GCP

The CGIAR Generation Challenge Programme (GCP) is a nonprofit global crop research partnership promoting modern crop breeding for food security. We host the Integrated Breeding Platform for information, informatics tools and services for crop breeding.

Nov 202013
 
Chiedozie Egesi

Chiedozie Egesi

Despite the social injustice around me, I always thought there was opportunity to improve people’s lives…GCP helped us to build an image for ourselves in Nigeria and in Africa, and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.”
 
– Chiedozie Egesi, a would-have-been surgeon who switched sides to biology and crop genetics, and who got acquainted with GCP through the Internet.

Backdrop: A booming economy and a wealth of natural resources may be among some of the common preconceptions of the average Jane and Joe regarding Africa’s most populous nation. Lamentably, however, Nigeria, like numerous robust economies worldwide, is still finding its feet in addressing severe inequality and ensuring that the nation’s wealth also flows to the poorest and most marginalised communities.

It’s a problem Chiedozie Egesi (pictured above), a molecular plant breeder at Nigeria’s National Root Crops Research Institute (NRCRI), understands well: “Nigeria is an oil-producing country, but you still see grinding poverty in some cases. Coming from a small town in the Southeast of the country, I grew up in an environment where you see people who are struggling, weak from disease, poor, and with no opportunities to send their children to school,” he reveals. The poverty challenge, he explains, hits smallholder farmers particularly hard: “Urban ‘development’ caught up with them in the end: some of them don’t even have access to the land that they inherited, so they’re forced to farm along the street.”

Maturing cassava fruits.

Food first! A man with a mission and fire in his belly, determined to make a difference
For this gifted and socially conscious young man, however, the seemingly bleak picture only served to ignite a fierce determination and motivation to act: “Despite the social injustice around me, I always thought there was opportunity to improve people’s lives.” And thus, galvanised by the plight of the Nigerian smallholder, plans for a career in medical surgery were promptly shelved, and traded for biological sciences and a PhD in crop genetics, a course he interspersed with training stints at USA’s Cornell University and the University of Washington, Seattle, along the way, before returning to the motherland to accept a job as head of the cassava breeding team, and – following a promotion in 2010 – Assistant Director of the Biotechnology Department, at NRCRI.

As evident from the burgeoning treasure chest of research gems to his name, it was a professional detour which paid off, and which continues to bear fruit today.

Making a marked difference, cultivating new partnerships, and looking beyond subsistence
In 2010, work by Chiedozie and his NRCRI team resulted in the official release of Africa’s first molecular-bred cassava variety which was both disease-resistant and highly nutritious – an act they followed in 2012 with the release of a high-starch molecular-bred variety. The team’s astute navigation of molecular markers resulted in breeding Latin American cassava varieties resistant to cassava mosaic disease (CMD), leading to the release of CMD-resistant cassava varieties in the African continent for the first time. Genetic maps intended to enhance breeding accuracy for cassava – the first of their kind for the crop in Africa – have been produced, and quantitative trait loci (QTLs) for cassava breeding are in the making. In 2011, the team, together with their partners at the International Institute of Tropical Agriculture (IITA) and HarvestPlus (a CGIAR Challenge Programme), released three pro-vitamin A-rich varieties of cassava, which hold the potential to provide children under five and women of reproductive age with up to 25 percent of their daily vitamin A allowance – a figure Chiedozie and his team are now ambitiously striving to increase to 50 percent.

These new and improved varieties – all generated as a direct or indirect result of his engagement in GCP projects – are, Chiedozie says, worth their weight in gold: “Through these materials, people’s livelihoods can be improved. The food people grow should be nutritious, resistant and high-yielding enough to allow them sell some of it and make money for other things in life, such as building a house, getting a motorbike, or sending their kids to school.”

Prior to my GCP work, I was more or less a plant breeder, and a conventional one at that. Whilst I’d been exposed to molecular tools during my early work on yam and other crops, I was not applying them in my work back then…GCP was not only there to provide technology but also to guide you in how to operate that technology… Now all our staff understand what is meant by good breeding, data analysis or applying genotypic data. My whole team benefitted.”

A chance ‘meeting’, with momentous manifold connections
Having first stumbled across the GCP website by chance when casually surfing the internet one day in a cyber café back in 2004, Chiedozie’s attention was caught by an announcement for a plant breeders’ training course in South Africa, an opportunity which he applied for on the off chance…and for which, hey presto!, he was accepted! Thus, his GCP ‘adventure’ began!

Chiedozie Egesi (left) and Emmanuel Okogbenin (right) in a cassava field.

Chiedozie Egesi (left) and Emmanuel Okogbenin (right) in a cassava field.

Promptly revealing an exceptional craftsmanship for all things cassava, Chiedozie soon became engaged in subsequent opportunities, including a one-year GCP fellowship at the International Centre for Tropical Agriculture (CIAT) in Colombia, a number of GCP Capacity building à la carte-facilitated projects, and, more recently, a major role as a Principal Investigator in the GCP Cassava Research Initiative (RI), teaming up with NRCRI colleague and Cassava RI Product Delivery Coordinator, Emmanuel Okogbenin. The Cassava RI is where Chiedozie’s energies are primarily invested at present, with improving and deploying markers for biotic stresses in cassava being the name of the game.

The significance of his GCP engagements was, Chiedozie affirms, momentous: “Prior to my GCP work, I was more or less a plant breeder, and a conventional one at that. Whilst I’d been exposed to molecular tools during my early work on yam and other crops, I was not applying them in my work back then.”

Collaboration in a GCP-funded project with CIAT led to the development of a new laboratory space for NRCRI, bolstered by support for basic materials as well as training. “GCP was not only there to provide technology but also to guide you in how to operate that technology,” Chiedozie comments. (For more on how it all began, see At home and to go and Molecular bonds in pp 26–29 in this e-book)

GCP’s Integrated Breeding Platform (IBP), he says, has played a vital role in this regard: “By opening the door to training, generation of data, analysis of data, and by giving support in making decisions, GCP’s IBP serves as a one-stop shop for cassava breeding.” It’s a sentiment shared by his NRCRI colleagues, he says: “GCP is providing a comprehensive full-package deal. Besides myself, several colleagues have been trained at NRCRI. Now all our staff understand what is meant by good breeding, data analysis or applying genotypic data. My whole team benefitted.”

A real deal-breaker is the facilitation of self-empowerment amongst national programmes, and the new avenues unfolding for enhanced collaboration at the local, national and regional level…What we’re seeing is a paradigm shift. In the past there was a general belief that this kind of advanced molecular science was only feasible in the hands of CGIAR Centres or developed-country research institutes – the developing-country programmes were never taken seriously. When the GCP opportunity to change this came up we seized it, and now the developing-country programmes have the boldness and capacity to do molecular breeding and accurate phenotyping for themselves.”

Growth in numbers, capital, capacity, collaboration, reach and impact
Strength in numbers, Chiedozie says, is a vital lifeline for cassava, a crop which has suffered years of financial neglect. As such, a real deal-breaker in Chiedozie’s eyes is the facilitation of self-empowerment amongst national programmes, and the new avenues unfolding, thanks to his involvement in the GCP cassava breeding Community of Practice (CoP), for enhanced collaboration at the local, national and regional level: “We now have a network of cassava breeders that you can count on and relate with in different countries. This has really widened our horizons and also made work more visible,” he offers, citing effective links formed with Ghana, Sierra Leone, Liberia, Mozambique, Malawi and Côte d’Ivoire, amongst several other cassava-breeding neighbours near and far.

Cassava leaf

Cassava leaf

The achievements amongst this mushrooming community are, he stresses, unprecedented: “Participation in the CoP means many countries can now create their own hybrids and carry out their own selection, which they could not do before,” he affirms.

And it’s a milestone Chiedozie and colleagues are justifiably proud of: “What we’re seeing is a paradigm shift. In the past there was a general belief that this kind of advanced molecular science was only feasible in the hands of CGIAR Centres or developed-country research institutes – the developing-country programmes were never taken seriously. When the GCP opportunity to change this came up we seized it, and now the developing-country programmes have the boldness and capacity to do molecular breeding and accurate phenotyping for themselves,” Chiedozie confirms.

GCP helped us to build an image for ourselves in Nigeria and in Africa, and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.” 

Building on success, going from strength to strength as the sands shift

With internal capacity now blossoming of its own accord – in no small measure due to the leading role played by NRCRI in the sensitisation of cassava plant breeders throughout Nigeria and beyond – the sands are certainly shifting: “GCP helped us to build an image for ourselves in Nigeria and in Africa, and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.”

