May 122014
 

 

Omari Mponda

Omari Mponda

After getting a good grounding on the realities of groundnut research from Vincent, our next stop is East Africa, Tanzania, where we meet Omari Mponda (pictured). Omari is a Principal Agricultural Officer and plant breeder at Tanzania’s Agricultural Research Institute (ARI), Naliendele, and country groundnut research leader for the Tropical Legumes I (TLI) project, implemented through our Legumes Research Initiative.  Groundnut production in Tanzania is hampered by drought in the central region and by rosette and other foliar diseases in all regions. But all is not bleak, and there is a ray of hope: “We’ve been able to identify good groundnut-breeding material for Tanzania for both drought tolerance as well as disease resistance,” says Omari. Omari’s team are also now carrying their own crosses, and happy about it. Read on to find out why they are not labouring under the weight of the crosses they carry…

…we have already released five varieties…TLI’s major investment in Tanzania’s groundnut breeding has been the irrigation system… Frankly, we were not used to being so well-equipped!”

Q: How  did you go about identifying appropriate groundnut-breeding material for Tanzania?
A: We received 300 reference-set lines from ICRISAT [International Crops Research Institute for the Semi-Arid Tropics], which we then genotyped over three years [2008– 2010] for both drought tolerance and disease resistance. After we identified the best varieties, these were advanced to TLII [TLI’s sister project] for participatory variety selection with farmers in 2011–2012, followed by seed multiplication. From our work with ICRISAT, we have already released five varieties.

Harvesting ref set collection at Naliendele_w

Harvesting the groundnut reference-set collection at Naliendele. A ‘reference set’ is a sub-sample of existing germplasm collections that facilitates and enables access to existing crop diversity for desired traits, such as drought tolerance or resistance to disease or pests.

ARI–Naliendele has also benefitted from both human and infrastructure capacity building. Our scientists and technicians were trained in drought phenotyping at ICRISAT Headquarters in India. One of our research assistants, Mashamba Philipo, benefitted from six-month training, following which he advanced to an MSc specialising in drought phenotpying using molecular breeding. In his work, he is now using drought germplasm received from ICRISAT. In terms of laboratory and field infrastructure, the station got irrigation equipment to optimise drought-phenotyping trials. Precision phenotyping and accurate phenotypic data are indispensable for effective molecular breeding. To facilitate this, ARI–Naliendele benefitted from computers, measuring scales, laboratory ware and a portable weather station, all in a bid to assure good information on phenotyping. But by far, TLI’s major investment in Tanzania’s groundnut breeding has been the irrigation system which is about to be completed. This will be very useful as we enter TLIII for drought phenotyping.

 

For us, this is a big achievement to be able to do national crosses. Previously, we relied on ICRISAT…we are advancing to a functional breeding programme in Tanzania… gains made are not only sustainable, but also give us independence and autonomy to operate..We developing-country scientists are used to applied research and conventional breeding, but we now see the value and the need for adjusting ourselves to understand the use of molecular markers in groundnut breeding.”

Omari (right), with Hannibal Muhtar (left), who was contracted by GCP to implement infrastructure improvement for ARI Naliendele. See http://bit.ly/1hriGRp

Flashback to 2010: Omari (right), with Hannibal Muhtar (left), who was contracted by GCP to implement infrastructure improvement for ARI Naliendele, and other institutes. See http://bit.ly/1hriGRp

Q: What difference has participating in TLI made?
A: Frankly, we were not used to being so well-equipped, neither with dealing with such a large volume as 300 lines! But we filtered down and selected the well-performing lines which had the desired traits, and we built on these good lines. The equipment purchased through the project not only helped us with the actual phenotyping and being able to accurately confirm selected lines, but also made it possible for us to conduct off-season trials.

We’re learning hybridisation skills so that we can use TLI donors to improve local varieties, and our technicians have been specifically trained in this area. For us, this is a big achievement to be able to do national crosses. Previously, we relied on ICRISAT doing the crosses for us, but we can now do our own crosses. The difference this makes is that we are advancing to a functional breeding programme in Tanzania, meaning the gains made are not only sustainable, but also give us independence and autonomy to operate. Consequently, we are coming up with other segregating material from what we’ve already obtained, depending on the trait of interest we are after.

Another big benefit is directly interacting with world-class scientists in the international arena through the GCP community and connections – top-rated experts not just from ICRISAT, but also from IITA, CIAT, EMBRAPA [Brazil], and China’s DNA Research Institute. We have learnt a lot from them, especially during our annual review meetings. We developing-country scientists are used to applied research and conventional breeding, but we now see the value and the need for adjusting ourselves to understand the use of molecular markers in groundnut breeding. We now look forward to TLIII where we expect to make impact by practically applying our knowledge to groundnut production in Tanzania.

Interesting! And this gets us squarely back to capacity building. What are your goals or aspirations in this area?
A: Let us not forget that TLI is implemented by the national programmes. In Africa, capacity building is critical, and people want to be trained. I would love to see fulltime scientists advance to PhD level in these areas which are a new way of doing business for us. I would love for us to have the capacity to adapt to our own environment for QTLs [quantitative trait loci], QTL mapping, and marker-assisted selection. Such capacity at national level would be very welcome. We also hope to link with advanced labs such as BecA [Biosciences eastern and southern Africa] for TLI activities, and to go beyond service provision with them so that our scientists can go to these labs and learn.

There should also be exchange visits between scientists for learning and sharing, to get up to date on the latest methods and technologies out there. For GCP’s Integrated Breeding Platform [IBP], this would help IBP developers to design reality-based tools, and also to benefit from user input in refining the tools.

Links

SLIDES by Omari on groundnut research and research data management in Tanzania

 

Apr 042014
 

 

Phil Roberts

Phil Roberts

Like its legume relatives, cowpeas belong to a cluster of crops that are still referred to in some spheres of the crop-breeding world as ‘orphan crops’. This, because they have largely been bypassed by the unprecedented advances that have propelled ‘bigger’ crops into the world of molecular breeding, endowed as they are with the genomic resources necessary. But as we shall hear from Phil Roberts (pictured), of the University of California–Riverside, USA, and also the cowpea research leader for the Tropical Legumes I Project (TLI), despite the prefix in the  name, this ‘little kid’ in the ‘breeding block’ called cowpeas is uncowed and unbowed, confidently striding into the world of modern crop breeding, right alongside the ‘big boys’! What more on this new kid on the block of modern molecular breeding? Phil’s at hand to fill us in…

Vigna the VIP that shrinks with the violets
But is no shrinking violet, by any means, as we shall see. Also known  as niébé in francophone Africa, and in USA as black-eyed peas (no relation to the musical group, however, hence no capitals!), this drought-tolerant ancient crop (Vigna unguiculata [L] Walp) originated in West Africa. It is highly efficient in fixing nitrogen in the unforgiving and dry sandy soils of the drier tropics. And that is not all. This modest VIP is not addicted to the limelight and is in fact outright lowly and ultra-social: like their fetching African counterpart in the flower family, the African violet, cowpeas will contentedly thrive under the canopy of others, blooming in the shade and growing alongside various cereal and root crops, without going suicidal for lack of limelight and being in the crowd. With such an easy-going personality, added to their adaptability, cowpeas have sprinted ahead to become the most important grain legume in sub-Saharan Africa for both subsistence and cash. But – as always – there are two sides to every story, and sadly, not all about cowpeas is stellar…

Improved varieties are urgently needed to narrow the gap between actual and potential yields… modern breeding techniques… can play a vital role”

A cowpea experimental plot at IITA.

A cowpea experimental plot at IITA.

What could be, and what molecular breeding has to do with it
Yields are low, only reaching a mere 10 to 30 percent of their potential, primarily because of insect- and disease-attack, sometimes further compounded by chronic drought in the desiccated drylands cowpeas generally call home. “Improved varieties are urgently needed to narrow the gap between actual and potential yields,” says Phil. The cowpea project he leads in TLI is implemented through GCP’s Legume Research Initiative. Phil adds, “Such varieties are particularly valuable on small farms, where costly agricultural inputs are not an option. Modern breeding techniques, resulting from the genomics revolution, can play a vital role in improving cowpea materials.”

