Jun 242014
 

Triumphs and tragedies, pitfalls and potential of the ‘camel crop’Cassava leaf. Photo: N Palmer/CIAT

We travel through space and time, with a pair of researchers who have a pronounced passion for a plant brought to Africa by seafaring Portuguese traders in the 16th century. Fastforwarding to today, half a millennium later, the plant is widespread and deep inland, and is the staple food for Africa’s most populous nation – Nigeria.

Meet cassava, the survivor. After rice and maize, cassava is the third-largest source of carbohydrate in the tropics. Surviving, nay thriving, in poor soils and shaking off the vagaries of weather – including an exceptionally high threshold for drought – little wonder that cassava, the ‘camel’ of crops is naturally the main staple in Nigeria. And with that, it has propelled Nigeria to the very top of the cassava totem pole as the world’s leading cassava producer, and consumer: most Nigerians eat cassava in one form or another practically every day.

Great, huh? But there’s also a darker side to cassava, as we will soon find out from our two cassava experts. For starters, the undisputed global cassava giant, Nigeria, produces just enough to feed herself. Even if there were a surplus for the external demand, farming families, which make up 70 percent of the Nigerian population, have limited access to these lucrative external markets. Secondly, cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) are deadly in Africa. Plus, cassava is a late bloomer (up to two years growth cycle, typically one year), so breeding and testing improved varieties takes time. Finally, cassava is most definitely not à la mode at all in modern crop breeding: the crop is an unfashionably late entrant into the world of molecular breeding, owing to its complex genetics which denied cassava the molecular tools that open the door to this glamour world of ‘crop supermodels’.

Emmanuel Okogbenin (left) and Chiedozie Egesi (right) in  a cassava field.

Emmanuel Okogbenin (left) and Chiedozie Egesi (right) in a cassava field.

But all is not doom and gloom, which inexorably dissolve in the face of dogged determination. All the above notwithstanding, cassava’s green revolution seems to be decidedly on the way in Nigeria, ably led by born-and-bred sons of the soil: Chiedozie Egesi and Emmanuel Okogbenin (pictured right) are plant breeders and geneticists at the National Root Crops Research Institute (NRCRI). With 36 years’ collective cassava research experience between them, the two men are passionate about getting the best out of Nigeria’s main staple crop, and getting their hands into the sod while about it: “I’m a plant breeder,” says Chiedozie, with pride. “I don’t just work in a laboratory. I am also in the field to experience the realities.”

Hitting two birds with one stone…two stones are even better!
As Principal Investigators (PIs) leading three different projects in the GCP-funded Cassava Research Initiative, Chiedozie and Emmanuel, together with other colleagues from across Africa, form a formidable team. They also share a vision to enable farmers increase cassava production for cash, beyond subsistence. This means ensuring farmers have new varieties of cassava that guarantee high starch-rich yields in the face of evolving diseases and capricious weather.

Chiedozie is one of cassava’s biggest fans. His affection for, and connection to, cassava is almost personal and definitely paternal. He is determined to deploy the best plant-breeding techniques to not only enhance cassava’s commercial value, but to also protect the crop against future disease outbreaks, including ‘defensive‘ breading. But more on that later…

Emmanuel is equally committed to the cassava cause. As part of his brief, Emmanuel liaises with the Nigerian government, to develop for – and promote to – farmers high-starch cassava varieties. This ensures a carefully crafted multi-pronged strategy to revolutionise cassava: NRCRI develops and releases improved varieties, buttressed by financial incentives and marketing opportunities that encourage farmers to grow and sell more cassava, which spurs production, thereby simultaneously boosting food security while also improving livelihoods.

erect cass1_LS 4 web

Standing tall. Disease resistance and high starch and yield aside, farmers also prefer an upright architecture, which not only significantly increases the number of plants per unit, but also favours intercropping, a perennial favourite   for cassava farmers.

Cross-continental crosses and cousins, magic for making time, and clocking a first for cassava

No one has been able to manufacture time yet, so how can breeders get around cassava’s notoriously long breeding cycle? MAS (marker-assisted selection) is crop breeding’s magic key for making time. And just as humans can benefit from healthy donor organ replacement, so too does cassava, with cross-continental cousins donating genes to rescue the cousin in need. Latin American cassava is nutrient-rich, while African cassava is hardier, being more resilient to pests, disease and harsh environments.

Thanks to marker-assisted breeding, CMD resistance from African cassava can now be rapidly ‘injected’ much faster into Latin American cassava for release in Africa. Consequently, in just a three-year span (2010–2012), Chiedozie, Emmanuel, Martin Fregene of the Donald Danforth Plant Science Center (USA) and the NRCRI team, released two new cassava varieties from Latin American genetic backgrounds (CR41-10 and CR36-5). These varieties, developed with GCP funding, are the first molecular-bred cassava ever to be released, meaning they are a momentous milestone in cassava’s belated but steady march towards its own green revolution.

Marker-assisted selection is much cheaper, and more focused.” 

On the cusp of a collaborative cassava revolution: on your marks…
With GCP funding, Chiedozie and Emmanuel have been able to use the latest molecular-breeding techniques to speed up CMD resistance. Using marker-assisted selection (MAS) which is much more efficient, the scientists identified plants combining CMD resistance with desirable genetic traits.