Anthony Pariyo (left) of NaCRRI, Uganda

Visitors with working clothes on: NaCRRI Uganda’s Anthony Pariyo (left) and Williams Esuma (right) visiting NRCRI Umudike on a breeder-to-breeder visit in July 2012. Williams’ postgraduate studies were funded by GCP through the cassava CoP.

And the beauty of it, Chiedozie continues, is that the cassava crew is going from strength to strength: “Nigeria is seen as a really strong cassava-breeding team, not only within Africa but also globally. And we have not yet realised all the benefits and potential – these are still unfolding,” he enthuses.

Also yet to unfold are Chiedozie’s upcoming professional plans, which, he reveals, will soon see him engaging with the USA’s Cornell University, the Bill & Melinda Gates Foundation, the International Institute of Tropical Agriculture (IITA) and Uganda’s National Crop Resources Research Institute (NaCRRI) in an initiative which, through its focus on genomic selection in cassava breeding, promises to be, Chiedozie reveals, “at the frontier of cutting-edge technology.” Genomic selection for this initiative is already underway.

Readers intrigued by this tantalising taster of what to expect in Chiedozie’s next professional chapter are encouraged to watch this space over the coming years…Judging by his remarkable research record to date, we feel confident that future installments will not disappoint!

Meantime, here’s Chiedozie’s presentation at the GCP General Research Meeting in September 2013. We are also working on videos of Chiedozie and his work. Yet more reason to watch this space!

Links
  • For a picture of Chiedozie’s work near the beginning in 2006, see pp 26–29 here (At home and to go and Molecular bonds)
  • More recent updates are on the Cassava InfoCentre

 

Nov 122013
 

 

 

Participants at the 2013 GRM. High-resolution version on Flickr: http://bit.ly/1fxhkmQ

Participants at the 2013 GRM. High-resolution version on our Flickr account.

The General Research Meeting (GRM) is by far the largest and most important event on our calendar. This year’s GRM was held on September 27‒30 2013, with 135 people from 35 countries attending (see list).

Various presentations were made on progress and next steps on research in GCP projects, including for GCP’s Integrated Breeding Platform (IBP). Focus was on GCP’s nine focus crops in Phase II – beans, cassava, chickpeas, cowpeas, groundnuts, maize, rice, sorghum and wheat, with the poster sessions adding a couple more (see ‘sixty posters’ below). You can view the presentations made on our website  (to see them in the context of the overall agenda), or on SlideShare (all gathered in one place).  We have uploaded all but one presentation, where we’re still waiting for the presenter’s permission to publish. A comprehensive update on all GCP projects is here (PDF). The meeting was a blend of plenary sessions on core topics and research updates, and ‘drill-down’ breakouts on crops, data management and capacity building (the last two, in the context of IBP’s proposed Phase II, which had its own dedicated one-day stakeholder meeting after GRM, on 1st October).DSC07162_w

Social were we…but we also did some heavy lifting
We didn’t just talk to ourselves: we made a bit of noise on social media to also bring in other voices into the GRM discourse and chit-chat, using the hashtag #GRM13, creating a good buzz of conversations. Also linking in to GRM were our LinkedIn followers. And neither was it all business, science and rigid structure: there was free-flow too, with an open afternoon where participants could take a relaxing break, organise their own meetings, or take a tour to Lisbon. Some of the scenes from the tour are posted on Flickr, as are other snapshots from the meeting. We’ve since gathered up some of the social media posts on Storify.

GRM was far from its grim-sounding  abbreviation and hashtag on social media:  exemplifying the best of the ‘GCP spirit’,  the sessions were engaging, relaxed, conversational and spiced with humour and a light touch, despite the ‘heavy’ topics under discussion (see agenda). But the topic at hand was grim, since the situation is dire – drought affects almost all crops and all regions worldwide. As drought tolerance is our key focus since inception, most of the discussions naturally centred on this topic. Equally important is the scourge wrought by pests and disease, which afflict some crops more than others. For example, under most circumstance, cassava is naturally very drought-tolerant, but what good will this do if cassava survives drought only to succumb to the deadly pests and diseases that stalk this drought champion?

Sunset and ‘moon-rise’
GRM was also a time for both stocktaking and mapping the future  given GCP’s sunset in 2014.  A central and recurring theme was GCP’s transition strategy, and how – and where – to embed GCP-initiated projects that will extend beyond the Programme’s lifetime. For this, the CGIAR Research Programs (CRPs) are a natural first choice. GRM enjoyed a very good representation of the CRPs, with all six crop CRPs represented, some at the highest level.

A few members of our Executive Board also attended. Board Chair, Andrew Bennett, set the right tone for the meeting. In his remarks at the opening session, he emphasised that this was not a time for sadness, swan songs and moping as GCP approaches sunset.  Rather, it was a time to appreciate the beauty of sunsets, in the sure knowledge that sunsets give rise to  moon-rise!

A section of Poster Session II presenters. IN the foreground, Andrew Bennett, Chair, GCP Excecutive Board.

A section of Poster Session II presenters. In the foreground, Andrew Bennett, Chair, GCP Executive Board.

“Say it succinctly in sixty seconds!”
The poster session was as lively as always, with a record of… (hold your breath!) 60 posters presented, surpassing the previous GRM in 2011 which attracted 53 posters.

Perfection!  Sixty posters for sixty seconds
Sixty was a PERFECT number for the 60-second sizzle, where each poster presenter had a maximum of 60 seconds (and not a second more!) to present at plenary, devising whichever means necessary to attract the audience to their poster. It was easy to discern the brash ‘old hands’ who had perfected their art after several GRMs; the tricksters and various reincarnations of The Artful Dodger amongst them, trying to beat the clock; new and slightly jittery presenters who were more than just a little bewildered but still proved their mettle; and the new, sassy and confident. This beautiful blend apart, the poster session brought in not only new faces to add to the familiar ones, but also refreshing new tastes to diversify and sweeten our Staple of Nine crops. To our diet of cereals, legumes and tubers, poster presenters from The Philippines added eggplants, rounded off with bananas for dessert.

"Definitely time for dessert, and do not disturb!" they seem to be saying. Jean-Christophe Glaszmann (left) and Hei Leung (right), who played ace roles on a multi-partner GCP project on bananas.

“Definitely time for dessert, and do not disturb!” they seem to be saying. Jean-Christophe Glaszmann (left) and Hei Leung (right), who played ace roles on a multi-partner GCP project on bananas.

♫ Welcome to the Hotel California! ♫…
As always, GRM was a mingling of old and new friends, a time for some paths to meet and for new forks to branch out, a season to reflectively look back and progressively face forwards. In keeping with Andrew’s continuity of sunsets giving way to moonrise, we said a group goodbye to Rajeev Varshney, former Genomics Theme Leader, who left the GCP Management Team in August. And we were happy to once again welcome, embrace and recognise two old friends – Jean Christophe Glaszmann (CIRAD) and Hei Leung (IRRI), who were, respectively ex-Subprogramme Leaders for genetic diversity and genomics in GCP Phase I, and continue to be involved with GCP as researchers, as will Rajeev.

In this picture, we caught up with them at a very appropriate moment: dessert during the Gala Dinner. Take it from us, these two guys are well versed in matters dessert, with a dash of science, as this blast from the past on bananas attests, also summarised in a Facebook photo-story here.

We are indeed a Hotel California of sorts – always open for check-in and checkout. As for leaving…we’re still working on the modalities of that!

And despite the fond farewell, truth is Rajeev is not going anywhere either, as far as GCP is concerned. You only needed to have been at GRM or following the conversations on Facebook and Twitter, especially the photos, to witness this. He was (delightfully!) all over the place, passing on his ‘positive epidemic’ of highly infectious enthusiasm and incredible energy. Here he is in action at the Gala Dinner in the photos below, which really need no caption. We’re sure you’ll be able to easily spot Rajeev, ‘high-fivin’ and ‘rapping’, eclipsing the GCP Director, who however appears quite pleased in his lower perch with Rajeev on the platform. But if you’re truly lost and can’t spot the super-charged high-energy guy in the photos, no worries! Here are some handy clues.

OLYMPUS DIGITAL CAMERAOLYMPUS DIGITAL CAMERA

In distinguished company
Rajeev’s energy goes beyond GRM and GCP; this year as in previous ones, he received several awards, among them, the Young Crop Scientist Award by Crop Science Society of America, and the Illumina Agriculture Greater Good Initiative Award.