He and his research team are therefore developing genomic resources that country-based breeding programmes can use. Target-country partners are Institut de l’Environnement et de Recherches Agricoles (INERA) in Burkina Faso; Universidade Eduardo Mondlane in Mozambique; and Institut Sénégalais de Recherches Agricoles (ISRA) in Senegal. Other partners are the International Institute of Tropical Agriculture (IITA) headquartered in Nigeria and USA’s Feed the Future Innovation Labs for Collaborative Research on Grain Legumes and for Climate Resilient Cowpeas.

It’s a lot easier and quicker, and certainly less hit-or-miss than traditional methods!… By eliminating some phenotyping steps and identifying plants carrying positive-trait alleles for use in crossing, they will also shorten the time needed to breed better-adapted cowpea varieties preferred by farmers and markets.”

Cowpea seller at Bodija Market, Ibadan, Nigeria.

Cowpea seller at Bodija Market, Ibadan, Nigeria.

 

On target, and multiplying the score
[First, a rapid lesson on plant-genetics jargon so we can continue our story uninterrupted: ‘QTLs’ stands for quantitative trait loci, a technical term in quantitative genetics to describe the locations where genetic variation is associated with variation in a quantitative trait. QTL analysis estimates how many genes control a particular trait. ‘Allele’ means an alternative form of a the same gene. Continuing with the story…]

The curved shape means that these cowpea pods are mature and ready for harvesting.

Culinary curves and curls: the curved shape means that these cowpea pods are mature and ripe for harvesting.

“We first verified 30 cowpea lines as sources of drought tolerance and pest resistance,” Phil recalls. “Using molecular markers, we can identify the genomic regions of the QTLs that are responsible for the desired target phenotype, and stack those QTLs to improve germplasm resistance to drought or pests. It’s a lot easier and quicker, and certainly less hit-or-miss than traditional methods! However, standing alone, QTLs are not the silver bullet in plant breeding. What happens is that QTL information complements visual selection. Moreover, QTL discovery must be based on accurate phenotyping information, which is the starting point, providing pointers on where to look within the cowpea genome. Molecular breeding can improve varieties for several traits in tandem,” suggests Phil. “Hence, farmers can expect a more rapid delivery of cowpea varieties that are not only higher-yielding, but also resistant to several stresses at once.”

And what are Phil and team doing to contribute to making this happen?

The genomic resources from Phase I – especially genotyping platforms and QTL knowledge – are being used in Phase II of the TLI Project to establish breeding paradigms, using molecular breeding approaches,” Phil reveals. He adds that these approaches include marker-assisted recurrent selection (MARS) and marker assisted back-crossing (MABC). “These paradigms were tested in the cowpea target countries in Africa,” Phil continues. “By eliminating some phenotyping steps and identifying plants carrying positive-trait alleles for use in crossing, they will also shorten the time needed to breed better-adapted cowpea varieties preferred by farmers and markets.”

… best-yielding lines will be released as improved varieties… others will be used…as elite parents…”

Future work
What of the future? Phil fills us in: “The advanced breeding lines developed in TLI Phase II are now entering multi-location performance testing in the target African countries. It is expected that best-yielding lines will be released as improved varieties, while others will be used in the breeding programmes as elite parents for generating new breeding lines for cowpeas.”

Clearly then, the job is not yet done, as the ultimate goal is to deliver better cowpeas to farmers. But while this goal is yet to be attained and – realistically – can only be some more years down the road, it is also equally clear that Phil and his team have already chalked up remarkable achievements in the quest to improve cowpeas. They hope to continue pressing onwards and upwards in the proposed Tropical Legumes III Project, the anticipated successor to TLI and its twin project TLII – Tropical Legumes II.

Links

Mar 202014
 

 

Jeff Ehlers

Jeff Ehlers

Our guest today is Jeff Ehlers (pictured), Programme Officer at the Bill & Melinda Gates Foundation. Jeff’s an old friend of GCP, most familiar to the GCP community in his immediate past stomping grounds at the University of California, Riverside (UCR), USA, leading our research to improve cowpea production in the tropics, for which sunny California offers a perfect spot for effective phenotyping. Even then, Jeff was not new to CGIAR, as we’ll see from his career crossings. But let’s not get ahead of ourselves in narrating Jeff’s tale. First, what would high-end cowpea research have to do with crusading and catapults? Only Jeff can tell us, so please do read on!

The GCP model was a very important way of doing business for CGIAR and the broader development community, enabling partnerships between international research institutes, country programmes and CGIAR. This is particularly important as the possibilities of genomics-led breeding become even greater…If anything, we need to see more of this collaborative model.”

Growing green, sowing the seed, trading glory for grassroots
Growing up in USA’s Golden State of California, green-fingered Jeff had a passion for cultivating the land rather than laboratory samples, harbouring keen ambitions to become a farmer. This did not change with the years as he transited from childhood to adolescence. The child grew into a youth who was an avid gardener: in his student days, Jeff threw his energy into creating a community garden project ‒ an initiative which promptly caught the eye of his high school counsellor, who suggested Jeff give the Plant Science Department at UCR a go for undergraduate studies.

And thus the seeds of a positively blooming career in crop research were sown. However, remaining true to the mission inspired by his former community-centred stomping grounds, a grassroots focus triumphed over glory-hunting for Jeff, who – no stranger to rolling his sleeves up and getting his fingers into the sod – found himself, when at the University of California, Davis, for his advanced studies, embarking on what was to become a lifelong undertaking, first at the International Institute of Tropical Agriculture (IITA) and then at UCR, dedicated to a then under-invested plant species straggler threatening to fall by the research world’s wayside. With a plethora of potential genomic resources and modern breeding tools yet to be tapped into, Jeff’s cowpea crusade had begun in earnest…

GCP’s TLI was essential in opening that door and putting us on the path to increased capability – both for cowpea research enablement and human capacity”

Straggler no more: stardom beckons, and a place at the table for the ‘orphan’
And waiting in the wings to help Jeff along his chosen path was the Generation Challenge Programme (GCP), which, in 2007, commissioned Jeff’s team to tackle the cowpea component of the flagship Tropical Legumes I (TLI) project, implemented by GCP under the Legumes Research Initiative. TLI is mainly funded by the Bill & Melinda Gates Foundation. The significance of this project, Jeff explains, was considerable: “The investment came at a very opportune time, and demonstrated great foresight on the part of both GCP and the Foundation.” Prior to this initiative, he further explains, “there had been no investment by anyone else to allow these orphan crops to participate in the feast of technologies and tools suddenly available and that other major crops were aggressively getting into. Before GCP and Gates funding for TLI came along, it was impossible to think about doing any kind of modern breeding in the orphan grain legume crops. GCP’s TLI was essential in opening that door and putting us on the path to increased capability – both for cowpea research enablement and human capacity.”

Flashback: UCR cowpea team in 2009. Left to right: Wellington Muchero, Ndeye Ndack Diop (familiar, right?!), Raymond Fenton, Jeff Ehlers, Philip Roberts and Timothy Close in a greenhouse on the UCR campus, with cowpeas in the background. Ndeye Ndack and Jeff seem to love upstaging each other. She came to UCR as a postdoc working under Jeff, then she moved to GCP, with oversight over the TLI project, thereby becoming Jeff's boss, then he moved to the Foundation with oversight over TLI. So, what do you think might be our Ndeye Ndack's next stop once GCP winds up in 2014? One can reasonably speculate....!