“MAS for CMD resistance from Latin American germplasm is much cheaper, and more focused,” explains Emmanuel. “There is no longer any need to ship in tonnes of plant material to Africa. We can narrow down our search at an early stage by selecting only material that displays markers for the genetic traits we’re looking for.” Using markers, combining traits (known as ‘gene pyramiding’) for CMD resistance is faster and more efficient, as it is difficult to distinguish phenotypes with multiple resistance in the field by just observing with the naked eye. This is what makes marker-assisted breeding so effective and desirable in Africa.

GCP’s mode of doing business coupled with its community spirit has spurred the NRCRI scientists to cast their eyes further out to the wider horizon beyond their own borders.

By collaborating with research centres in other parts of the world, Emmanuel and Chiedozie have made remarkable strides in cassava breeding. According to Emmanuel, “GCP helped us make links with advanced laboratories and service providers like LGC Genomics. The outsourcing of genotyping activities for molecular breeding initiatives is very significant, as it enables us to carry out analyses not otherwise possible.”

We can’t afford to sit idle until it comes – we need to be armed and on the ready.”

‘Defensive’ breeding: partnerships to pre-empt catastrophe and combat disease
Closer home in Africa, as PI of the corollary African breeders community of practice (CoP) project, Emmanuel co-organises regular workshops with plant breeders from a dozen other countries (Côte d’Ivoire, DR Congo, Ethiopia, Ghana, Kenya,  Liberia, Malawi, Mozambique, Sierra Leone, Tanzania, Uganda and South Sudan). These events are an opportunity to share knowledge on molecular breeding and compare notes.

Of the diseases that afflict cassava, CBSD is the most devastating. Mercifully, in Nigeria, the disease is non-existent, but Chiedozie is emphatic that this is by no means cause for complacency. “If CBSD gets to Nigeria, it would be a monumental catastrophe!” he cautions. “We can’t afford to sit idle until it comes – we need to be armed and on the ready.”

Putting words to action, though this work on CBSD resistance is still in its early stages, more than 1,000 cassava genotypes (different genetic combinations) have already have been screened in the course of just one year. Chiedozie hopes that the team will be able to identify key genetic markers, and validate these in field trials in Tanzania, where CBSD is widespread. This East African stopover, Chiedozie emphasises, is a crucial checkpoint in the West African process. So the cassava CoP not only provides moral but also material support.

And Africa is not the limit. GCP-funded work on CMD resistance is more advanced than the CBSD work, though the real breakthrough in CMD only happened recently, on the international arena within which the African breeders now operate. According to Chiedozie, two entire decades of screening cassava genotypes from Latin America yielded no resistance to CMD. The reason for this is that although it is widespread in Africa, CMD is non-existent in Latin America.

Through international collaborative efforts, cassava scientists, led by Martin Fregene (now based in USA), screened plants from Nigeria and discovered markers for the CMD2 gene, indicating resistance to CMD. Once they had found these markers, the scientists were off and away! By taking the best of the Latin American material and crossing it with Nigerian genotypes that have CMD resistance, promising lines were developed from which the Nigerian team produced two new varieties. These varieties, CR41-10 and CR36-5, have already been released to farmers, and that is not all. More varieties bred using these two as parents are in the pipeline.

“GCP funding has given us the opportunity to show that a national organisation can do the job and deliver.” 

 

Delivery attracts
The success of the CGP-funded cassava research in Nigeria lies in its in-country leadership. Chiedozie, Emmanuel and Martin are native Nigerian scientists and as such are – in many ways – best placed to drive a research collaboration to benefit the country’s farmers and boost food security. “GCP funding has given us the opportunity to show that a national organisation can do the job and deliver,” says Chiedozie.

This proven expertise has helped NRCRI forge other partnerships and attract more financial support, for example from the Bill & Melinda Gates Foundation for a project on genomic selection. GCP support has also bolstered communications with the Nigerian government, which has launched financial instruments, such as a wheat tariff,* to boost cassava production and use.

[Editors note: * wheat tariff: The Nigerian government is trying to reduce wheat import bills and also boost cassava commercialisation by promoting 20 percent wheat substitution in bread-making. Tariffs are being imposed on wheat to dissuade heavy imports and encourage utilisation of high-quality cassava flour for bread.]

“The government feels that to quickly change the fortunes of farmers, cassava is the way to go,” explains Emmanuel. He clarifies, “The tariff from wheat is expected to be ploughed back to support agricultural development – especially the cassava sector – as the government seeks to increase cassava production to support flour mills. Cassava offers a huge opportunity to transform the agricultural economy and stimulate rural development, including rapid creation of employment for youth.”

The Nigerian government is right in step aiding cassava’s march towards the crop’s own green revolution, as is evident in the the Minister of Agriculture’s tweet earlier this year, and in his video interview below. See also related media story, ‘Long wait for cassava bread’.

Clearly, the ‘camel’ crop – once considered an ‘orphan’ in research  –  has travelled as far in science as in geography, and it is a precious asset to deploy for food production in a climate-change-prone world. As Emmanuel observes, cassava’s future can only be brighter!