Hari Upadhyaya

Hari Upadhyaya

Prior to these recognitions during the Gala Dinner, Jean-Marcel formally honoured ICRISAT’s Hari Upadhyaya (pictured) during plenary for two awards Hari had received in the course of the year, also from the Crop Science Society of America. These awards were for Hari’s notable contributions – at international level – to crop science, and to plant genetic resources.

Hari is a long-term GCP Principal Investigator, working primarily on sorghum. But that is not the only crop he works on. Hari was the lead author of the joint chickpea and pigeonpea chapter in our book on drought phenotyping.

Evaluation
Unlike other GRMs where we’ve requested participants to evaluate the meeting, we did not do so this year, since this is very likely the last meeting of its kind, and the goal of the evaluation is to use participant feedback to improve future meetings. With the help of our participants, we’ve applied the lessons we’ve learnt from them through the years to arrive at what we believe to be a winning combination, balancing the diverse interests of our participants for overall improvement of their GRM experience.

 

 

 

 

 

Feb 282013
 

Drought stalks, some die
Despite the widespread cultivation of beans in Africa, yields are low, stagnating at between 20 and 30 percent of their potential. Drought brought about by climate change is the main culprit, afflicting 70 percent of Africa’s major bean-producing regions in Southern and Eastern Africa.Bean plant by R Okono

Today we turn the spotlight on Zimbabwe, where drought is a serious and recurrent problem. Crop failure is common at altitudes below 800 meters, and livestock death from shortage of fodder and water are all too common. In recent history, nearly every year is a drought year in these low-lying regions frequently plagued by delayed rains, as well as by intermittent and terminal drought.

The ‘battleground’ and ‘blend’
Zimbabwe is divided into five Natural Regions or agroecological zones. More than 70 percent of smallholder farmers live in Natural Region 3, 4 and 5, which jointly account for 65 percent of Zimbabwe’s total land area (293,000 km2). It is also here that the searing dual forces of drought and heat combine to ‘sizzle’  and whittle bean production.

The rains are insufficient for staple foods such as maize, and some of their complementary legumes such as groundnuts. In some areas where temperatures do not soar too high (less than 30oC), beans blend perfectly into the reduced rainfall regime that reigns during the growing season.

A deeper dig: the root of the matter

Godwill Makunde

Godwill Makunde

Research from Phase I of the Tropical Legumes I (TLI) project under GCP’s Legume Research Initiative showed that deep rooting is one of the ways to confer drought tolerance in common beans. High plant biomass at pod-filling stage also confers drought tolerance. “These important findings from TLI refined our breeding objectives, as we now focus on developing varieties combining deep roots and high plant biomass,” reveals Godwill Makunde (pictured), a bean breeder at Zimbabwe’s Crop Breeding Institute (CBI), which falls under the under the country’s Department of Research & Specialist Services. Zimbabwe is one the four target countries in Eastern and Southern Africa for GCP’s bean research (the other three being Ethiopia, Kenya and Malawi).

From America to Africa…the heat is on, so is the battle…

The battle is on to beat the heat: through the project, CBI received 202 Mesoamerican and Andean bean breeding lines from the reference set collection held by the International Center for Tropical Agriculture (CIAT, by its Spanish acronym). A ‘reference set’ is a sub-sample of existing germplasm collections that facilitates and enables access to existing crop diversity for desired traits, such as drought tolerance or resistance to disease or pests. The Institute also embarked on bringing in more techniques to breed for heat tolerance.

Kennedy Simango

Kennedy Simango

Drought, pests and disease
“We embraced mutation breeding in collaboration with the International Atomic Energy Agency, and we primarily look for heat tolerance in small-seeded beans,” says Kennedy Simango (pictured right and below), a plant breeder at CBI. “Preliminary results suggested that just like drought, the reproductive stages of common bean are when the crop is most sensitive to heat. Flower- and pod-drop are common. Yield components and yields are severely reduced. In addition, we also focus on developing pest- and disease-resistant varieties.”

 

Kennedy Simango at work a the Crop Breeding Institute.
Kennedy Simango at work a the Crop Breeding Institute.

The CBI project’s primary diseases and pests of focus are angular leaf spot (ALS), common bacterial blight (CBB), rust and bean stem maggot, and aphids. “This came from our realisation that drought co-exists with heat, diseases and pests,” Kennedy adds. “So, a variety combining drought, heat, disease and pest tolerance all together would increase common bean productivity under harsh environments or drought-prone areas.”

At first glance, piling up all these vital survival traits may appear insurmountable, but it is all feasible, thanks to advances in plant science. “Breeding methods are changing rapidly, and it is vital that we keep up with the technology,” says Kennedy.

The CBI team is using molecular breeding to identify drought-tolerant parents, and then cross them into preferred bean varieties to confer to the ‘offspring’ the best of both worlds – drought tolerance and market appeal.

All-round capacity and competence
GCP’s support does not stop at enabling access to breeding lines alone, or introduction to molecular breeding. “We got a lyophiliser, which is specialised equipment that enables us to extract DNA and send it for genotyping,” says Kennedy. “From the genotyping exercise, we hope to be able to trace the relationships among breeding lines so that we design better crossing programmes, and thereby maximise the diversity of our breeding lines. In addition, we hope to select recombinants carrying desirable genes in a short period of time, and at times without even needing to test them in the target environment.” GCP assists with genotyping through its Genotyping Support Service offered through the Integrated Breeding Platform.

For phenotyping, CBI has benefitted from a mobile weather station, a SPAD meter (for measuring chlorophyll content), a leaf porometer (for measuring leaf stomatal conductance) and water-marks (probes for measuring soil moisture).

Human resources have not been forgotten either. Godwill Makunde, a CBI bean breeder, is studying for a TLII-funded PhD in Plant Breeding at the University of the Free State, South Africa. A group of four scientists (Godwill and Kenedy,  plus Charles Mutimaamba, and Munyaradzi Mativavarira) are in GCP’s three-year Integrated Breeding Multi-Year Course (IB–MYC). The curriculum includes design of experiments, data collection, analysis and interpretation, molecular breeding and data management techniques. In addition, GCP also trains research technicians. For CBI, Clever Zvarova, Anthony Kaseke, Mudzamiri and Chikambure have attended this training. Their course also includes phenotyping protocols (data collection and use of electronic tablets in designing field-books). To date, CBI has received five tablets for digital data collection , of which two are outstanding.

Photo: CBI

Godwill doing what he does best: bean breeding.

Bringing it all together, and on to farms
But how relevant are all these breeder-focused R&D efforts to the farmer? Let’s review this in proper context: in the words of Mr Denis Mwashita, a small-scale farmer at the Chinyika Resettlement Scheme in Bingaguru, Zimbabwe, “Beans have always carried disease, but from the little we harvest and eat, we and our children have developed stomachs.”

“What Mr Mwashita means is that despite the meagre harvests, farm families fare better in terms of health and nutrition for having grown beans,” explains Godwill.

With this solid all-round support in science, working partnerships, skills and infrastructure, the CBI bean team is well-geared to breed beans that beat both heat and disease, thereby boosting yields, while also meeting farmer and market needs. Trials are currently underway to select lines that match these critical needs which are the clincher for food security.

“The Zimbabwe market is used to the sugar type, which is however susceptible to drought. We hope to popularise other more drought-tolerant types,” says Kennedy. “We plan to selected a few lines in the coming season and test them with farmers prior to their release. Our goal is to have at the very least one variety released to farmers by mid-2013.”

A noble goal indeed, and we wish our Zimbabwe bean team well in their efforts to improve local food security.

VIDEO: The ABCs of bean breeding in Africa and South America, with particular focus on Ethiopia, Kenya, Malawi and Zimbabwe

Related blogposts

Other links

 

 

Jan 282013
 

Today, Nature Biotechnology published the first-ever draft genome sequence map for a chickpea variety (PDF). The map will help researchers and breeders the world over to – through molecular breeding methods – deliver to growers higher-yielding more resilient varieties of chickpeas. 

Now that we have the rewards in a nutshell, and we choose to chew the chestnut of challenges later in the story, let’s next decipher the ‘Rajeevs’ part in the title: introducing Rajeev K Varshney, our very own Leader of Comparative and Applied Genomics, who also led and coordinated the transnational collaboration that developed this map.

We had the pleasure of talking to the gently-spoken Indian, a week before the release of the paper, asking him to recount how the project began, and the challenges and success they faced along the way. We’ll soon get to what Rajeev had to say, but first, a rapid rewind for backgrounding before Rajeev tells us the rest of the story…

… we have the ‘borders’ done… a good idea of what the picture is, and where the rest of the pieces will fit.”