Flashback: UCR cowpea team in 2009. Left to right: Wellington Muchero, Ndeye Ndack Diop (familiar, right?!), Raymond Fenton, Jeff Ehlers, Philip Roberts and Timothy Close in a greenhouse on the UCR campus, with cowpeas in the background. Ndeye Ndack and Jeff seem to love upstaging each other. She came to UCR as a postdoc working under Jeff, then she moved to GCP, with oversight over the TLI project, thereby becoming Jeff’s boss, then he moved to the Foundation with oversight over TLI. So, what do you think might be our Ndeye Ndack’s next stop once GCP winds up in 2014? One can reasonably speculate….!

Of capacity building, genomics and ‘X-ray’ eyes
This capacity-building cornerstone – which, in the case of the TLI project, is mainly funded by the European Commission – is, says Jeff, a crucial key to unlocking the potential of plant science globally. “The next generation of crop scientists ‒ particularly breeders ‒ need to be educated in the area of genomics and genomics-led breeding.”

While stressing the need for robust conventional breeding efforts, Jeff continues: ”Genomics gives the breeder X-ray eyes into the breeding programme, bringing new insights and precision that were previously unavailable.”

In this regard, Jeff has played a leading role in supporting skill development and organising training for his team members and colleagues across sub-Saharan Africa, meaning that partners from Mozambique, Burkina Faso and Senegal, among others, are now, in Phase II of the TLI project, moving full steam ahead with marker-assisted and backcross legume breeding at national level, thanks to the genotyping platform and genetic fingerprints from Phase I of the project. The genotyping platform, which is now publicly available to anyone looking to undertake marker-assisted breeding for cowpeas, is being widely used by research teams not only in Africa but also in China. Thanks in part then to Jeff and his team, the wheels of the genomics revolution for cowpeas are well and truly in motion.

Undergoing the transition from phenotypic old-school plant breeder to modern breeder with all the skills required was a struggle…it was challenging to teach others the tools when I didn’t know them myself!…without GCP, I would not have been able to grow in this way.”

Talking about a revolution, comrades-in-arms, and a master mastering some more
But as would be expected, the road to revolution has not always been entirely smooth. Reflecting on some of the challenges he encountered in the early TLI days, and highlighting the need to invest not only in new students, but also in upgrading the existing skills of older scientists, Jeff tells of a personal frustration that had him battling it out alongside the best of them: “Undergoing the transition from phenotypic old-school plant breeder to modern breeder with all the skills required was a struggle,” he confides, continuing: “It was challenging to teach others the tools when I didn’t know them myself!”

Thus, in collaboration with his cowpea comrades from the global North and South, Jeff braved the steep learning curve before him, and came out on the other side smiling – an accomplishment he is quick to credit to GCP: “It was a very interesting and fruitful experience, and without GCP, I would not have been able to grow in this way,” he reveals. Holding the collaborative efforts facilitated by the broad GCP network particularly dear, Jeff continues: “The GCP model was a very important way of doing business for CGIAR and the broader development community, enabling partnerships between international research institutes, country programmes and CGIAR. This is particularly important as the possibilities of genomics-led breeding become even greater…If anything, we need to see more of this collaborative model.”

GCP’s Integrated Breeding Platform addresses the lack of modern breeding skills in the breeding community as a whole, globally…The Platform provides extremely valuable and much-needed resources for many public peers around the world, especially in Africa…”

One initiative which has proved especially useful in giving researchers a leg up in the mastery of modern breeding tools, Jeff asserts, is GCP’s Integrated Breeding Platform (IBP): “IBP addresses the lack of modern breeding skills in the breeding community as a whole, globally. By providing training in the use of genomic tools that are becoming available, from electronic capture of data through to genotyping, phenotyping, and all the way to selective decision-making and analysis of results, IBP will play a critical role in helping folks to leverage on the genomics revolution that’s currently unfolding,” Jeff enthuses, expanding: “The Platform provides extremely valuable and much-needed resources for many public peers around the world, especially in Africa where such one-off tools that are available commercially would be otherwise out of reach.”

Conqueror caparisoned to catapult: life on the fast lane and aiming higher
Well-versed in conquering the seemingly unobtainable, Jeff shares some pearls of wisdom for young budding crop scientists:”Be motivated by the mission, and the ideas and the science, and not by what’s easy, or by what brings you the most immediate gratification,” he advises, going on to explain: “Cowpeas have been through some really tough times. Yet, my partners and I stuck it out, remained dedicated and kept working.” And the proof of Jeff’s persistence is very much in the pudding, with his team at UCR having become widely acclaimed for their success in catapulting cowpeas into the fast lane of crop research.

It was a success that led him to the hallways of the Bill & Melinda Gates Foundation, where, after two decades at UCR, Jeff is currently broadening his legume love affair to also embrace beans, groundnuts, chickpeas, pigeonpeas and soya beans.

February 2014: Jeff donning his new Gates hat (albeit with a literal ICRISAT cap on). Behind him is a field of early maturing pigeonpea experiment at ICRISAT India.

February 2014: Jeff donning his (now-not-so-)new Gates hat and on the road, visiting ICRISAT in India. Behind him is an ICRISAT experimental field of early-maturing pigeonpeas. Here, our conquering crusader is ‘helmeted’ in an ICRISAT cap, even if not horsed and caparisoned for this ‘peacetime’ pigeonpea mission!

On his future professional aspirations, he says: “The funding cut-backs for agriculture which started before 1990 or so gutted a lot of the capacity in the public sector, both in the national programmes in Africa but also beyond. I hope to play a role in rebuilding some of the capacity to ensure that people take full advantage of the technical resources available, and to enable breeding programmes to function at a higher level than they do now.”

Jeff (foreground) inspecting soya bean trials in Kakamega, Kenya.

Jeff (foreground) inspecting soya bean trials in Kakamega, Kenya, in January 2013. Next to Jeff is Emmanuel Monyo, the coordinator of the Tropical Legumes II (TLII) project – TLI’s twin – whose brief is seed multiplication. TLII is therefore responsible for translating research outputs from TLI into tangible products in the form of improved legume varieties.

Whilst it’s been several years since he donned his wellington boots for the gardening project of his youth, what’s clear in this closing statement is an unremitting and deeply ingrained sense of community spirit – albeit with a global outlook – and a fight for the greater good that remain at the core of Jeff’s professional philosophy today.

No doubt, our cowpea champion and his colleagues have come a long way, with foundations now firmly laid for modern breeding in the crop on a global scale, and – thanks to channels now being established to achieve the same for close relatives of the species – all signs indicate that the best is yet to come!

Links

Mar 072014
 
Women in science

“Women can do advanced agricultural science, and do it well!” Elizabeth Parkes, cassava researcher, Ghana

Being a woman scientist in today’s world (or at any time in history!) is no mean feat, science traditionally having been the domain of men. We are therefore drawn to this sub-theme: Inspiring change, in addition to the global theme Equality for women is progress for all, To mark International Women’s Day tomorrow, UNESCO has developed an interactive tool which collates facts and figures from across the world on women in science. The cold scientific truth displayed in the attractive petri dish design shows that only 30 percent of researchers worldwide are women.

At GCP, we have been fortunate enough to have a cross-generational spectrum of, not only women scientists, but that even rarer species, women science leaders – who head a project or suite of projects and activities, and who actively nurture and mentor future science leaders – to ultimately contribute to the fulfilment of our mission: Using genetic diversity and advanced plant science to improve crops for greater food security in the developing world. The United Nations has designated 2014 as the Year of Family Farming. GCP’s women researchers have contributed to improving the lives of their farming counterparts the world over, especially in the developing world where on average, 43 percent of the agricultural labour force are women, rising to 60 percent and 70 percent in some regions. (FAO)

Please mind the gap…to leap to that all-important initiation into science

UNESCO's Women in Science interactive tool

UNESCO’s Women in Science interactive tool

The UNESCO tool mentioned above and embedded to the left allows users to “explore and visualise gender gaps in the pipeline leading to a research career, from the decision to get a doctorate degree to the fields of science that women pursue and the sectors in which they work” with this affirmation: “Perhaps most importantly, the data tool shows just how important it is to encourage girls to pursue mathematics and science at a young age.”