Slides by Chiedozie and Emmanuel

 

More links

 

Apr 042014
 

 

Phil Roberts

Phil Roberts

Like its legume relatives, cowpeas belong to a cluster of crops that are still referred to in some spheres of the crop-breeding world as ‘orphan crops’. This, because they have largely been bypassed by the unprecedented advances that have propelled ‘bigger’ crops into the world of molecular breeding, endowed as they are with the genomic resources necessary. But as we shall hear from Phil Roberts (pictured), of the University of California–Riverside, USA, and also the cowpea research leader for the Tropical Legumes I Project (TLI), despite the prefix in the  name, this ‘little kid’ in the ‘breeding block’ called cowpeas is uncowed and unbowed, confidently striding into the world of modern crop breeding, right alongside the ‘big boys’! What more on this new kid on the block of modern molecular breeding? Phil’s at hand to fill us in…

Vigna the VIP that shrinks with the violets
But is no shrinking violet, by any means, as we shall see. Also known  as niébé in francophone Africa, and in USA as black-eyed peas (no relation to the musical group, however, hence no capitals!), this drought-tolerant ancient crop (Vigna unguiculata [L] Walp) originated in West Africa. It is highly efficient in fixing nitrogen in the unforgiving and dry sandy soils of the drier tropics. And that is not all. This modest VIP is not addicted to the limelight and is in fact outright lowly and ultra-social: like their fetching African counterpart in the flower family, the African violet, cowpeas will contentedly thrive under the canopy of others, blooming in the shade and growing alongside various cereal and root crops, without going suicidal for lack of limelight and being in the crowd. With such an easy-going personality, added to their adaptability, cowpeas have sprinted ahead to become the most important grain legume in sub-Saharan Africa for both subsistence and cash. But – as always – there are two sides to every story, and sadly, not all about cowpeas is stellar…

Improved varieties are urgently needed to narrow the gap between actual and potential yields… modern breeding techniques… can play a vital role”

A cowpea experimental plot at IITA.

A cowpea experimental plot at IITA.

What could be, and what molecular breeding has to do with it
Yields are low, only reaching a mere 10 to 30 percent of their potential, primarily because of insect- and disease-attack, sometimes further compounded by chronic drought in the desiccated drylands cowpeas generally call home. “Improved varieties are urgently needed to narrow the gap between actual and potential yields,” says Phil. The cowpea project he leads in TLI is implemented through GCP’s Legume Research Initiative. Phil adds, “Such varieties are particularly valuable on small farms, where costly agricultural inputs are not an option. Modern breeding techniques, resulting from the genomics revolution, can play a vital role in improving cowpea materials.”

He and his research team are therefore developing genomic resources that country-based breeding programmes can use. Target-country partners are Institut de l’Environnement et de Recherches Agricoles (INERA) in Burkina Faso; Universidade Eduardo Mondlane in Mozambique; and Institut Sénégalais de Recherches Agricoles (ISRA) in Senegal. Other partners are the International Institute of Tropical Agriculture (IITA) headquartered in Nigeria and USA’s Feed the Future Innovation Labs for Collaborative Research on Grain Legumes and for Climate Resilient Cowpeas.

It’s a lot easier and quicker, and certainly less hit-or-miss than traditional methods!… By eliminating some phenotyping steps and identifying plants carrying positive-trait alleles for use in crossing, they will also shorten the time needed to breed better-adapted cowpea varieties preferred by farmers and markets.”

Cowpea seller at Bodija Market, Ibadan, Nigeria.

Cowpea seller at Bodija Market, Ibadan, Nigeria.

 

On target, and multiplying the score
[First, a rapid lesson on plant-genetics jargon so we can continue our story uninterrupted: ‘QTLs’ stands for quantitative trait loci, a technical term in quantitative genetics to describe the locations where genetic variation is associated with variation in a quantitative trait. QTL analysis estimates how many genes control a particular trait. ‘Allele’ means an alternative form of a the same gene. Continuing with the story…]

The curved shape means that these cowpea pods are mature and ready for harvesting.

Culinary curves and curls: the curved shape means that these cowpea pods are mature and ripe for harvesting.

“We first verified 30 cowpea lines as sources of drought tolerance and pest resistance,” Phil recalls. “Using molecular markers, we can identify the genomic regions of the QTLs that are responsible for the desired target phenotype, and stack those QTLs to improve germplasm resistance to drought or pests. It’s a lot easier and quicker, and certainly less hit-or-miss than traditional methods! However, standing alone, QTLs are not the silver bullet in plant breeding. What happens is that QTL information complements visual selection. Moreover, QTL discovery must be based on accurate phenotyping information, which is the starting point, providing pointers on where to look within the cowpea genome. Molecular breeding can improve varieties for several traits in tandem,” suggests Phil. “Hence, farmers can expect a more rapid delivery of cowpea varieties that are not only higher-yielding, but also resistant to several stresses at once.”

And what are Phil and team doing to contribute to making this happen?

The genomic resources from Phase I – especially genotyping platforms and QTL knowledge – are being used in Phase II of the TLI Project to establish breeding paradigms, using molecular breeding approaches,” Phil reveals. He adds that these approaches include marker-assisted recurrent selection (MARS) and marker assisted back-crossing (MABC). “These paradigms were tested in the cowpea target countries in Africa,” Phil continues. “By eliminating some phenotyping steps and identifying plants carrying positive-trait alleles for use in crossing, they will also shorten the time needed to breed better-adapted cowpea varieties preferred by farmers and markets.”

… best-yielding lines will be released as improved varieties… others will be used…as elite parents…”

Future work
What of the future? Phil fills us in: “The advanced breeding lines developed in TLI Phase II are now entering multi-location performance testing in the target African countries. It is expected that best-yielding lines will be released as improved varieties, while others will be used in the breeding programmes as elite parents for generating new breeding lines for cowpeas.”