Rajeev in the lab.

Reality check from the Genomics Gnome of Good News: two is but the twinkling of an eye…
The sequence map of the genotype CDC Frontier – a Canadian kabuli chickpea variety – took about two years to construct.”

No, the time taken is not the challenge since we’re yet to get to that part. In fact, in the world of genomics , two years is fairly fast, compared to, say, the time taken for sequencing other grain genomes such as maize, rice and wheat.

Rajeev attributes this to the interdisciplinary expertise of his team, most of whom are world leaders in their field, and to the enthusiasm and generosity of all partner institutes who funded the collaboration.

And with that background, on to our chat with Rajeev!

Sandwiches in the Sunshine State, and a search starts for the then unattainable holy grail

Q: Is it correct that this project started over sandwiches under a sunny sky in California?
Funnily enough, yes. We had the preliminary discussion during a lunchtime break at the fifth International Congress on Legume Genetics and Genomics back in July 2010. Doug Cook, from the University of California, Davis, and I, organised the meeting for select attendees to discuss the idea.

With daughter, Nanz. Rajeev in ‘Daddy-mode’, a galaxy away from genomic research.

Many researchers at the time had, or were toying with, sequencing parts of the chickpea genome to discover genes that helped plants tolerate salinity, drought, disease, and so on. The idea of mapping the whole genome, however, was thought to be unachievable given the cost and resources required. What Doug and I proposed to the 10-odd senior researchers that day was that we form an alliance to pool together our knowledge, funds and resources.

When we returned to our home institutes, we all approached our institutes or funding agencies in respective countries, to propose they consider funding the collaborative project. To be honest, this was probably the most challenging task of the project, as it often is with other projects, as they had a hard time recognising the benefits. However, we finally got there, and with the help of more than 20 institutes from North and Central America, Asia, Australia and Europe, we have successfully assembled 74 percent of the genome within two years.

Pieces fall into place for mix-and-match combinations

Now, you may say that 74 percent doesn’t equal the whole genome, but it does provide us with a map and pointers we’d never had before. Imagine doing a jigsaw without a picture to guide you – that’s how hard it was for us at the start. Now at least we have the ‘borders’ done, and we have a good idea of what the picture is, and where the rest of the pieces will fit.

Q:Why is mapping the chickpea genome so important?
Having the genome mapped is going to benefit all chickpea breeders, researchers and growers.

Say a conventional breeder wanted to create a new breed of chickpeas with drought tolerance. They would cross a domesticated, high-yielding variety of chickpeas, with a variety that tolerates dry conditions – most likely, lower-yielding – and then grow the progeny in the field. They wait for these progenies to grow, then visually select the best lines and make crosses with these. They keep doing this process over and over again for six to seven years until they’ve generated a new variety with the desired trait.

Different breed, mould and mode

Molecular breeders do it differently: instead of selecting the lines by visual inspection, they select lines based on their genes. This means they can correctly trace whether the progeny has received the genes which help the plant tolerate drought and only grow, test and cross with these plants, almost halving the time it would take through conventional methods.

With the map, researchers will be able to more rapidly identify genes of interest, and work with breeders to select for plants that display the favourable traits of these genes, whether this be for drought tolerance, pest resistance or for any other trait they are interested in.

Q: Good for researchers and breeders, but how is that going to benefit growers though?
Knowing which plant is more tolerant of drought from the start of the breeding process is going to significantly reduce the time it takes for breeders to develop these types of chickpea cultivars. So, growers will have new breeds of higher-yielding more resilient chickpeas available sooner.

Ethiopian farmer, Temegnush, and her chickpea harvest.

Remember also that chickpeas are a very important crop for smallholders in the resource-poor harsh environments of sub-Saharan Africa, India and Southeast Asia. Not only do they grow it for food and to replenish soil nitrogen, they also export to India, the world’s largest consumer of chickpeas. Most of these farmers would be lucky to harvest one tonne per hectare, so any yield advantage means extra income.

This point is particularly relevant for GCP’s goal, which is to improve the livelihoods of such farmers.

Q: This was one of the largest collaborative projects you’ve coordinated in your relatively short career. What was the most challenging aspect?
Short answer is….many!  With it being a collaborative project, bringing together researchers from all around the world, it was always difficult to coordinate suitable times for Skype and phone meetings.

Personally though, my biggest challenge was trying to coordinate so many esteemed researchers. We all had great ideas and we all thought each of our ideas was the right one. I had to resolve all issues amicably and find a solution to move forward.

Luckily I have surrounded myself over the years with some good colleagues to whom I’ve always been able to turn to discuss any problems. Jean-Marcel Ribaut, who is the Director of GCP, was one particular colleague to whom I often turned to for advice, given his experience with coordinating all of GCP’s collaborative interdisciplinary projects. He also helped source much-needed funds and suggested several useful partnerships, which were vital in carrying out the project.

My boss at ICRISAT, William Dar, the Director General, has always been very supportive, and time and again went out of his way to make sure I had the funds, capacity and sanity to keep the project going! I am deeply indebted to him.

The future

Q: How will the research continue?
Researchers and breeders will be able to customise the genome map to fit their particular purposes. Most will be interested in using it to develop molecular markers, which breeders can use to highlight specific genes of interest for molecular breeding. As I mentioned earlier, this could realistically halve the time it takes to breed new varieties from six to10 years to four to five years.

One outcome of the project, which I’m particularly interested in exploring further, relates to chickpea diversity. When we compared the 90 chickpea genomes, we realised that that diversity in the elite varieties was very low, meaning they all had very similar alleles (form of genes).

This has come about because over the years, breeders and growers have continually chosen only a handful of chickpea varieties to continually breed with. This is because these breeds tend to produce higher yields, something which all growers want.

The drawback of this, however, is that if all the popular breeds are too similar, then they could all be susceptible to a particular disease. If this particular disease were to strike, then chickpeas could be wiped out – globally.

So this map will be a valuable tool to use to enhance genetic diversity in the elite gene pool, thus safeguarding the world’s supply of chickpeas.

 

Links

Jan 232013
 

Abdelbagi Ismail

 I was forever inquisitive as to how things grew, and questioning when they didn’t grow well. I think it’s what got me interested in plant science.”
– Abdelbagi Ismail, Plant Physiologist and Principal Scientist, International Rice Research Institute.

Today, we talk to Abdel. His riveting voyage in plant science starts on the bountiful banks of the Nile, before we sail on to Asia’s ricelands.  We’ll make a short stopover in USA for cowpeas and drought in between,  then proceed to to our main meal of rice, spiced and seasoned with a strong dash of salt-and-P.

It’s not just about food, but also family: you’ll  get to meet a sister Challenge Programme along the way. Intrigued? We hope so, so please do read on

‘A’ for Abdel and agriculture – an early passion for plants
From a tender age, Abdel was fascinated by agriculture.

Growing up on a small family farm backing onto the banks of the Nile in the Northern State of Sudan, he helped his parents in tilling the land, sowing and harvesting.

Abdel reminisces, “It was a relaxing paradise with all types of fruit growing around you year-round. Working and living on a farm, I was forever inquisitive as to how things grew, and questioning when they didn’t grow well. I think it’s what got me interested in plant science.”

Armed with a Bachelor’s and Master’s in Agricultural Sciences (agronomy, crop production, water relations) from the University of Khartoum, Sudan, Abdel moved to the University of California, Riverside, USA, for a PhD on drought tolerance in cowpeas.

“It was the first time I had ever left Africa, and it was a real eye-opener,” Abdel recalls. “It was a fantastic new page in my career too, as I was working with world-class professors and mentors. I chose to work on cowpeas because it is a hardy crop that can be grown in dry conditions which were – and still are – becoming more prevalent in sub-Saharan Africa.” (you can take a sidetrack here, to see our research on cowpeas)

 What interests me is how some societies have survived, and, in some cases, flourished because they invested in improving their plants and crops to adapt and adjust to weather adversities.”

Navigating away from the Nile, and discovering his niche
For this native son of the Nile, this move was a watershed. It marked the start of a dedicated – and still ongoing – career quest to understand how plants can adapt to better tolerate extreme environmental stresses such as higher and lower temperatures, too much or too little water, salinity, and nutrient imbalances.

“Abiotic stresses have had, and continue to have, a major impact on human life, with some societies disappearing altogether because of changes in soils or climate,” says Abdel. “What interests me is how some societies have survived, and, in some cases, flourished because they invested in improving their plants and crops to adapt and adjust to weather adversities.”