In our International Women’s Day multimedia expo, we profile the life and work of a selection of our smart scientific sisters through words, pictures and sound, to explain just how they overcame obstacles, from taking that first hurdle to study science at an early age, to mobility up the research rungs to reach the very top of their game, all the while balancing work, life and family.

A blogpost fest to introduce our first special guests

Masdiar Bustamam

Masdiar Bustamam

We begin our show with a blogpost fest, and first up is GCP’s original Mother Nature, renowned scientist and constant gardener of the molecular breeding plot, Masdiar Bustamam. After a virtual world-tour of research institutes early on in her career, Masdiar took the knowledge of molecular breeding back home, to the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD), where she personally took up the challenge to work with the fledgling world of biotechnology, set up a lab, and helped establish molecular breeding in her country. In an amazing 37-years-odd research career, Masdiar tended not only tender rice shoots, but also budding blossoms in the form of her many students, whom she nurtured and mentored throughout their studies, and who have now seamlessly inherited her mantle to carry on the mission with the same ever-bright spirit. More

Rebecca Nelson

Rebecca Nelson

We now skip continents and oceans  to meet the feisty, continent- and crop-hopping scientist, Rebecca Nelson (Cornell University, USA). “I wanted to get out into the world and try and have a practical impact instead of doing research for the sake of research,” Rebecca says – and that she did, first leaving her native USA to work in the International Rice Research Institute (IRRI) in the Philippines. There she teamed up with friend and colleague, Masdiar Bustamam, to establish Masdiar’s laboratory at ICABIOGRAD, Indonesia. The American continent then called her back, where she moved countries and institutes, and switched from rice to maize research, marking the launch of her GCP experience – which simultaneously introduced her to her a whole new network of international crop researchers. This rich research tapestry was  woven together by a poignant pain deep in her heart, as a mother herself, of “so many mothers not being able to feed their families.” Rebecca wanted to combat this problem,  and crop science is her weapon. More

Zeba Seraj

Zeba Seraj

Next, we meet another true mother of molecular plant breeding, Zeba Seraj (University of Dhaka, Bangladesh). Zeba, whose mind is perpetually on call in the pursuit of science, has been around the world, and from plants to animals and back again in the course of her multifaceted science career. During her PhD and postdoc experience in the UK, still with fauna, she cultivated her expertise in molecular biology and recombinant DNA technology, but a lack of opportunities in that field back in Bangladesh saw her enter the world of crop science, where she has remained ever since. Back at her alma mater, the University of Dhaka, she founded a molecular biology lab, and has nurtured and inspired generations of young biochemists. Her GCP project, using molecular markers to develop salt-tolerant rice, was a real eye-opener for her, and allowed her to truly ‘see’ how applied science and such a practical project would have a direct impact on her country’s food security, now and in the future. More

Sigrid Heuer

Sigrid Heuer

Our next scientist is also truly motivated by putting theory into practice through the application of upstream research all the way down the river, and directly into farmers’ fields. Sigrid Heuer (now with the Australian Centre for Plant Functional Genomics), a German national, has pursued her scientific ventures in Europe, Africa, Asia, and now Oceania, with many challenges along the way. Enter the Generation Challenge Programme, and the chance for Sigrid (then at IRRI)  to lead a major project, the Pup1 rice phosphorus uptake project, which taught Sigrid the A–Z of project management, and gave her ample scope for professional growth. Her team made a major scientific breakthrough, which was not only documented in international journals, but was also widely covered by global media.  From this pinnacle, Sigrid  passed on the baton to other scientists and moved on to new conquests. More

Arllet Portugal

Arllet Portugal

Now, all this research we’ve been celebrating generates a massive amount of data, as you can well imagine. What exactly can our scientists do with all that data, and how can they organise them? GCP’s Arllet Portugal, hailing from The Philippines, gives us the lowdown on smart and SHARP data management whilst also giving us some insights into how she started out on the long and winding road to leading data management for GCP’s Integrated Breeding Platform. In particular, Arllet describes the considerable challenge of changing researchers’ mindsets regarding the importance of effective data management in the context of their research, and enthuses over the excitement with which developing-country researchers welcome the GCP-funded electronic tablets they now use to collect and record data directly in the field. More

Armin Bhuiya

Armin Bhuiya

If there were a muse for young women scientists, it might very well be the subject of our next blogpost profile, Armin Bhuiya (Bangladesh Rice Research Institute). After completing her master’s degree on hybrid rice in her native Bangladesh, Armin was already thinking like a true change-catalyst scientist, trying to discover what line of research would be the most useful for her country and the world. After much deliberation, she embarked on a PhD focusing on developing salt- and submergence-tolerant rice. This wise choice would take her to study under the expert eye of Abdelbagi Ismail at IRRI, in The Philippines, with the helping hand of a GCP–DuPont postgraduate fellowship. There, she learnt much in the way of precise and meticulous research, while also taking advantage to self-train in modern molecular plant breeding methods. Our bright resourceful student has now advanced to the patient erudite teacher – as she takes home her knowledge of high-tech research methods to share with her colleagues and students in Bangladesh. More

Elizabeth Parkes

Elizabeth Parkes

Hello Africa! Switching continents and media, we now we move from the written medium to tune in to the melodic tones of Elizabeth Parkes (Crops Research Institute [CRI] of Ghana’s Council for Scientific and Industrial Research [CSIR], currently on leave of absence at the International Institute of Tropical Agriculture [ IITA]). We’re now at profile number seven in GCP’s gallery of women in science. Elizabeth, who is GCP’s Lead Cassava Researcher in Ghana, narrates an all-inclusive engaging story on the importance to agriculture of women scientists, women farmers, and cassava the wonder crop – all captured on memorable sound waves in this podcast.

If the gravity of words inscribed holds more weight, you can also read in depth about Elizabeth in a blogpost on this outstanding sister of science. Witness the full radiance of Elizabeth’s work in the life-changing world in which she operates; as she characteristically says, “I’ve pushed to make people recognise that women can do advanced agricultural science, and do it well.” And she is no exception to her own rule, as she grew professionally, apparently keeping pace with some of the giant cassava she has helped to develop through the years. But it is her role as nurturer, mentor and teacher that really raises her head-and-shoulders above the rest, from setting up a pioneering biotech lab at CRI–CSIR to conscientiously mentoring her many students and charges in work as in life, because, for Elizabeth, capacity building and cassava are inextricably coupled! More

Marie-Noëlle Ndjiondjop

Marie-Noëlle Ndjiondjop

In the wake of some recent high-profile screen awards, we close our multimedia expo with impressions of our science sisterhood through the medium of the seventh art: the magic visual world of the movies!  A good fit for a Friday!

The following tasteful and tasty (you’ll see why!) blogpost takes our film fans right onto the red carpet to rub shoulders with our scientific screen stars!

The first screen star you’ll meet is Marie-Noëlle Ndjiondjop (Africa Rice Center), Principal Investigator (PI) of GCP’s Rice Research Initiative, who opens the video-viewing session with seven succulent slices of rice research delight. Her movies are set in the rice-growing lands of Africa, where this savoury cereal is fast becoming a staple, and tackles the tricky topics of rice-growing constraints, capacity building, molecular breeding methods, and the colossal capacity of community in collaborative research projects.