Clearly then, the job is not yet done, as the ultimate goal is to deliver better cowpeas to farmers. But while this goal is yet to be attained and – realistically – can only be some more years down the road, it is also equally clear that Phil and his team have already chalked up remarkable achievements in the quest to improve cowpeas. They hope to continue pressing onwards and upwards in the proposed Tropical Legumes III Project, the anticipated successor to TLI and its twin project TLII – Tropical Legumes II.

Links

Mar 312014
 
Vincent Vadez

Vincent Vadez

Today, we travel to yet another sun-kissed spot, leaving California behind but keeping it legumes. We land in Africa for some ground truths on groundnuts with Vincent Vadez (pictured), groundnut research leader for the Tropical Legumes I (TLI) Project. Vincent fills us in on facts and figures on groundnuts and Africa – a tale of ups and downs, triumphs and trials, but also of  ‘family’ alliances not feuds, and of problems, yes,  but also their present or potential solutions. On to the story then! Read on to find out why groundnuts are…

….A very mixed bag in Africa
Groundnuts (Arachis hypogaea L), also called peanuts, are a significant subsistence and food crop in sub-Saharan Africa. There, groundnuts are grown in practically every country, with the continent accounting for roughly a quarter of the world’s production. Despite this rosy African statistic, problems abound: for example, nearly half (40 percent) of the of the world’s total acreage for groundnuts is in Africa, which dramatically dims the 25 percent global production quota.

In Africa, groundnuts are typically cultivated in moderate rainfall areas across the continent, usually by women.

In Africa, groundnuts are typically cultivated in moderate rainfall areas across the continent, usually by women. (See editorial note* at the end of the story)

Clearly then, Africa’s yields are low, borne out by telling statistics which show African production at 950 kilos per hectare, in acute contrast to 1.8 tonnes per hectare in Asia.

…every year, yields worth about USD 500 million are lost”

What ails Africa’s production?
The main constraints hampering higher yields and quality in Africa are intermittent drought due to erratic rainfall, as well as terminal drought during maturation. And that is not all, because foliar (leaf) diseases such as the late leaf spot (LLS) or groundnut rosette are also taking their toll.  Economically speaking, every year, yields worth about USD 500 million are lost to drought, diseases and pests. Plus, the seeding rates for predominantly bushy groundnut types are low, and therefore insufficient to achieve optimal ground cover. Thus, genetic limitations meet and mingle with major agronomic shortcomings in the cultivation of groundnuts, making it…

…. A tough nut to crack
Groundnuts are mostly cultivated by impoverished farmers living in the semi-arid tropics where rainfall is both low and erratic.

Tough it may be for crop scientists, but clearly not too tough for these two youngsters shelling groundnuts at Mhperembe Market, Malawi.

. Tough it may be for crop scientists, but clearly not too tough for these two youngsters shelling groundnuts at Mhperembe Market, Malawi.

“To help double the productivity of this crop over the next 10 years, we need to improve groundnuts’ ability to resist drought and diseases without farmers needing to purchase costly agricultural inputs,” says Vincent.

But the crop’s genetic structure is complex, plus, for resistance to these stresses, its genetic diversity is narrow. “Groundnuts are therefore difficult and slow to breed using conventional methods,” says Vincent. And yet, as we shall see later, groundnuts are distinctly disadvantaged when it comes to molecular breeding. But first, the good news!

…wild relatives have genes for resisting the stresses… molecular markers can play a critical role”

Why blood is thicker than water, and family black sheep are valued
Kith and kin are key in groundnut science. Vincent points out that groundnuts have several wild relatives that carry the necessary genes for resisting the stresses – especially leaf diseases – to which the crop is susceptible. These genes can be transferred from the wild cousins to the cultivated crop by blending conventional and molecular breeding techniques. But that is easier said than done, because cultivated groundnuts can’t cross naturally with their wild relatives owing to chromosomic differences.

Groundnut flower

Groundnut flower

“In modern breeding, molecular markers can play a critical role,” says Vincent. “Using markers, one can know the locations of genes of interest from an agronomic perspective, and we can then transfer these genes from the wild relatives into the groundnut varieties preferred by farmers and their markets.”

[The] ‘variegated’ partnership has been essential for unlocking wild groundnut diversity…”

Partnerships in and out of Africa, core capacities
“Partners are key to this work,” says Vincent. The groundnut work is led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), with collaborators in the target countries, which are Malawi (Chitedze Agricultural Research Centre), Senegal (Institut sénégalais de recherches agricoles ‒ ISRA) and Tanzania (Agricultural Research Institute, Naliendele), Moving forward together, continuous capacity building for partners in Africa is part and parcel of the project. To this end, there have been several training workshops in core areas such as molecular breeding and phenotyping, farmer field days in the context of participatory varietal selection, as well as longer-term training on more complex topics such as drought, in addition to equipping the partners with the critical infrastructure needed for effective phenotyping.

Freshly dug-up groundnuts.

Freshly dug-up groundnuts.

Further afield out of Africa, Vincent’s team also collaborates with the Brazilian Agricultural Research Corporation (EMBRAPA), France’s Centre de coopération internationale en recherche agronomique pour le développement ‒ CIRAD, and USA’s University of Georgia.