From time immemorial, the communities around the Nile where Abdel spent his childhood are a prime example of this flourishing against adversity.

IRRI beckons, and nurtures
In 2000, Abdel accepted a position at the International Rice Research Institute (IRRI) in The Philippines.

Abdel inspects cyclone-damaged rice in Isladi Village, southern Bangladesh.

“I saw it as an opportunity to convert knowledge and scientific discoveries into resources that could help needy farmers,” explains Abdel.

Abdel confesses that when he joined IRRI, his intention was to stay for a short stint and then move on. But as he became more involved in his work, he felt IRRI offered him the best opportunity to build his career, and to contribute to global food-security issues.

“I’ve been here for 12 years now. IRRI really is a great place to grow as a person and a researcher, and to learn how to become a leader.”

Having GCP provide ongoing funding and support for public institutions to conduct a long-term project has been pivotal to the success of the project. It has given us all the security we need to focus on conducting the complex research required…”

Trailblazing for GCP : a much-needed dash of ‘salt-and-P’
In 2004, Abdel proposed a collaborative project between nine different research organisations, across seven countries, to improve salt tolerance and phosphorus uptake efficiency in rice. The work was funded by a sister CGIAR Challenge Programme on Water and Food (CPWF).

This work caught – and held – GCP’s attention, because it sought to overcome a problem that negatively affects the lives of tens of thousands of rice growers around the world. The two resultant GCP-funded IRRI-led projects involved partners from Bangladesh, India, Indonesia, Vietnam and USA’s University of California, Davis. Globally, more than 15 million hectares of ricelands are saline, and more than one-third of all ricelands are phosphorus-deficient, hitting poor communities hardest.

In the nine years since, and together with his colleagues and partners, Abdel has developed the proposal into a productive and coherent suite of interconnected projects: he has managed and overseen most of the progress made during the discovery of the genes associated with salinity tolerance (Saltol) and phosphorus uptake (Pup1), and their insertion into well-known rice varieties that farmers in Bangladesh, Indonesia and The Philippines know and trust.

It’s all about rice: salt tolerance (Saltol) ‘meets’ phosphorus uptake (Pup1) in Bangladesh. Abdel is on the extreme right. Next to him is Sigrid Heuer, Principal Investigator of the ‘Pup1’ work.

Keeping the faith, and going where no rice has gone before…
A long-term horizon helps, since, just like art, science cannot be hurried: “Having GCP provide ongoing funding and support for public institutions to conduct a long-term project has been pivotal to the success of the project,” Abdel emphasises.

“It has given us all the security we need to focus on conducting the complex research required to advance our knowledge about these genes, then breed and develop popular varieties containing then. In some cases, we have developed lines with doubled yields, and grown rice in areas where it has never been grown before because the land was too saline.”

For Abdel, such achievements are heartening as they provide farmers with greater food and income security, which in turn improves their and their community’s livelihoods.

“It brings a smile to my face whenever I think about how our work helps to produce higher-yielding crops for poverty-stricken countries whose farmers often can only afford to grow one crop per year,” says Abdel sincerely.

Abdel continues to build upon, and has even employed, partners he has met through the GCP project…”We want to improve their capacity to take up new breeding techniques, such as the use of molecular markers, which can reduce the time it takes to breed new varieties from six to 10 years to two to three years…”

Continually building on the best
So what’s in store for the future?

Having discovered the Saltol gene and developed experimental lines, his team is now training breeders from country breeding programmes on how they can successfully breed for salt tolerance and tolerance of other abiotic stresses using their own popular varieties, thereby fortifying popular varieties with these much-needed tolerance traits.

“We want to improve their capacity to take up new breeding techniques, such as the use of molecular markers, which can reduce the time it takes to breed new varieties from six to 10 years to two to three years,” reveals Abdel. “This will allow them to breed for crops quicker, in response to ever-changing and extreme climate conditions.”

As for his other projects with IRRI, Abdel continues to build upon, and has even employed, partners he has met through the GCP project to help him with his Stress tolerant rice for Africa and South Asia (STRASA) project.

GCP helped IRRI attract support from other funders…”

Going further, faster, together… five and counting, still learning, and the future looks bright
STRASA is almost five years old and has another five years left to run.

“GCP helped IRRI to attract additional support from other funders, such as the Bill & Melinda Gates Foundation, to start STRASA, which seeks to support the development and distribution of stress-tolerant varieties in Africa and South Asia,” Abdel explains.

Abdel’s parting words? “I’m still committed to understand how plants can be manipulated to adapt to, and better tolerate, extreme environmental stresses, which seems  more feasible today than it has ever been before.”

Links

Dec 212012
 

I’ve always enjoyed my job, particularly teaching students and young researchers, but this project has made me think about how I can do more practical science.” – Zeba Seraj, Biochemistry and Molecular Biology Professor, University of Dhaka, Bangladesh

Zeba Seraj

Growing up with a botanist as a father, Zeba Seraj was nurtured to look at plants in a scientific light. But at one stage in her life, she took a different fork on the road: she was more interested in rat livers and cow eyes, before becoming a ‘late bloomer’ in applied science and molecular plant breeding, which is her current niche.

Taking that fork: rats seduced, cows made eyes, but both lost…
Having completed her Undergraduate and Master’s in Biochemistry at the University of Dhaka, Bangladesh, during the 70s and 80s, she moved to Scotland for a PhD at the University of Glasgow. After being persuaded that molecular biology and recombinant DNA technology were not likely to be too different in animals and plants, she focused on the separation of nuclear proteins involved in post-transcriptional processing in the rat liver system.

“I then went on to work as a postdoc at the University of Liverpool, UK, for 18 months, where I worked on a bovine retina cDNA [complementary DNA] library,” Zeba recalls. “I was exposed to a number of recombinant DNA techniques and was pleasantly surprised to find DNA much easier to work with compared to proteins! I enjoyed it, but when I returned to the Bangladesh, there was no work in that field, so I turned to plants.”

The rise of rice, propelled by ‘Petrra’ project and petri dish
Back at her old University, one of Zeba’s first projects was working on salt tolerance in rice which allowed her to set up plant tissue culture facilities and establish a modest molecular biology laboratory. Zeba thereafter worked with the International Rice Research Institute (IRRI) and the Bangladesh Rice Research Institute (BRRI) on the Petrra project (poverty elimination through rice research assistance). The project was funded by the Department for International Development, UK. Meanwhile, she also spent a couple of months in the laboratory of the illustrious Dr John Bennett at IRRI, learning the latest technology in DNA markers and polymerase chain reaction (PCR) technology. This inital work would, in a way, lead her to GCP.

Meeting GCP, and banking on potential
Zeba joined the GCP community in 2005, working on the rice Saltol (salt tolerance) project. She was a focal collaborator in Bangladesh for this IRRI-led project that aimed to revitalise marginal ricelands by discovering and breeding into popular rice varieties ‘survival’ genes to enable rice to not only survive but also thrive on saline or phosphorus-poor soils.

“We were introduced to the project through the Principal Investigator, Abdel Ismail,” recalls Zeba. “Our lab was not very modern, but we did have all the facilities to do marker work, as well as a firm grasp on the theory, so IRRI and GCP must have seen potential in us.”

 …doing the research helped me understand the practical application better… It was a real eye-opener.”

Transiting from theory to practice
After 15 years of working as an associate professor and professor at the University of Dhaka (DU), mainly nurturing young biochemists, Zeba was re-energised by the thought of working on such a practical project that would have a direct impact on her country’s food security, and on its farmers’ livelihoods.

In the background, genotyping in progress at the Department of Biochemistry and Molecular Biology, University of Dhaka. In thef oreground, student– supervisor consultations. Pictured (left to right) are: Zeba I Seraj, Roman, Adnan, Sarwar, Debashis,Rabin, Dost, Mishu, Shamim and Rejbana.

Nearly one million hectares along the Bangladesh coast are affected by varying degrees of salinity which has severely limited the introduction of modern high-yielding rice varieties, as few of these are saline-tolerant. Given Bangladesh’s high population, farmers need as bountiful yields as possible, and minimum risk of failure.

“After reading and teaching theory for so long, it was really exciting to actually put it into practice and work towards a practical outcome,” says Zeba.

“Actually doing the research helped me understand the practical application better too. It was a real eye-opener.”

 Using molecular markers allowed us to at least halve the time it would take to release stress-tolerant rice.” 