Jonaliza Lanceras-Siangliw

Jonaliza Lanceras-Siangliw

The following feature introduces the talented GCP PI Jonaliza Lanceras-Siangliw (BIOTEC, Thailand), whose community-minded project, set in the Mekong region, focused on strengthening rice breeding programmes by using a genotyping building strategy and improving phenotyping capacity for biotic and abiotic stresses. Though this title is something of a spoiler alert, we hope you tune in to this comprehensive reel to see the reality of molecular rice breeding in the Mekong. More

Soraya Leal-Bertioli

Soraya Leal-Bertioli

Last, and by no means least, is a captivating collage of clips featuring GCP researcher, Soraya Leal-Bertioli (EMBRAPA, Brazil) waxing lyrical about that hard genetic nut to crack: the groundnut, and how GCP’s Tropical Legumes I (TLI) project was crucial in getting the crop breeding community to share genetic resources, molecular markers, knowledge, and tools on a cross-continental initiative breaking boundaries in multiple ways. Video collage

Links

Mar 072014
 
Two in one, in more ways than one
Armin Bhuiya

Armin Bhuiya

Armin Bhuiya (pictured) is a dynamic and lively young geneticist and plant breeder, who has made huge strides in tracking crucial  genes in Bangladeshi rice landraces (or traditional farmer varieties). Armin took a ‘sandwich’ approach twinning two traits  – salt and submergence tolerance – in order to boost farmers’ yields. Her quest for salt-impervious ‘amphibian’ rice has seen her cross frontiers to The Philippines, and back to her native Bangladesh with solutions that will make a difference, borrowing a leaf along the way from the mythical submarine world of Atlantis for life under water. Using cutting-edge crop science, Armin is literally recreating out-of-this-world stuff working two elements of the ancient world  earth and water – plus that commodity that was then so prized enjoying a  premium comparable to gems: salt. Read on! 

A rice heritage, and the ‘sandwich’ saga and submarine search both begin…

“My father worked at the Bangladesh Rice Research Institute (BRRI), which basically means I grew up in rice research. You could say that I was born and bred in agriculture and this inspired me to study agriculture myself,” says Armin. As a result of these early experiences, Armin started a master’s degree in 2006 on genetics and plant breeding, specialising in hybrid rice. Ever since, rice has been her religion, following in the footsteps of her father to join the Bangladesh Rice Research Institute (BRRI).

Her other defining hallmark is her two-in-one approach. Sample this: once she completed her two-in-one master’s, Armin went on to study for a PhD in the same twin areas at Bangladesh Agricultural University. Pondering long and hard on what research would be of most practical use, she asked herself “What is the need? What research will be useful for my country and for the world?” (Editorial aside: out of this world work, apparently…)

Not content  pondering  over the question by herself, her natural two-track approach kicked in. Mulling with her colleagues from BRRI, the answer, it first seemed, was to find ways to produce salt-tolerant high-yielding rice. In Bangladesh and many other parts of South and Southeast Asia, climate change is driving up the sea level, spreading salinity further and deeper across low-lying coastal rice-fields, beyond the bounds where salt-drenched terrain has long been a perennial problem. Modern rice varieties are highly sensitive to salt. So, despite the low yields and quality, farmers continue to favour hardy traditional rice landraces that can take the heat and hit from the salt. Proceeding from this earthy farmer reality and inverting the research–development continuum, Armin needed no further thinking as the farmers showed the way to go. Her role and the difference she could make was to track the ‘treasure’ genes locked in these landraces that were transferred to high-yielding but salt-sensitive rice varieties, to fortify them against salt.

But that was not all. There’s power in numbers and consulting others, harnessing the best in diversity. In comes the two-track approach again, with Armin now turning to fellow scientists again, with the reality from farmers. Upon further consultations with colleagues, yet another fundamental facet emerged that could not be ignored. Apparently, salt-impervious rice alone would not be not enough, and here’s why. Salt and tides aside, during the rainy season inland, flash floods regularly submerge the fields, literally drowning the crop. More than 20 million hectares in South and Southeast Asia are affected – including two million hectares in coastal Bangladesh alone. The southern belt of Bangladesh is particularly affected, as modern varieties are sensitive to not only submergence but also salinity. So Armin had her work cut out for her, and she now knew that for the fruit of her labour to boost rice production in coastal regions as well (two tracks again! Inland and coastal low-lying rice-lands), what she needed to do was to work on producing high-yielding, salt-impervious, ‘amphibian’ rice that could withstand not only salinity but also submarine life. In other words, pretty much rice for a latter-day real-life rendition of the mythical Atlantis.

Armin has successfully incorporated dual tolerance to salinity and submergence in the popular Bangladeshi mega-variety BR11. This will provide the ideal salt-tolerant ‘amphibian’ rice suitable for farmers in the flood-prone salty-water-drenched swaths of southern Bangladesh.

Through the door of opportunity
The opportunity that opened the door for Armin to fulfil her dream was a DuPont Pioneer postgraduate fellowship implemented by GCP. The competitive programme provides grants for postgraduate study in plant breeding and genetics to boost the yields of staple food crops. This fellowship took Armin to Filipino shores and the molecular breeding labs at the International Rice Research Institute (IRRI). Here she got what she terms a golden opportunity to work under the tutelage of Abdelbagi Ismail, a leading plant physiologist focusing on overcoming abiotic stresses. From him, Armin learnt how carry out the precise meticulous research required for identifying quantitative trait loci (QTLs).

Armin at work at the greenhouse.

Armin at work at the IRRI greenhouse in 2011.

Armin conducted her research with two different mapping populations, both derived from Bangladeshi landraces (Kutipatnai and Ashfal). She found a total of nine quantitative trait loci (QTLs) from one mapping population and 82 QTLs from another for tolerance to salinity stress at seedling stage (QTL is a gene locus where allelic variation is associated with variation in a quantitative trait). Incorporating these additional genes into a high-yielding variety will help to develop promising salt-tolerant varieties in future. She has also successfully incorporated QTLs for dual tolerance to salinity (Saltol) and submergence (Sub1) in the popular Bangladeshi mega-variety, BR11. Stacking (or ‘pyramiding’ in technical terms) Saltol and Sub1 QTLs in BR11 will provide the ideal salt-tolerant ‘amphibian’ rice suitable for farmers in the flood-prone salty-water-drenched swaths of southern Bangladesh.

I know what to do and what is needed… I am going to share what I learned with my colleagues at BRRI and agricultural universities, as well as teach these techniques to students”

Dream achiever and sharer: aspiring leader inspiring change
The Pioneer–GCP fellowship has given Armin the opportunity to progress professionally. But, more than that, it means that through this remarkable young scientist, others from BRRI will benefit – as will her country and region. “While I was at IRRI,” Armin says, “I trained myself in modern molecular plant-breeding methods, as I knew that this practical experience in high-tech research methods would definitely help Bangladesh. I know what to do and what is needed. I am going to share what I learned with my colleagues at BRRI and agricultural universities, as well as teach these techniques to students. It makes me very happy and my parents very proud that the fellowship has helped me to make my dream come true.”

Away from professional life, there have been benefits at home too, with these benefits delivered with Armin’s aplomb and signature style in science – doing two in one, in more ways than one. This time around, the approach has led to dual doctorates for a dual-career couple in different disciplines: “When I went to The Philippines” Armin reveals, “my husband decided to come with me, and took the opportunity to study for a PhD in development communications. So we were both doing research at the same time!”

While Armin’s research promises to make a real difference in coastal rice-growing areas, Armin herself has the potential to lead modern plant breeding at her institute, carry GCP work forward in the long term, post-GCP, and to inspire others as she herself was inspired – to make dreams come true and stimulate change. An inspired rice scientist is herself an inspiration. You will agree with us that Armin personifies Inspiring change, our favoured sub-theme for International Women’s Day this year.

Go, Armin, Go! We’re mighty proud of what you’ve achieved, which we have no doubt serves as inspiration for others!

Links

 

Mar 052014
 
Two peas in a pod, hand in hand, 

Elizabeth Parkes

In the past, the assumption was always that ‘Africa can’t do this.’ Now, people see that when given a chance to get round circumstances – as GCP has done for us through the provision of resources, motivation, encouragement and training – Africa can achieve so much!…GCP has made us visible and attractive to others; we are now setting the pace and doing science in a more refined and effective manner…Building human capacity is my greatest joy….I’ve pushed to make people recognise that women can do advanced agricultural science, and do it well. To see a talented woman researcher firmly established in her career and with her kids around her is thrilling….Rural families are held together by women, so if you are able to change their lot, you can make a real mark…” –  Elizabeth Parkes, cassava researcher, Ghana

Elizabeth’s PhD is on cassava genetic diversity, combining ability, stability and farmer preference in Ghana. But for Elizabeth, it is not the academic laurels and limelight but rather, a broader vision of social justice which really drives her: “I see African communities where poverty and hunger are seemingly huge problems with no way out; I’m fortunate to be working on a crop whereby, if I put in enough effort, I can bring some solutions. My primary target group in my research is the less privileged, and women in particular have been my friends throughout. Rural families are held together by women, so if you are able to change their lot, you can make a real mark.”