This ‘variegated’ partnership has been essential for unlocking the wild groundnut diversity when about 12 years ago the EMBRAPA team successfully generated a number of ‘synthetic’ groundnuts from their wild relatives. Unlike the wild groundnuts, these synthetic groundnuts can be crossed to the cultivated type, bringing with them treasure troves of beneficial genes pertaining to the wild that would be otherwise unreachable for the cultivated varieties. Taking this one step further, the CIRAD‒ISRA team, in a close North‒South partnership, has used one of the synthetics from the Brazilian programme to generate new genetic diversity in the groundnut cultivar Fleur11. They are using additional synthetics from ICRISAT to further enlarge this genetic diversity in cultivated groundnuts.

These techniques and tools provide signposts on the genome of varieties for characteristics of importance”

A world first for an ‘orphan’, goals achieved, and what next
Among other goals, the team notably achieved a world first: “To produce the first SSR-based genetic linkage map for cultivated groundnuts!” declares Vincent. SSR stands for simple sequence repeat. The map was published in 2009,  followed later on by a groundnut consensus map in 2012.

Youngster bearing fresh groundnuts along River Gambia in Senegal.

Youngster bearing fresh groundnuts along River Gambia in Senegal.

But what do these maps and their publication mean for groundnut production? Vincent explains: “These techniques and tools provide signposts on the genome of varieties for characteristics of importance ‒ for instance, resistance to a disease ‒ and these are used in combination to speed up the development of groundnut varieties that are more resistant to the stresses found in the harsh environments where most of the tropical world’s poor farmers live. Accelerating development means quicker delivery to farmers who are at high risk of going hungry. TLI Phase I produced synthetic groundnuts with new genes for disease resistance.”

In Phase II of the TLI Project which terminates in mid-2014, the team has continued to identify new genetic and genomic resources, for instance new sources of drought resistance from the germplasm and which are currently being used in the development of new breeding stocks. What is significant about this is that groundnuts ‒ like most other members of the legume family ‒ do not have much in the way of genomic and molecular-genetic resources, and are in fact consequently referred to in some circles as ‘orphans’ of the genome revolution. The focus has also been on resistance to rust, early and late leaf spot, and rosette – all economically critical diseases – by tapping the resilience of GBPD4, a cultivar resistant to rust and leaf spot, and introducing its dual resistance to fortify the most popular varieties against these diseases. The team also hopes to scale up these promising examples.

We believe this team is firmly on the way to fulfilling their two-fold project objectives which were: (1) to develop genomic resources and produce the first molecular-breeding products of the crop by injecting  disease resistance (from TLI Phase I work) into farmer- and market-preferred varieties; and, (2)  to lay the foundation for future marker-assisted recurrent selection (MARS) breeding by tapping on newly identified sources of drought tolerance.

 the genetic stocks that hold the most promise to overcome leaf disease are found in the wild relatives… A thorough reflection is needed to combine good genetics with sound agronomic management”

The future
But the team is not resting on their laurels, as the work will not stop with the fulfillment of project objectives. In many ways, their achievements are in fact just the beginning. The new breeding stocks developed during TLI Phase II need to be evaluated further for their drought tolerance and disease resistance prior to their deployment in breeding programmes, and this activity ‒ among others ‒ is included for the next phase of the work in the proposed Tropical Legumes III project. In particular, the genetic stocks that hold the most promise to overcome leaf disease are found in the wild relatives. Thus, the existing materials need to be fully exploited and more need to be produced to cover the full breadth of potential stresses. Vincent adds “Of course an increasing part of the efforts will be about assuring quality evaluation data, meaning we must continue to significantly enhance the capacity ‒ both human and physical ‒ of our partners in target countries. Last but not least, the good wheat and rice cultivars that directly arose from the green revolution would have been nothing without nitrogen fertiliser and irrigation.” Vincent adds that the same applies to groundnuts: they are cultivated in infertile soil, at seeding rates that are unlikely to optimise productivity.

Groundnut drawing

Groundnut drawing

For this reason, and others explained above, “A thorough reflection is needed to combine good genetics with sound agronomic management,” Vincent concludes, stressing the importance of what he terms as ‘looking beyond  the fence’. Vincent’s parting shot, as our conversation draws to close: “In fact, I have grown increasingly convinced over the past year that we probably overlook those agronomic aspects in our genetic improvements at our peril, and we clearly need a re-think of how to better combine genetic improvement with the  most suitable and farmer-acceptable agronomic management of the crop.”

Much food for thought there! And probably the beginnings of an animated conversation to which a groundnut crop model, on which Vincent and team are currently working, could soon yield some interesting answers on the most suitable genetic-by-management packages, and therefore guide the most adequate targets for crop improvement.

Links

*Editorial note: Erratum – Photo changed on April 8 2014, as the previous one depicted chickpeas, not groundnuts. We  apologise to our readers for the error.

Mar 072014
 
Women in science

“Women can do advanced agricultural science, and do it well!” Elizabeth Parkes, cassava researcher, Ghana

Being a woman scientist in today’s world (or at any time in history!) is no mean feat, science traditionally having been the domain of men. We are therefore drawn to this sub-theme: Inspiring change, in addition to the global theme Equality for women is progress for all, To mark International Women’s Day tomorrow, UNESCO has developed an interactive tool which collates facts and figures from across the world on women in science. The cold scientific truth displayed in the attractive petri dish design shows that only 30 percent of researchers worldwide are women.