Gaining time: the ‘miracles’ and ‘magic’ of molecular makers
Zeba’s lab was responsible for the molecular evaluation and selection of rice lines bred by BRRI for insertion of the genomic region containing Saltol (discovered to confer salt toleranceby the previous IRRI-led GCP-funded project).

Md Sazzadur Rahman of BRRI assesses progress on a salt-tolerant rice variety in the field.

“We collected leaf samples from the BRRI-bred lines which were a combination of popular rice landraces and a Saltol donor.” explains Zeba ‘Landraces’ is ‘breeder-speak’ for varieties grown by, and popular with, farmers, but not necessarily improved by selective scientific breeding. Zeba continues, “We then used molecular markers which would indicate the presence of the Saltol genomic region.”

“The information we gathered guided the breeders at BRRI to select rice plants with the Saltol region. Selected plants were then further analysed with markers, to maximise the presence of popular alleles,” she adds. Allele is one of two, or more, forms of a gene – the alternative form of a gene responsible for a trait producing different effects.

“Using molecular markers allowed us to at least halve the time it would take to release stress-tolerant rice,” Zeba reveals.

 I will be the happiest person on earth the day they release the new lines, knowing that I’d helped to make a difference.”

Seven years on, what next?
Zeba is grateful that she and her lab were active partners in GCP projects for seven consecutive years: first in the IRRI-led project in 2005 to 2009, then in a follow-up supplementary capacity-building DU-led project from 2010 to 2011, for which Zeba was the Principal Investigator.

Nirmal Sharma and Jamal emasculate the first backcross population of a crosscombination for a second backcross at BRRI

“I don’t think we could have done the work without the various GCP networks. Several times in the project we would lag behind and they’d offer us support to get us back on track,” says Zeba. “They also instilled in us the importance of proper data management, and we have now implemented their system to collect, store and report data for all of our projects. We also now have all the equipment and processes in place, meaning that we’re now able to accommodate similar projects, now and into the future.”

Personally Zeba feels the project has given her a new direction in her career that she’s keen to further explore. “I’ve always enjoyed my job, particularly teaching students and young researchers, but this project has made me think about how I can do more practical science,” confides Zeba.

As for the Saltol project, she is keeping a close eye on the application waiting for the news of high-yield salt-tolerant lines becoming accessible to all Bangladeshi rice farmers.

“I will be the happiest person on earth the day they release the new lines, knowing that I’d helped to make a difference.”

Links

  • More on Zeba Seraj on page 40 here
  • The road behind us: read on the early days (2005/2006) of the rice salt-tolerance work:
    • on pages 36–39 here
    • on pages 28–30 here
    • on page 6 here
  • Profile: Abdel Ismail, Principal Investigator of the salt tolerance project

 

Nov 302012
 
Photo: IRRI

Sigrid Heuer

Meet Sigrid Heuer (pictured), a Molecular Biologist and Senior Scientist at the International Rice Research Institute (IRRI). Her lively and riveting story will take us from Africa through her native Europe and on to Asia, and finally Down Under to Australia.

Origins – the African chapter
Africa holds a special and soft spot in Sigrid’s love affair with science: it was while on this continent that she realised her calling in life as a scientist – linking people doing pure research on plant genes to help plants survive and even thrive in harsh environments, with people who want to apply that knowledge to breed crops that can change the lives of millions of farmers who constantly compromise with nature to make a living.

Photo: IRRI

Fieldwork: Sigrid at a field trial for rice phosphorus uptake.

“Working as a postdoc at the Africa Rice Center in Senegal was a real life-changing experience,” Sigrid recollects with great fondness. “It’s where I found my niche, using my background in theoretical science and applying it to developing crops that could overcome abiotic stresses, and in doing so, make a real impact on people’s lives.”

Rowing further down the river: from upstream to downstream science
Sigrid was born and raised in Hamburg, Germany. She remembers wanting to be a psychologist and didn’t consider science until a few years after finishing school. After completing a biology undergraduate at Phillips University, Marburg, Germany, she returned to her home city of Hamburg to complete a Masters and PhD in plant physiology and molecular biology respectively.

“Back then, I was really involved in upstream science, fascinated in the fine details without much consideration of how such research could benefit society,” says Sigrid. “I still enjoy this form of science and really do value its purpose, but putting it into practice and focusing on the impact that it can have is what really motivates me now.”

Moving to IRRI, and meeting Pup1 and GCP
After three years in Senegal, Sigrid moved to the Philippines to join IRRI in 2003, first as a consultant then as a part-time scientist. In these early years, she was working on several projects, one of which was the GCP-funded Pup1 (rice phosphorus uptake) project.

“The project sought to identify the genes associated with phosphorus uptake in rice lines that could tolerate phosphorus-deficient soils,” says Sigrid. “It was an interesting project in which I was able to use my background in molecular biology. Little by little, I got more and more involved in the Pup1 project and after a year I was asked by Matthias Wissuwa, who was leading the project at the time, if I wanted to take it over. It was a great opportunity which I jumped at, not knowing then how challenging it would prove.”

Pup1 was the first major project I had managed. It was a playground of sorts that allowed me to learn what I needed to know about managing a project – writing proposals and reports, managing budgets and people’s time, and everything else that comes with leading a team.

The ‘root’ and  ‘command post’ where it all happens: Sigrid in the office. For the benefit of our readers, we would have credited the young artist whose colourful work graces the background below the bookshelf, but we were too polite to pry and prise out the young talent’s name, having hogged too much of Sigrid’s time already!

Learning to lead – both work and play

Over the last seven years, Sigrid has been a Principal Investigator and joint leader of the project, which has given her latitude to mature professionally, and not just in science alone. “It’s been tough but personally fulfilling,” Sigrid says, with just a touch of exhaustion.

Pup1 was the first major project I had managed. It was a playground of sorts that allowed me to learn what I needed to know about managing a project – writing proposals and reports, managing budgets and people’s time, and everything else that comes with leading a team. I was really lucky to have Matthias’ help as well as the other experienced collaborators and networks. However, the main factor that made my job a lot less stressful, was the benefit of long-term funding and support from GCP. GCP was always there, supporting us and giving us confidence even when we weren’t sure we were going to succeed.”

Persistence pays: tangible products, plus publication in Nature
In August 2012, Sigrid and her team achieved what they had set out to do seven years ago, through what Sigrid puts down to sheer persistence: their discovery of the Pup1 gene was recognised by their scientific peers and published in the highly renowned journal,  Nature.

Sigrid (3rd left) at the lab with other colleagues in the phosphorus uptake team.

“Having our paper published is really something special and personally my greatest achievement to date,” says Sigrid, but she is also quick to add that it was a team achievement, and that the achievement was in itself humbling.

“It was a double reward for persisting with the research, and with getting it into Nature. We wanted it in Nature for several reasons. To raise awareness on phosphorus deficiency and phosphorus being a limited resource, especially in poorer countries; and to draw attention to how we do molecular breeding these days, which is a speedier, easier and cost-effective approach to developing crops that have the potential to alleviate such problems.”

Sigrid hopes the article will have a lasting impression on readers, and encourage funders to continue to support projects that have such impact on the lives of end-users.

What next? Technology transfer, transitions and torch smoothly passing on…
With the Pup1 gene now found, IRRI researchers are working with breeders from country-based breeding programmes around the world to help them understand the techniques to breed local varieties of rice that can grow in phosphorus-deficient soils. They are also collaborating with other projects that wish to use the Pup1 project as a case study for phosphorous deficiency tolerance in other crops like maize, sorghum, and wheat (see an example here, that includes partners from Africa and Latin America).

Sigrid sees this next stage as a perfect time to step down from the project: she plans to move to Adelaide, Australia at the end of 2012 to lead a new project that is looking at drought and nitrogen deficiency tolerance in wheat.

“Matthias passed the baton on to me, and now I get to pass the baton on to someone else, so it’s nice. And I’ll be sure to always be around to help them too.”

Links

Sigrid’s presentation at the GCP General Research Meeting 2011

 

 

Nov 132012
 

Bean breeding in his bones: Asrat A Amele

For our bean team, we already see the benefits of being in the Tropical Legumes I  project. We now understand molecular breeding, and we are able to apply molecular breeding techniques.” – Asrat A Amele (pictured)

Asrat is a bean breeder at Ethiopia’s South Agricultural Research Institute (SARI) at the Awassa Research Centre.

Besides breeding beans that will better battle drought, Asrat’s team combines drought tolerance with resistance to the bean stem maggot (BSM) – a pest that afflicts all bean-growing zones in Ethiopia.