 

…agricultural research was a man’s job!”

A perennial passion for cassava, and walking with giants: Elizabeth with the pick of the crop for the 2014 cassava harvest season at  IITA, Ibadan, Nigeria.

A perennial passion for cassava, and walking with giants: Elizabeth with the pick of the crop for the 2014 cassava harvest season at IITA, Ibadan, Nigeria.

Prowess and prejudice: Breaking the mould and pioneering into pastures new
On first tentatively dipping her toe into the professional waters of crop science when growing up in her native Ghana, initial reactions from her nearest and dearest suggested that carving out a name for herself in her career of choice was never going to be a walk in the park: “As an only girl among eight  boys of whom three were half-siblings, and the youngest child, my father was not very amused; he thought agricultural research was a man’s job!” she recalls. Undeterred and ever more determined to turn this commonly held canard on its head, Elizabeth went on to bag a Bachelor’s degree in Agriculture, a diploma in Education, and an MPhil degree in Crop Science. During a stint of national service between academic degrees, she approached a scientist engaged in root and tuber projects at Ghana’s Council for Scientific and Industrial Research (CSIR) Crops Research Institute (CRI), offering to carry out some research on cassava, and soon establishing the institute’s first trials in Techiman, in the Brong Ahafo Region,where she was doing her national service. Recognising all the hallmarks of a great scientist, nurturer and leader, her CRI colleagues were quick to welcome this fresh talent into the fold as an Assistant Research Officer, with the full treasure trove of root tuber crops – from cassava to sweet potato to yam and cocoyam, among others – all falling under her remit. Not a bad start for the first woman to be assigned to the project!

Quickly proving herself as a fiercely cerebral researcher with a natural knack for the plant sciences, Elizabeth was encouraged by seasoned (then) GCP scientist, Martin Fregene (their paths had crossed during Elizabeth’s master’s degree thanks to research collaboration with the International Institute of Tropical Agriculture – IITA), to embark on a PhD degree with a focus on cassava. Coinciding with an era when links between Martin’s then home institute, the International Center for Tropical Agriculture (CIAT) and GCP were beginning to really take off the ground, it was a move that proved timely, and a path which Elizabeth pursued with her characteristic vigour and aplomb, climbing the GCP research ranks from multiple travel-grant recipient to a research fellow, and, more recently, to Lead Researcher for GCP’s cassava work in Ghana. Now a well established cassava connoisseur who regularly rubs shoulders with the crème de la crème of the global crop science community, Elizabeth specialises in drought tolerance and disease resistance in the GCP-related aspects of her work, whilst also turning her hand to biofortification research for GCP sister CGIAR Challenge Programme, HarvestPlus.

… it [biotechnology] was a breakthrough which Elizabeth spearheaded…”

Up, up and away! How a helping hand has led Elizabeth & Co to new professional and research heights
Life aboard the GCP ship, Elizabeth reveals, has offered a wealth of professional opportunities, both on personal and institutional levels. GCP-funded infrastructure, such as weather stations and irrigation systems, has helped to boost yields and enhance the efficiency of CRI trials, she observes. Professional development for herself and her team, she says, has been multifold: “Through our GCP work, we were able to build a lab and kick-start marker-assisted breeding – that ignited the beginning of biotechnology activities in CRI,” Elizabeth asserts.  It was a breakthrough which Elizabeth spearheaded, and which, happily, has since become run-of-the mill practice for the institute: “Now CRI scientists are regularly using molecular tools to do their work and are making cassava crosses on their own.” The positive domino effect of this change in tide cannot be underestimated: “Our once small biotechnology laboratory has evolved into a Centre of Excellence under the West Africa Agricultural Productivity Programme. Its first-class facilities, training courses and guiding hand in finding solutions have attracted countless visiting scientists, both from Ghana and internationally – this means that the subregion is also benefitting enormously.” The GCP’s Genotyping Support Service (GSS), Elizabeth affirms, has also proved an invaluable sidekick to these developments: “Through the GSS, our team learnt how to extract DNA as a first step, and later to re-enact all the activities that were initially done for us externally – data sequencing, interpretation and analysis for example – on a smaller scale in our own lab.” The collection and crunching of data has also become a breeze: “Thanks to GCP’s support, we have become a pace-setter for electronic data gathering using tablets, field notebooks and hand-held devices,” she adds.

….GCP gives you the keys to solving your own problems, and puts structures in place so that knowledge learnt abroad can be transferred and applied at home – it’s been an amazing journey!”

Ruth Prempeh, one of Elizabeth's charges, collecting data for her GCP-funded PhD on cassava post-harvest physiological deterioration. Ruth is one of those whose work–family balance Elizabeth celebrates. Ruth has since submitted her thesis awaiting results. As you'll hear in the accompanying podcast, both of Ruth's young children have each, er, sort of 'attended' two big  GCP events!

Ruth Prempeh, one of Elizabeth’s charges, collecting data for her GCP-funded PhD on cassava post-harvest physiological deterioration. Ruth is one of those whose work–family balance Elizabeth celebrates. Ruth has since submitted her thesis awaiting results. As you’ll hear in the podcast below, both of Ruth’s young children have each, er, sort of ‘attended’ two big GCP events!

People power: capacity building and work–life balance
Elizabeth lights up most when waxing lyrical about the leaps and bounds made by her many students and charges through the years, who – in reaping some of the benefits offered by GCP, such as access to improved genetic materials; forging links with like-minded colleagues near and far, and, critically, capacity building – have gone on to become established and often internationally recognised breeders or researchers, with the impacts of their work posting visible scores in the fight against global food insecurity. On the primordial role of capacity building, she says: “GCP gives you the keys to solving your own problems, and puts structures in place so that knowledge learnt abroad can be transferred and applied at home – it’s been an amazing journey!” Of her female students who’ve surmounted the work–family pendulum challenge, she says: “I’ve pushed to make people recognise that women can do advanced agricultural science, and do it well. To see a talented woman researcher firmly established in her career and with her kids around her is thrilling.”

At IITA, Elizabeth continues to be an inspiration on work–life balance for women working on their PhDs, and more so for young women whose work is on cassava. In a male-dominated environment (global statistics report that women researchers are a meagre 30 percent), this inspiration is critical. .

No ‘I’ in team: tight-knit community a must for kick-starting real and sustainable solutions
As Elizabeth well knows, one swallow does not a summer make: as demonstrated by the GCP’s Communities of Practice (CoPs), she says, strength really does come in numbers: “The GCP Cassava CoP has brought unity amongst cassava breeders worldwide; it’s about really understanding and tackling cassava challenges together, and bringing solutions home.” Bolstering this unified spirit, Elizabeth continues, is the GCP’s Integrated Breeding Platform (IBP): “With the initial teething problems mainly behind us, IBP is now creating a global community and is an excellent way of managing limited resources, reducing duplication of efforts and allowing people to be more focused.” On helping scientists inundated with information to spot the wood from the trees, she says: “Over the years, lots of data have been generated, but you couldn’t find them! Now, thanks to IBP, you have sequencing information that you can tap into and utilise as and where you need to. It’s very laudable achievement!”

In the past, the assumption was always that ‘Africa can’t do this.’…GCP has made us visible and attractive to others; we are now setting the pace and doing science in a more refined and effective manner.” 