At GCP, we have been fortunate enough to have a cross-generational spectrum of, not only women scientists, but that even rarer species, women science leaders – who head a project or suite of projects and activities, and who actively nurture and mentor future science leaders – to ultimately contribute to the fulfilment of our mission: Using genetic diversity and advanced plant science to improve crops for greater food security in the developing world. The United Nations has designated 2014 as the Year of Family Farming. GCP’s women researchers have contributed to improving the lives of their farming counterparts the world over, especially in the developing world where on average, 43 percent of the agricultural labour force are women, rising to 60 percent and 70 percent in some regions. (FAO)

Please mind the gap…to leap to that all-important initiation into science

UNESCO's Women in Science interactive tool

UNESCO’s Women in Science interactive tool

The UNESCO tool mentioned above and embedded to the left allows users to “explore and visualise gender gaps in the pipeline leading to a research career, from the decision to get a doctorate degree to the fields of science that women pursue and the sectors in which they work” with this affirmation: “Perhaps most importantly, the data tool shows just how important it is to encourage girls to pursue mathematics and science at a young age.”

In our International Women’s Day multimedia expo, we profile the life and work of a selection of our smart scientific sisters through words, pictures and sound, to explain just how they overcame obstacles, from taking that first hurdle to study science at an early age, to mobility up the research rungs to reach the very top of their game, all the while balancing work, life and family.

A blogpost fest to introduce our first special guests

Masdiar Bustamam

Masdiar Bustamam

We begin our show with a blogpost fest, and first up is GCP’s original Mother Nature, renowned scientist and constant gardener of the molecular breeding plot, Masdiar Bustamam. After a virtual world-tour of research institutes early on in her career, Masdiar took the knowledge of molecular breeding back home, to the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD), where she personally took up the challenge to work with the fledgling world of biotechnology, set up a lab, and helped establish molecular breeding in her country. In an amazing 37-years-odd research career, Masdiar tended not only tender rice shoots, but also budding blossoms in the form of her many students, whom she nurtured and mentored throughout their studies, and who have now seamlessly inherited her mantle to carry on the mission with the same ever-bright spirit. More

Rebecca Nelson

Rebecca Nelson

We now skip continents and oceans  to meet the feisty, continent- and crop-hopping scientist, Rebecca Nelson (Cornell University, USA). “I wanted to get out into the world and try and have a practical impact instead of doing research for the sake of research,” Rebecca says – and that she did, first leaving her native USA to work in the International Rice Research Institute (IRRI) in the Philippines. There she teamed up with friend and colleague, Masdiar Bustamam, to establish Masdiar’s laboratory at ICABIOGRAD, Indonesia. The American continent then called her back, where she moved countries and institutes, and switched from rice to maize research, marking the launch of her GCP experience – which simultaneously introduced her to her a whole new network of international crop researchers. This rich research tapestry was  woven together by a poignant pain deep in her heart, as a mother herself, of “so many mothers not being able to feed their families.” Rebecca wanted to combat this problem,  and crop science is her weapon. More

Zeba Seraj

Zeba Seraj

Next, we meet another true mother of molecular plant breeding, Zeba Seraj (University of Dhaka, Bangladesh). Zeba, whose mind is perpetually on call in the pursuit of science, has been around the world, and from plants to animals and back again in the course of her multifaceted science career. During her PhD and postdoc experience in the UK, still with fauna, she cultivated her expertise in molecular biology and recombinant DNA technology, but a lack of opportunities in that field back in Bangladesh saw her enter the world of crop science, where she has remained ever since. Back at her alma mater, the University of Dhaka, she founded a molecular biology lab, and has nurtured and inspired generations of young biochemists. Her GCP project, using molecular markers to develop salt-tolerant rice, was a real eye-opener for her, and allowed her to truly ‘see’ how applied science and such a practical project would have a direct impact on her country’s food security, now and in the future. More

Sigrid Heuer

Sigrid Heuer

Our next scientist is also truly motivated by putting theory into practice through the application of upstream research all the way down the river, and directly into farmers’ fields. Sigrid Heuer (now with the Australian Centre for Plant Functional Genomics), a German national, has pursued her scientific ventures in Europe, Africa, Asia, and now Oceania, with many challenges along the way. Enter the Generation Challenge Programme, and the chance for Sigrid (then at IRRI)  to lead a major project, the Pup1 rice phosphorus uptake project, which taught Sigrid the A–Z of project management, and gave her ample scope for professional growth. Her team made a major scientific breakthrough, which was not only documented in international journals, but was also widely covered by global media.  From this pinnacle, Sigrid  passed on the baton to other scientists and moved on to new conquests. More

Arllet Portugal

Arllet Portugal

Now, all this research we’ve been celebrating generates a massive amount of data, as you can well imagine. What exactly can our scientists do with all that data, and how can they organise them? GCP’s Arllet Portugal, hailing from The Philippines, gives us the lowdown on smart and SHARP data management whilst also giving us some insights into how she started out on the long and winding road to leading data management for GCP’s Integrated Breeding Platform. In particular, Arllet describes the considerable challenge of changing researchers’ mindsets regarding the importance of effective data management in the context of their research, and enthuses over the excitement with which developing-country researchers welcome the GCP-funded electronic tablets they now use to collect and record data directly in the field. More

Armin Bhuiya

Armin Bhuiya

If there were a muse for young women scientists, it might very well be the subject of our next blogpost profile, Armin Bhuiya (Bangladesh Rice Research Institute). After completing her master’s degree on hybrid rice in her native Bangladesh, Armin was already thinking like a true change-catalyst scientist, trying to discover what line of research would be the most useful for her country and the world. After much deliberation, she embarked on a PhD focusing on developing salt- and submergence-tolerant rice. This wise choice would take her to study under the expert eye of Abdelbagi Ismail at IRRI, in The Philippines, with the helping hand of a GCP–DuPont postgraduate fellowship. There, she learnt much in the way of precise and meticulous research, while also taking advantage to self-train in modern molecular plant breeding methods. Our bright resourceful student has now advanced to the patient erudite teacher – as she takes home her knowledge of high-tech research methods to share with her colleagues and students in Bangladesh. More