Connections, continuity and capacity building
The Tropical Legumes I (TLI) was not an entirely new connection, as Asrat’s involvement with GCP predates this particular project. He started off as a GCP-funded fellow in 2007, investigating bean genetics for drought tolerance. The fellowship would also seem him do a stint in Colombia at the International Center for Tropical Agriculture  (CIAT, by its Spanish acronym). His work at the time on root phenotyping and quantitative trait loci (QTL) analysis has since been published.

At that time, Asrat remarked:

The GCP fellowships programme is great for a person like me, working in a developing-country research institute. I can say it potentially provides researchers with up-to-date scientific knowledge in areas of specialisation. It provides better contact with scientists in other parts of the world and opens a wider window to think on problems and deliver better research products.”

Thorugh GCP, Asrat also attended a molecular breeding course at Wageningen University and Research Centre in The Netherlands. Wageningen is a GCP Consortium member.

The ravages wrought by bean stem maggot.

Having passed through that door of opportunity and looking back now, what does Asrat say? “Through TLI, we were able to access new parental sources of germplasm recommended for release and use for breeding. For instance, we’ve received more than 200 lines from CIAT, from which 10 have been selected to be used as parents. We plan to do crosses with these parents to develop a marker-assisted recurrent selection [MARS] population, based on the problems plaguing beans in Africa.”

And it’s not all about material but also matters cerebral (and matters manual, as we shall see further on): “From the science meetings we attend, we’ve also gained valuable new contacts and acquired new knowledge.” Asrat reveals.

Two…and two

Fitsum Alemayehu

Daniel Ambachew

The next step is to validate the workability of MARS, and SARI has a GCP-funded PhD student, Fistum Alemayehu (pictured right), registered at the South Africa’s Free State University and conducting his phenotyping in Ethiopia, alongside other well-trained staff that SARI now has. Fistum is working on marker-assisted recurrent selection for drought tolerance in beans, while Daniel Ambachew (pictured left), another GCP-funded MSc student enrolled at Haramaya University, Ethiopia, is evaluating recombinant inbred line populations and varieties for combined dual tolerance of drought and bean stem maggot.

Both students are using molecular breeding: “For this work, we’ll be using SNP* markers. It is probably the first use of bean SNPs in sub-Saharan Africa. We will now do QTL analysis with the bean population we have from CIAT,” reveals Asrat.

* SNP: (pronounced ‘snips’) is a technical term, and the abbreviation is derived from ‘single nucleotide polymorphism’ – an advanced molecular-marker system widely used in genetic science. You can read more about SNPs in this press release.

Of humans and machines

A training session on maintaining farm machinery.

Moving on to matters manual and mechanical, besides enhanced human resources, SARI has benefited from infrastructure support as part of GCP’s comprehensive capacity-building package: the Institute now has an irrigation system to enable them conduct drought trials, and SARI technicians from more than 20 different SARI stations have been trained in proper use and routine maintenance of farm machinery. SARI also received two automatic weather stations from GCP for high-precision climatic data capture, with automated data loading and sharing with other partners in the network.

Through this project, SARI is now well tuned into the international arena of bean research and development, and profiting in new ways from this exposure to growing international connections.

Water drilling to install irrigation equipment at SARI.

Institutional revolution and rebirth
The engagement with GCP has revolutionised bean breeding at SARI and institutionalised marker-assisted selection. As a result, SARI will soon have a small molecular breeding laboratory funded by another agency. This lab will support one more PhD student and an additional MSc student, both registered in Ethiopian universities and working on marker-assisted selection for beans.

Thus, in this southern corner of Ethiopia, bean breeders conversant in molecular methods will continue to be ‘born’, better-prepared and well-equipped to meet the challenges facing bean breeding today.

 

 

 

Asrat on video

Links

SLIDES: Phenotyping common beans for tolerance of drought and bean stem maggots in Ethiopia

 

Oct 302012
 

BREAK-TIME AND BRAKE-TIME from beans for a bit: Steve Beebe takes a pause to strike a pose in a bean field.

“These [molecular breeding] techniques, combined with conventional methods, shorten the time it takes to breed improved varieties  that simultaneoulsy combine several traits.

And this means that we also get them out to farmers more quickly compared to phenotypic selection alone.”
– Steve Beebe

THE NEAR-PERFECT FOOD: Common beans (Phaseolus vulgaris L) comprise the world’s most important food legume, feeding about 200 million people in sub-Saharan Africa alone. Their nutritional value is so high, they have been termed ‘a near-perfect food’. They are also easy to grow, adapting readily to different cropping systems and maturing quickly.

That said, this otherwise versatile, adaptable and dapper dicotyledon does have some inherent drawbacks and ailments that crop science seeks to cure….

Rains are rapidly retreating, and drought doggedly advancing
Despite the crop’s widespread cultivation in Africa, “yields are low, stagnating at between 20 and 30 percent of their potential,” remarks Steve Beebe, GCP’s Product Delivery Coordinator for beans, and a researcher at the International Center for Tropical Agriculture (CIAT, by its Spanish acronym).

“The main problem is drought, brought about by climate change,” he says. “And it’s spreading – it already affects 70 percent of Africa’s major bean-producing regions.”  Drought decimates bean harvests in most of Eastern Africa, but is particularly severe in the mid-altitudes of Ethiopia, Kenya, Tanzania, Malawi and Zimbabwe, as well as in southern Africa as a whole.

A myriad of forms and hues: bean diversity eloquently speaks for itself in this riot of colours.

Drought, doubt and duality − Diversity a double-edged sword
“Common beans can tolerate drought to some extent, using various mechanisms that differ from variety to variety,” explains Steve. But breeding for drought resistance is complicated by the thousands of bean varieties that are available. They differ considerably according to growth habit, seed colour, shape, size and cooking qualities, and cultivation characteristics.

“A variety might be fantastic in resisting drought,” says Steve, ‘but if its plant type demands extra work, the farmers won’t grow it,” he explains. “Likewise, if consumers don’t like the seed colour, or the beans take too long to cook, then they won’t buy.”

Molecular breeding deals a hand, waves a wand, and weaves a band
This is where molecular breeding techniques come in handy, deftly dealing with the complexities of breeding drought-resistant beans that also meet farmer and consumer preferences. No guesswork about it: molecular breeding rapidly and precisely gets to the heart of the matter, and helps weave all these different ‘strands’ together.

The bean research team has developed ‘genetic stocks’, or strains of beans that are crossed with the varieties favoured by farmers and consumers. The ‘crosses’ are made so that the gene or genes with the desired trait are incorporated into the preferred varieties.

The resulting new varieties are then evaluated for their performance in different environments throughout eastern and southern Africa, with particular focus on Ethiopia, Kenya, Malawi and Zimbabwe which are the target countries of the Tropical Legumes I (TLI) project.

Propping up the plant protein: a veritable tapestry of terraces of climbing beans.

GCP supported this foundation work to develop these molecular markers. This type of breeding – known in breeder parlance as marker-assisted selection (MAS) – was also successfully used to combine and aggregate resistance to drought; to pests such as bean stem maggot (BSM); and to diseases such as bean common mosaic necrosis potyvirus (BCNMV) and to bruchid or common bacterial blight (CBB). The resulting ‘combinations’ laden with all this good stuff were then bred into commercial-type bean lines.

“These techniques, combined with conventional methods, shorten the time it takes to breed improved varieties that simultaneoulsy combine several traits,” comments Steve. “This means that we also get them out to farmers more quickly compared to phenotypic selection alone.”

Informed by history and reality
Breeding new useful varieties is greatly aided by first understanding the crop’s genetic diversity, and by always staying connected with the reality on the ground: earlier foundation work facilitated by GCP surfaced the diversity in the bean varieties that farmers grow, and how that diversity could then be broadened with genes to resist drought, pests and disease.

What next?
Over the remaining two years of Phase II of the Tropical Legumes I (TLI) project, the bean team will use the genetic tools and breeding populations to incorporate drought tolerance into farmer- and market-preferred varieties. “Hence, productivity levels on smallholder farms are expected to increase significantly,” says Steve.

Partnerships
The work on beans is led by CIAT, working in partnership with Ethiopia’s South Agricultural Research Institute (SARI),  the Kenya Agricultural Research Institute (KARI),  Malawi’s Department of Agricultural Research and Technical Services (DARTS) and  Zimbabwe’s Crop Breeding Institute (CBI) of the Department of Research and Specialist Services (DR&SS).