Clearly, keeping the company of giants is not new for Elizabeth (right). This giant cassava tuber is from a 2010 CRI trial crossing improved CIAT material with CRI landraces (traditional farmer varieties. The trial was part of Bright Boakye Peprah’s postgraduate work. Bright has since completed his GCP-funded masters on cassava breeding, and now a full time cassava breeder with CSIR–CRI. He is currently on study leave  pursuing a PhD on cassava biofortification in South Africa. On the left is Joseph Adjebeng-Danquah, a GCP-funded PhD student whose work centres on cassava drought tolerance. Our best quote from Joseph: “It is important to move away from the all too common notion that cassava is an ‘anywhere, anyhow’ crop.”

Clearly, keeping the company of giants is not new for Elizabeth (right). This giant cassava tuber is from a 2010 CRI trial crossing improved CIAT material with CRI landraces (traditional farmer varieties. The trial was part of Bright Boakye Peprah’s postgraduate work. Bright has since completed his GCP-funded master’s  degree on cassava breeding, and now a full time cassava breeder with CSIR–CRI. He is currently on study leave pursuing a PhD on cassava biofortification in South Africa. On the left is Joseph Adjebeng-Danquah, a GCP-funded PhD student whose work centres on cassava drought tolerance. Our best quote from Joseph: “It is important to move away from the all too common notion that cassava is an ‘anywhere, anyhow’ crop.”

Empowered and engaged: African cassava researchers reclaim the driving seat
The bedrock of GCP’s approach, Elizabeth suggests, is the facilitation of that magical much sought-after Holy Grail: self-empowerment. “When I first joined GCP,” she recalls, “I saw myself as somebody from a country programme being given a place at the table; my inputs were recognised and what I said would carry weight in decision-making.” It’s a switch she has seen gain traction at national and indeed regional levels: “In the past, the assumption was always that ‘Africa can’t do this.’ Now, people see that when given a chance to get round circumstances – as GCP has done for us through the provision of resources, motivation, encouragement and training – Africa can achieve so much!” Reflecting on the knock-on effect for African cassava researchers particularly, she concludes: “GCP has made us visible and attractive to others; we are now setting the pace and doing science in a more refined and effective manner.”

Paying it forward and sharing: Helping women, and thereby, communities
Armed with bundles of knowledge as she is, Elizabeth is a firm believer in paying it forward and sharing: “Building human capacity is my greatest joy,” she affirms, citing farmers, breeders, and a Ghanaian private-sector company as just a few of the fortunate beneficiaries of her expertise over recent years. And on sources of motivation, it is not the academic laurels or limelight but rather a broader vision of social justice which really drives her: “I see African communities where poverty and hunger are seemingly huge problems with no way out; I’m fortunate to be working on a crop whereby, if I put in enough effort, I can bring some solutions.” They are solutions which she hopes will be of lasting service to those closest to her heart: “My primary target group in my research is the less privileged, and women in particular have been my friends throughout. Rural families are held together by women, so if you are able to change their lot, you can make a real mark.”

We’re in a blessed and privileged era where cassava, an ancient and once orphan crop, is now receiving lots of attention… I encourage young scientists to come on board!”

Inspired, and inspiring: nurturing budding cassava converts, and seizing opportunities for impact
In terms of future horizons, Elizabeth – who after more than two decades of service at CRI is currently on leave of absence at IITA where she’s working on biofortification of cassava – hopes to thereby further advance her work on cassava biofortification, and perhaps later move into a management role, focusing on decision-making and leading agricultural research leaders with monitoring and evaluation specifically to “ensure that the right people are being equipped with skills and knowledge, and that those people are in turn teaching others.” She is also confident that any young, gifted researcher with an eye on the prize would be foolhardy to overlook what Elizabeth views as a golden opportunity for creating meaningful and lasting impacts: “We’re in a blessed and privileged era where cassava, an ancient and once orphan crop, is now receiving lots of attention. Every agricultural research lead we have in Africa is there to be seized – I encourage young scientists to come on board!” A clear and convincing clarion call to budding breeders or potential cassava converts if ever there was one…. who wants in, in this love-match where cassava and capacity building are truly two peas in a pod?

Like meets like in a fair match: Our cassava champion in a male-dominated environment, Elizabeth, meets her match in Farmer Beatrice who refused to take no for an answer, and beat Elizabeth hands down. Listen to this! 

 

Links

Mar 042014
 
‘Made (up) in Ghana’

In the world of crop research as in the fashion industry, there are super-models, mere models, spectators and rank outsiders. Make no bones about it, trusty old cassava (Manihot esculenta) is a crop of very modest beginnings, but now finally strutting the research catwalk alongside the biggest and the best.

Elizabeth Parkes

Elizabeth Parkes

An ancient crop thought to have been first domesticated in Latin America more than 10,000 years ago, it was exported by Portuguese slave traders from Brazil to Africa in the 16th century as a cheap source of carbohydrates. From there, today we travel half a millennium forward in time – and in space, on to Ghana – to catch up with the latest on cassava in the 21st century.

Come on a guided tour with Elizabeth Parkes (pictured), of Ghana’s Crops Research Institute (CRI, of the Council for Scientific and Industrial Research, CSIR), currently on leave of absence at the International Institute of Tropical Agriculture (IITA).

A hard-knock life, but still going strong
In keeping with its humble heritage, cassava is a crop which has long been reputed for being more than a little worn through at the elbows, commonly known as a “poor man’s crop” according to GCP cassava breeder and researcher, Elizabeth Parkes. However, much like a dishevelled duffle coat, what the crop lacks in shimmer and shine, it makes up for in sturdiness and dependability, rising to the occasion time and again by filling a critical gap – that of putting food in bellies – with a readiness and ease that its more sophisticated crop relatives have often struggled to keep up with. Elizabeth explains:  “It has kept people alive over the years.” By the same token, the crop – now one of Africa’s most important staples – is fondly known in Ghana as bankye, meaning a ‘gift from the government’, thanks to its reliability and capacity to meet needs that other crops cannot. There is even a popular song in the country which pays homage to the crop as an indefatigable evergreen, conquering even the most willful and wily of weeds!

However, as cassava experts such as Elizabeth know only too well, behind this well-intentioned lyrical window dressing is the poignant story of a crop badly in need of a pressing pick-me-up. Hardy as it may seem on the surface, cassava is riddled with myriad problems of a political, physiological, environmental and socioeconomic nature, further compounded by the interactions between these. For starters, while it may be a timeless classic and a must-have item at the family table for a good part of Africa, à la mode it is not, or at least not for short-sighted policy-makers looking first and foremost to tighten their purse strings in straitened times, or for quick-fix, rapid-impact,  silver-bullet solutions: “African governments don’t invest many resources in research. Money is so meager, and funds have mostly come from external agencies looking to develop major cereals such as rice. Cassava has been ignored and has suffered a handicap as a result – it’s more or less an orphan crop now,” Elizabeth laments. Besides having to bear witness to their favourite outfit being left on the funding shelf, cassava breeders such as Elizabeth are also faced with a hotchpotch of hurdles in the field: “In addition to factors such as pests and disease, cassava is a long-season and very labour-intensive crop. It can take a whole year before you can expect to reap any rewards, and if you don’t have a strong team who can step in at different points throughout the breeding  process, you can often find unexpected results at the end of it, and then you have to start all over again,” Elizabeth reveals. Robust as it may be, then, cassava is no easy customer in the field: “After making crosses, you don’t have many seeds to move you to the next level, simply because with cassava, you just don’t get the numbers: some are not compatible, some are not flowering; it’s a real bottleneck that needs to be overcome,” she affirms.

No time for skirting the issue
And at the ready to flex their research muscles and rise to these considerable challenges was Elizabeth and her Ghanaian CRI  team, who – with GCP support and in unison with colleagues from across Africa and the wider GCP cassava community – have been working flat out to put cassava firmly back on the research runway.

Thanks to funders such as GCP, who recognised that we couldn’t afford to turn a blind eye to the plight of this struggling crop, cassava has been given a voice…cassava is no longer just a poor man’s staple” 

A cassava farmer in Northern Ghana.

