 1)
8.    Moi University (site 2)
9.    Egerton University (Njoro site)
10.    Egerton University (Koibatek Farmers Training Centre)
Mali – L’Institut d’Économie Rurale sites at:
11.    Sotuba
12.    Cinzana
13.    Longrola
Niger – ICRISAT site
14.    Sadore
Nigeria
15.    National Cereals Research Institute
National Root Crops Research Institute sites at:
16.    Umudike
17.    Kano
Tanzania – Agricultural Research Institute at:
18.    Naliendele
19.    Mtwara

Flashback to 2010. Picture on the left: Hannibal at a planning session at Sega, Western Kenya, with Samuel Gudu and  Onkware Augustino. Picture on the right: Similarly, at Naliendele, in Tanzania with Omari Mponda.

Flashback to 2010. Picture on the left: Hannibal at a planning session at Sega, Western Kenya, with Samuel Gudu and  Onkware Augustino. Picture on the right: Similarly, at Naliendele, in Tanzania with Omari Mponda.

Embarking on the voyage to change, storms ‘n’ all
Hannibal, armed with years of practical experience in the application of engineering sciences in agriculture and developing countries, as well as an attentive ear to the real needs of researchers, embarked on a series of visits to these research stations in 2010 and 2011, meeting with staff of all levels, departments and functions, carrying out in-depth analyses and draw up concrete recommendations for infrastructure and support service investments for each of the sites so that good-quality field evaluations (‘phenotyping’ in ‘breeder-speak) of GCP-funded projects could be conducted. Thanks to funding from GCP’s Integrated Breeding Platform (IBP), and to the openness, commitment and energy of research staff on the ground to implement these recommendations, the efforts of multiple cross-cutting partnerships across Sub-Saharan Africa are, in 2012, starting to bear fruit. But it has not all been smooth sailing, and the storms encountered along the way to reach this end goal should not be underestimated.

Weeds, wear and tear, and a walk on the wild side
The obstacles, says GCP’s Director of Research, Xavier Delannay (pictured, can often be mundane in nature – a  lack of or faulty weather stations or irrigation systems, or fields ravaged by weeds or drainage problems and in dire need of rehabilitation, for example. Yet such factors compromise brilliant research. A simple lack of fencing, Xavier and Hannibal expound, commonly results not only in equipment being stolen, but also in roaming cattle and wild animals – boars, monkeys, hippopotamus and hyena, to name but a few – stomping over precious experiment sites and posing serious threats to field staff safety. “The real challenge lies not in the science, but rather in the real nuts-and-bolts of getting the work done in local field conditions,” he explains.’’

Hannibal concurs: “If GCP had not invested in these research support infrastructure and services, then their investment in research would have been in vain. Tools and services must be in place as and when needed, and in good working order. Tractors must be able to plough when they should plough.’’

But a critical change is also needed in mindset and budgeting. ‘’The word ‘maintenance,’’’ a Senegalese partner commented to Hannibal, describing his institute, “does not exist in our vocabulary and is not a line-item on our budget.”

The problem then is not always about limited funds but rather much more on how the funds available are budgeted, excluding the all-essential support services.

Getting down to the brass tacks of local empowerment, and aiming higher
Multi-lingual and fluent in English, Arabic and French, Hannibal employed a multi-faceted customised approach, based on the needs of each site, be it sharing his tricks-of-the-trade and improvising local solutions, or guiding researchers in identifying their specific needs, as well as on where and how to request equipment, just to mention a few examples. In other cases he would teach local station managers to build and apply simple yet revolutionary tools such as land-levellers (referred to as ‘floats’ in industrial-speak), as well as row-markers for more uniform spacing between rows and plants in the field.

In addition, he would organise a training workshops in either English or French, with different content for technicians, machine operators and station managers. The dedication demonstrated by this latter group to both learn and continue these efforts after the training was particularly pertinent for ensuring the long-term sustainability of the investments.

A colourful menu of options, then, for achieving one common overarching objective, which, as summarised neatly by Xavier, is: “The effective running of local experiment stations, for facilitating local research, improving local crops, and ultimately leading to empowerment and self-reliance of local farming communities.”

“At the end of the day, it’s about achieving food security and improving livelihoods,” Hannibal emphasises. Looking back at some of the research stations that are now well-equipped and are being managed well, and the improved crop varieties being produced and projected, Hannibal highlights the “harmonious chain” triggered as a result: “Food security and better livelihoods pave way for healthy, well-fed families, and agriculture growing beyond subsistence into an economic activity,” Hannibal concludes.

Lights, curtain… ACTION!
Much like in theatre, with all the ‘props’ in place, Hannibal reports that field trials are now performing well, thanks to the all-important ‘backstage’ support service elements being in good shape. Hannibal likens the positive feedback from the partners he has worked with to “A glass of cold water, after a long day in the sun!”

And there’s a beautiful simplicity to the impacts described: “With proper infrastructure in place, and with research station staff duly equipped with the hands-on expertise and practical know-how to utilise and apply this infrastructure and training, we’re now seeing field experiments being conducted as they should be, and getting good-quality phenotyping data as a result,” says Xavier. “Moreover,” he continues, “by providing glass-houses or the capacity to irrigate in the dry season, we are enabling breeders to accelerate their breeding cycles, so that they can work all year round, rather than having to wait until the rain comes.” Sites hosting GCP projects on rice in Nigeria, as well as on sorghum and rice in Mali, are just a few examples of those enjoying off-season work thanks to new irrigation systems.

Similar good news is expected soon for cassava in Ghana and in northern Nigeria. And yet more good news: in some cases, the impacts have not been limited to the trials, or even to the research trials and stations alone, as Xavier highlights with an example from Kenya: “The establishment of an irrigation system on a plot at Koibatek Farmer Training Centre – a partner of Egerton University – yielded excellent results for chickpea experiments. We emphasised that we did not want the equipment to be ‘bracketed’ exclusively for science and experiments. So, it was also used to train staff and farmers from the local community as well. This was greatly appreciated.”

Seeing the nuts-and-bolts now firmly in place for the majority of the sites visited, Hannibal believes GCP has facilitated a pioneering approach to local capacity building: “By addressing the needs at the heart of quality agricultural research, right there on the station, GCP was the first to cotton on to a crucial missing link between researcher, research station, and support services,” he reveals.

…Another missing link…
But the job is not quite done. One crucial gap is the sensitisation of upper management – those at the helm of national research institutes and research station Directors – to support and sustain infrastructure, training and related services. In some cases, costs could be easily met by utilising a priceless asset that most institutes already have, and which they could put to greater us – land and a controlled environment.

Upper management needs to be actively on board. “A research institute should work like a good sewing machine,” says Hannibal. “All well-oiled, all parts working well, and everybody knowing what they need to do.”

In the meantime, however, results from the field suggest that researchers in GCP projects are already reaping the benefits from improved infrastructure and support services, and are already off to a good start.

The stage is therefore set: backstage and props are well primed, performance trials are acting like they should, and the ‘theatre directors’ have an eye on sustainability after GCP’s final curtain call in 2014.

So, long may the show go on, with a cautionary word, however, to continually seek ways to not only maintain but also enhance performance!

Relevant links

  • PODCASTS: You can also listen to Hannibal, by tuning into Episode 2 for the entire interview, or zooming in on your particular area of interest in the mini-podcasts labelled Episodes 2.1 to 2.7 c here.
  • Capacity building
  • Research Initiatives
  • Integrated Breeding Platform website

 

cheap ghd australia