Other close collaborators include the eastern, central and southern Africa regional bean research networks (ECABREN and SABRN, their acronyms) which are components of the Pan-African Bean Research Alliance (PABRA). Cornell University (USA) is also involved.

VIDEO: Steve talks about what has been achieved so far in bean research, and what remains to be done

Links

 

Sep 202012
 

Getting to the core of a world-favourite dessert by unravelling banana’s origin and genealogy

GCP has enabled us to lay a credible foundation, which gave us a leg-up in the intense competition that typifies the genome sequencing arena” – Angélique D’Hont, CIRAD researcher

‘A’ is also for Angélique, as you will see once you read on…

An ‘A’ to our banana team for ushering in a new era in banana genetics. But let soup precede dessert, and don’t let this worry you: stay with us because we’re still very much on the topic and focused on bananas, which offer the whole range from soup and starters, to main course and dessert, plus everything else in between, being central for the food security of more than 400 million people in the tropics: around a third each is produced in Africa, Asia-Pacific and Latin America, and the Caribbean. About 87  percent of all the bananas produced worldwide are grown by small-scale farmers.

Moving back then to soup for starters, we’re serving up our own unique blend of alphanumeric banana ‘soup’, spiced with ABCs, a pinch of 123s, plus a dash of alpha and omega. Curious about the ABCs? Look no further:‘C’ for getting to the core of ‘B’ for bananas, and an ‘A’ score for our ace genomics team that did it.

Read how GCP seeded … and succeeded, in helping open a new era in banana genetics. An achievement by itself, and an important milestone on the road to unlocking genetic diversity for the resource-poor, which is GCP’s raison d’être.

So get your travelling gear please, for time travel with a ‘midspace checkpoint’ in Malaysia.

We start in 2004, when GCP commissioned a survey of diversity with microsatellites (or SSRs, simple sequence repeats) for all mandate food crops in the CGIAR crop research Centres. The objective of that study was to make new genetic diversity from genebank accessions available to breeders.

The endpoint is opening new research avenues to incorporate genes for disease resistance, with the added bonus of an article published in Nature online on July 11 2012, entitled The banana (Musa acuminata) genome and the evolution of monocotyledonous plants.

It may not be quite as easy as the ABC and 123 that The Jacksons promise in song, but we promise you that the science is just as exciting, with practical implications for breeding hardy disease-resistant bananas. Onwards then to the first leg of this three-step journey!

(Prefer a shorter version of this story in pictures? We’ve got it! Choose your medium between Flickr and Facebook)

1) Let’s go Greek: the alpha and omega of it

Rewinding to the beginning

The proof of the pudding is in the eating: we imagine that Jean Christophe Glaszmann just has to be saying “Yummy!” as he samples this banana.

Start point, 2004: “At that time, several research groups had developed SSR markers for bananas, but there was no coordination and only sketchy germplasm studies,” recalls Jean Christophe Glaszmann (pictured), then the leader of what was GCP’s Subprogramme 1 (SP1) on Genetic Diversity on a joint appointment with CIRAD. He stepped down as SP1 Leader in March 2010, and is currently the Director of a multi-institutional research unit Genetic improvement and adaptation of Mediterranean and tropical plants (AGAP, by its French acronym) at France’s Centre de ccoopération internationale en recherche agronomique pour le développement (CIRAD) in Montpellier.

Jean Christophe continues, “The reference studies had been conducted with RFLP* markers, a very useful tool but far too cumbersome for undertaking large surveys. We mobilised Bioversity International, CIRAD and the International Institute of Tropical Agriculture for the project. The process took time, but delivered critical products.[*RFLP stands for restriction fragmented length polymorphism]

Fastforward to 2012, and gets just a little geeky…

Eight years down the road in 2012, the list of achievements is impressive, as evidenced by a suite of published papers which provide the details of the analysis of SSR diversity and describe how the data enabled the researchers to unravel the origin and genealogy of the most important dessert bananas. The origin of the predominant variety – Cavendish – suggested by the markers, involves two rounds of spontaneous hybridisation between three markedly differentiated subspecies. This scheme has been marvellously corroborated by linguistic patterns found in banana variety names as revealed in a paper published in 2011 in the proceedings of USA’s National Academy of Sciences.

But what else happened in between the start- and end-point? We now get to the really ‘sweet’ part of this bonanza for banana breeding!

It is now possible to conduct research to identify and incorporate genes for disease resistance within fertile populations that are close to the early progenitors, and then inter-cross them to re-establish sterility and obtain vigorous, disease-resistant and seedless progenies.

 2) Of bits, bananas, breeding and breadcrumbs

Threading all these bits together for breeding better bananas is akin to following a trail of breadcrumbs, in which GCP played an important facilitating role: where in the germplasm to undertake genetic recombination is one key; and then, how to expedite incorporation of disease resistance and how to control sterility – so as to first suppress it, then re-establish it – is another set of keys that are necessary for proficient breeding.

Hei Leung in the lab at IRRI.

In 2005, Hei Leung (pictured), then Leader of GCP’s Subprogramme 2 on Comparative Genomics (until June 2007) on a dual appointment with the International Rice Research Institute (IRRI), recognised that with GCP’s main focus being drought tolerance in crops, Musa (the banana and plantain botanical genus) was somewhat on the fringe. However, it was still important that GCP support the emergence of banana genomics.

Hei is currently Programme Leader of Genetic Diversity and Gene Discovery at IRRI. He remembers, “We had a highly motivated group of researchers willing to devote their efforts to Musa. Nicolas Roux at Bioversity was a passionate advocate for the partnership. The GCP community could offer a framework for novel interactions among banana-related actors and players working on other crops, such as rice. The team led by Takuji Sasaki of Japan’s National Institute of Agrobiological Science, which had vast experience in rice genome sequencing, added the scientific power. So, living up to its name as a Challenge Programme, GCP decided to take the gamble on banana genomics and help it fly.”

Angélique D’Hont, CIRAD researcher and lead author of the article published in ‘Nature’.

Through several projects, GCP helped consolidate Musa genomic resources, contributed to the establishment of medium-throughput DArT markers as well as the construction of the first saturated genetic map. Additional contributions included the first round of sequencing of large chromosome segments (BAC clones) and its comparison with the rice sequence and a detailed analysis of resistance gene analogues. All these findings have now been published in peer-reviewed journals. And while publication takes time, it still remains a high-premium benchmark for quality and validation of results, and for efficient sharing of information. It reinforces the value of collaboration, builds capacity and gives visibility to all partners, thereby providing potential new avenues for funding.

Such was the case with bananas: using a collaborative partnership framework established with the Global Musa Genomics Consortium, animated by Nicolas Roux and now chaired by Chris Town, the community developed a case for sequencing the genome. With the mentorship of Francis Quétier, contacts were made with various major players in genomics, which in the end formalised a project between France’s CIRAD and CEA–Genoscope, funded by the Agence Nationale de la Recherche and led by Angélique D’Hont (pictured) and Patrick Wincker.

GCP contributed DArT analysis for anchoring the sequence to the genetic map. But, as stressed by Angélique, CIRAD researcher and lead author of the Nature paper: “Above all, GCP has enabled us to lay a credible foundation, which gave us a leg-up in the intense competition that typifies the genome sequencing arena. We were delighted that France rolled the dice in our favour by funding this work.”

3) Musa musings on the road to and from Malaysia checkpoint

Three years down the road, the team published a description of the genome of a wild banana from Malaysia.

Jean Christophe communes with a Musa plant, perhaps musing “What’s your family history and when will you be fully grown?”

Let’s drill down to some technical facts and figures here: the Musa genome has some 520 million nucleotides distributed across 11 chromosomes, revealing traces of past duplications and bearing some 36,000 genes. While most genes derived from duplication tend to lose their function, some develop novel functions that are essential for evolution; bananas seem to have an outstanding range of transcription factors that could be involved in fruit maturity.

And while the road ahead remains long, we now have a good understanding of banana’s genetic diversity, we have genomic templates for functional studies (a whole-gene repertoire) as well as for structural studies (the chromosome arrangement in one subspecies) aimed at unraveling the genomic translocations that could control sterility in the species complex.

It is now possible to conduct research to identify and incorporate genes for disease resistance within fertile populations that are close to the early progenitors, and then inter-cross them to re-establish sterility and obtain vigorous, disease-resistant and seedless progenies.

This is undoubtedly an inspiring challenge towards unlocking the genetic diversity in this crop, which is central to food security for more than 400 million people in the tropics.

Links

 

cheap ghd australia