Elizabeth Parkes

Elizabeth Parkes

Hello Africa! Switching continents and media, we now we move from the written medium to tune in to the melodic tones of Elizabeth Parkes (Crops Research Institute [CRI] of Ghana’s Council for Scientific and Industrial Research [CSIR], currently on leave of absence at the International Institute of Tropical Agriculture [ IITA]). We’re now at profile number seven in GCP’s gallery of women in science. Elizabeth, who is GCP’s Lead Cassava Researcher in Ghana, narrates an all-inclusive engaging story on the importance to agriculture of women scientists, women farmers, and cassava the wonder crop – all captured on memorable sound waves in this podcast.

If the gravity of words inscribed holds more weight, you can also read in depth about Elizabeth in a blogpost on this outstanding sister of science. Witness the full radiance of Elizabeth’s work in the life-changing world in which she operates; as she characteristically says, “I’ve pushed to make people recognise that women can do advanced agricultural science, and do it well.” And she is no exception to her own rule, as she grew professionally, apparently keeping pace with some of the giant cassava she has helped to develop through the years. But it is her role as nurturer, mentor and teacher that really raises her head-and-shoulders above the rest, from setting up a pioneering biotech lab at CRI–CSIR to conscientiously mentoring her many students and charges in work as in life, because, for Elizabeth, capacity building and cassava are inextricably coupled! More

Marie-Noëlle Ndjiondjop

Marie-Noëlle Ndjiondjop

In the wake of some recent high-profile screen awards, we close our multimedia expo with impressions of our science sisterhood through the medium of the seventh art: the magic visual world of the movies!  A good fit for a Friday!

The following tasteful and tasty (you’ll see why!) blogpost takes our film fans right onto the red carpet to rub shoulders with our scientific screen stars!

The first screen star you’ll meet is Marie-Noëlle Ndjiondjop (Africa Rice Center), Principal Investigator (PI) of GCP’s Rice Research Initiative, who opens the video-viewing session with seven succulent slices of rice research delight. Her movies are set in the rice-growing lands of Africa, where this savoury cereal is fast becoming a staple, and tackles the tricky topics of rice-growing constraints, capacity building, molecular breeding methods, and the colossal capacity of community in collaborative research projects.

Jonaliza Lanceras-Siangliw

Jonaliza Lanceras-Siangliw

The following feature introduces the talented GCP PI Jonaliza Lanceras-Siangliw (BIOTEC, Thailand), whose community-minded project, set in the Mekong region, focused on strengthening rice breeding programmes by using a genotyping building strategy and improving phenotyping capacity for biotic and abiotic stresses. Though this title is something of a spoiler alert, we hope you tune in to this comprehensive reel to see the reality of molecular rice breeding in the Mekong. More

Soraya Leal-Bertioli

Soraya Leal-Bertioli

Last, and by no means least, is a captivating collage of clips featuring GCP researcher, Soraya Leal-Bertioli (EMBRAPA, Brazil) waxing lyrical about that hard genetic nut to crack: the groundnut, and how GCP’s Tropical Legumes I (TLI) project was crucial in getting the crop breeding community to share genetic resources, molecular markers, knowledge, and tools on a cross-continental initiative breaking boundaries in multiple ways. Video collage

Links

Dec 122013
 

Down memory lane with Masdiar Bustamam, from generation to generation

Masdiar Bustamam

In some circles, Masdiar Bustamam (pictured right) is a mother figure of molecular breeding in Indonesia. In a marathon career spanning 37 years as a horticulturist and agricultural researcher, she helped develop and nurture the practice at the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD).  Staying with the marathon metaphor, this quote from a celebrated middle- and long-distance Kenyan champion runner, Kipchoge Keino, is very apt: “This life we have is short, so let us leave a mark for people to remember.”

Back to Masdiar: having retired in early 2012, we were recently lucky enough to gain a rare insight into Masdiar’s life, and to witness the mark she has already made, by simply tagging along when she checked in on two of her ICABIOGRAD charges and mentees whose PhD studies were supported by GCP – Wening Enggarin and Joko Prasetiyono. At ICABIOGRAD, Wening and Joko have both taken the torch from Masdiar for GCP projects, as well as for other projects.

She was the best teacher for me … instilled in me a spirit to never lose hope in the research I’m doing – Joko

She was a great role model… Her persistence and positive can-do nature was exactly what I needed as a young researcher … to not just offer me assistance in my work but also in life and religion. For me, she has become a second mother  – Wening

… That project really helped us out a lot and we are grateful to GCP  for recognising the potential in us and supporting it – Masdiar

Here’s more of what Masdiar (and her charges) had to say as we tagged along, and chatted her up…

Tell us about your early life
I grew up and lived in West Java for most of my life. My father was a farmer and my mother a housewife. I was their first of five children.

I went to Andalas University in Padang and graduated with a Bachelor in Biology in 1974. After graduating, I worked as a staff researcher at a local horticulture research institute focusing on pests and diseases, particularly fungi in tomato soils. I was lucky early in my career to have opportunities to visit research institutes in The Netherlands, Japan and USA, all of which enhanced my skills. While in USA, I completed my Masters in rice blast disease – a fungus-related disease, which severely hampers rice yields in Indonesia, and all around the world.

After my time in USA, I accepted a position at the International Rice Research Institute (IRRI) in The Philippines. This was the start of the second phase of my career, in which I began to focus on molecular biology. When I returned from The Philippines, I realised that we needed to improve our capacity to use molecular markers for breeding, which led me to take a job at ICABIOGRAD.

Setting up a lab – GCP lends a hand
When I first started at ICABIOGRAD we had empty benches. It took a lot of time and money to fill them with the equipment we have today. Rebecca Nelson from Cornell University in USA provided us with a lot of support in getting us started. We were involved in one of her GCP projects for two years working on blast resistance in rice.

We were also working on another GCP project led by Abdelbagi Ismail studying phosphorus-deficiency tolerance in rice too, dubbed the Pup1 project. Joko was actually my PhD student for that project and did a lot of the work.

Selecting Pup1 lines in farmers' fields in Sukabumi, West Java, in 2010. L–R: Masdiar Bustamam, Tintin Suhartini and Ida Hanarida Sumantri.

Selecting Pup1 lines in farmers’ fields in Sukabumi, West Java, in 2010. L–R: Masdiar Bustamam, Tintin Suhartini and Ida Hanarida Sumantri.

Both Rebecca and Adbdelbagi helped me draft a proposal to GCP in 2007 for a project to enhance our capacity in phenotyping and molecular analysis to develop elite rice lines suitable for Indonesia’s upland regions. We had the understanding to do the science, but needed to enhance our facilities to carry it out.

That project really helped us out a lot and we are grateful to GCP  for recognising the potential in us and supporting it.”

GCP recognised the need for such a project as many of Indonesia’s brightest researchers were leaving the country because of the lack of suitable facilities, and so funded the two-year ICABIOGRAD-defined capacity-building project. The grant covered – among other areas – intensive residential staff training at IRRI; PhD student support, which allowed Wening to complete her PhD; infrastructure such as a moist room, temperature-controlled centrifuge apparatus, computers and appropriate specialised software; and blast and inoculation rooms.

Writer’s note: The tailor-made grantee-driven capacity-building project above was a cornerstone of  GCP Phase I’s capacity-building strategy, and was dubbed ‘Capacity building à la carte’. With this historical note, we take an interlude here, to tour the facilities Masdiar has mentioned above.

Our first stop is the Rice Blast Nursery…

....Front view...

….Front view…

...side view...

…side view…

 

 

 

 

 

 

 

 

... and a close-up on the sign in the side view.

… and a close-up on the sign in the side view.

 

Next, we visit the Inoculation and Moist Rooms…

 

Inoculation and Moist Rooms

Inoculation and Moist Rooms…

 

Close-up

…and a close-up on the sign at the front.

 

 

 

 

 

 

 

After our tour of the facilities, Masdiar resumes her story: “That project really helped us out a lot and we are grateful to GCP  for recognising the potential in us and supporting it so that researchers like Wening bloom and blossom, now and into the future,” says Masdiar glowingly of one of her mentees and successors.

I’m proud of how they have matured and I’m really looking forward to when they and their teams produce new rice varieties, from the facilities I helped establish, that will help the farmers…I sacrificed what I enjoyed doing for a challenge whose benefits I recognised for my country.”

Mission-driven researcher, nurturer and mentor, all rolled into one
For Masdiar, it wasn’t work, but rather a passion and a hobby. “Throughout my career, I always enjoyed research, especially in plant pathogens,” she remembers. “Working with biotechnology was difficult because I didn’t have a background in the area. I sacrificed what I enjoyed doing for a challenge whose benefits I recognised for my country.”

Photo: ICABIOGRAD

From generation to generation: Masdiar (2L) drops in on her charges and torch-bearers at ICABIOGRAD’s Molecular Biotechnology Lab. L–R: Wening Enggarini, Masdiar Bustamam, Tasliah Zulkarnaeni, Ahmad Dadang and Reflinur Basyirin.

In the later half of her career, Masdiar recollects how she enjoyed training and mentoring younger researchers like Joko and Wening. “I’m proud of how they have matured and I’m really looking forward to when they and their teams produce new rice varieties, from the facilities I helped establish, that will help the farmers.”

Both Joko and Wening attest that Masdiar’s support and supervision were vital for their professional development and consequent career advancement. “She was the best teacher for me. She taught me how to manage a project, how to forge international collaborations, and how to write a good publication,” remembers Joko. “She also instilled in me a spirit to never lose hope in the research I’m doing.”

“She was a great role model for me!” exclaims Wening proudly. “Her persistence and positive can-do nature was exactly what I needed as a young researcher who was just starting a career. Even more so was her ability to take time out of her busy day to not just offer me assistance in my work but also in life and religion. For me, she has become a second mother  in this life. I’m blessed to be so lucky!”

Clearly, Masdiar has made her mark, leaving a cross-generational living legacy in molecular breeding embodied in these young researchers.

Links

  • Masdiar’s project report, with a picture of the blast nursery under construction (p 156 in this PDF)
  • Photo-story on Facebook
  • Rebecca Nelson’s project, Targeted discovery of superior disease QTL alleles in the maize and rice genomes (p 16 in this PDF)
  • GCP’s capacity building

 

cheap ghd australia