A  cassava farmer in Northern Ghana.

Elizabeth walks us through the team’s game plan: “GCP socioeconomist Glenn Hyman and team undertook a study to identify the best area in Ghana for supporting cassava flowering [Editor’s note: Glenn works at the International Center for Tropical Agriculture, CIAT]. Armed with that information, we have been applying grafting techniques, using hormones to induce flowering in Ghana and beyond.” The initiative is starting to bear fruit: “At the IITA–Nigeria Ubiaja site, for example, flowering is underway at factory-like efficiency – it’s a great asset. The soil has also greatly improved – we haven’t been able to pinpoint the exact cause yet, but what we’ve seen is that all cultivars there will now flower,” she reveals. Elizabeth’s team has been making steady progress in biotechnological techniques such as DNA extraction: thanks to work led by then GCP cassava comrade Martin Fregene (then with the International Center for Tropical Agriculture, CIAT, and now with the Donald Danforth Plant Science Center) and colleagues, focusing on the development of more reliable and robust simple sequence repeat (SSR) markers, Elizabeth was able to carry out genetic diversity diagnosis work on cassava, collecting germplasm from all over Ghana for the global GCP cassava reference set. [Editor’s note: A ‘reference set’ is a sub-sample of existing germplasm collections that facilitates and enables access to existing crop diversity for desired traits, such as drought tolerance or resistance to disease or pests]

Similar work was also conducted in Nigeria and Guatemala. So has this tremendous and tenacious teamwork proved strong enough to drag cassava out of the doldrums? Elizabeth certainly seems to think so: “Thanks to funders such as GCP, who recognised that we couldn’t afford to turn a blind eye to the plight of this struggling crop, cassava has been given a voice. Having worked together to understand the peculiarities of this crop, cassava is no longer just a poor man’s staple: beyond subsistence, it is becoming a crop of high starch quality, and of real use for industry, confectionary and even biofuels,” she enthuses.

Thankfully, it’s a most welcome change of tide that shows no sign of abating any time soon.  Human capacity, Elizabeth says, is going from strength to strength, with three GCP-funded Ghanaian postgraduate students advancing well, two of them working on PhDs in what would normally be considered, according to Elizabeth, a ‘no-go area’ of cassava research – that is, cassava drought tolerance and post-harvest physiological deterioration (PPD), as well as bio-fortification. Efforts by the CRI team have resulted in the release of some 14–15 new drought-tolerant and PPD-resistant varieties in Ghana to date; all are anticipated to have a long shelf-life, and other varieties are also in the pipeline. Biofortified seeds are in the making, with a view to soon mainstream biofortification in the team’s breeding activities. The biofortification work is in collaboration with a sister CGIAR Challenge Programme, HarvestPlus.

The impact of our GCP-supported research on cassava has been remarkable. Above all, it’s been the community spirit which has moved things forward so effectively; in this respect, I think researchers working on other crops might want to borrow a leaf from the cassava book!”

Molecular masterstrokes, a leaf to lend despite cold shoulder, and a ‘challenge crop’ befitting Challenge Programmes
Forthcoming plans for Elizabeth and her cassava companions in Ghana include a GCP Cassava Challenge Initiative project which will seek to unearth new marker populations and materials which are drought-tolerant and resistant to cassava mosaic virus and cassava bacterial blight. The team has successfully introgressed materials from CIAT into their landraces, and the next step will be to gauge how best the new genes will react to these traits of interest. In terms of people power, the CRI biotechnology laboratory built with GCP support – and now a regionally accredited ‘Centre of Excellence’ – is a hive of activity for local and international scientists alike, and is consequently bolstering cassava research efforts in the wider subregion. “The impact of our GCP-supported research on cassava has been remarkable. Above all, it’s been the community spirit which has moved things forward so effectively; in this respect, I think researchers working on other crops might want to borrow a leaf from the cassava book!” Elizabeth ventures.

Reflecting back on the conspicuous cocktail of constraints which mired the crop in the early days of her research career – challenges which often resulted in a cold shoulder from many of her research peers over the years – Elizabeth recalls affectionately: “At first, people didn’t want to work on cassava since it’s truly a challenge crop: the genetics of cassava are really tricky. Colleagues from around the globe often asked me: ‘Why not go for a smooth crop which is friendly and easy?’” Her commitment, however, has been unfaltering throughout: “I’ve stuck with cassava because that’s my destiny! And now I see SNPs being developed, as well as numerous other resources. Once you clean something up it becomes more attractive, and my thanks go out to all those who’ve remained dedicated and helped us to achieve this.”

Thus, dusted down and  ‘marked-up’ with a molecular make-over well underway, all evidence now suggests that this once old-hat subsistence crop is en route to becoming the next season’s big research hit, with shiny new cassava varieties soon to be released at a field station near you! Go, Ghana, go!

Links

 

Feb 242014
 
For this ‘IBP story-telling season’, our next stop is  very fittingly Africa, and her most populous nation, Nigeria. Travel with us!

Having already heard the Integrated Breeding Platform (IBP) story on data from Arllet (spiced with a brief detour through Asia’s sun-splashed rice paddies), and on IBP’s Breeding Management System from Mark (where we perched on a corner on his Toulouse workbench of tools and data), we next set out to get an external narrative on IBP, and specifically, one from an IBP user. Well, we got more than we had bargained for from our African safari

Yemi Olojede

Yemi Olojede

Yemi Olojede (pictured) is much more than a standard IBP user. An agronomist by training with a couple of decades-plus experience, he not only works closely with breeders and other crop scientitsts, but is also a research coordinator and data manager. As you can imagine, this made for a rich and insightful conversation, ferrying us far beyond the frontiers of Yemi’s base in Nigeria, to the rest of West Africa,  further out to Africa , and as far afield as Mexico, in his travels and travails with partners. We now bring to you some of this captivating conversation…

Yemi  has been working for the last 23 years (since 1991) at Nigeria’s National Root Crops Research Institute (NRCRI) at Umudike in various capacities. After heading NRCRI’s Minor Root Crops Programme for 13 years, he was last year appointed Coordinator-in-Charge of the Cassava Research Programme.

But his involvement in agriculture goes much further back than NRCRI: Yemi says he “was born into farming”. His father, to whom he credits his love for agriculture, was a cocoa farmer. “I enjoy seeing things grow. When I see a field of crops …what a view!” Yemi declares.

Yemi is also the Crop Database Manager for NRCRI’s GCP-funded projects. He spent time at GCP headquarters in Mexico in February 2012 to sharpen his skills and provide user insights to the IBP team on the cassava database, on the then nascent Integrated Breeding Fieldbook, and on the tablet that GCP was considering for electronic field data collection and management.

To meet the farmers’ growing need for improved higher-yielding and stress-tolerant varieties, plant breeders are starting to incorporate molecular-breeding techniques to speed up conventional breeding.

Flashback to 2010: GCP was then piloting and testing small handheld devices for data collection. Field staff going through a training session for these under Yemi's watchful eye (right).

Flashback to 2010: GCP was then piloting and testing small handheld devices for data collection. Field staff going through a training session for these under Yemi’s watchful eye (right).

But for this to happen effectively, cassava breeders require consistent and precise means to collect and upload research and breeding data, and secure facilities to upload that data into the requisite databases and share it with their peers. Eighty percent of farmers in Africa have less than a hectare of land – that’s roughly two football fields! With so little space, they need high-value crops that consistently provide them with viable yields, particularly during drought. For this reason, an increasing number of Nigerian farmers are adopting cassava. It is not as profitable as, say, wheat, but it has the advantage of being less risky. The Nigerian government is encouraging this change and is implementing a Cassava Transformation Agenda, which will improve cassava markets and value chains locally and create a sustainable export market. All this is designed to encourage farmers to grow more cassava.

Enter GCP’s Integrated Breeding Platform (IBP), which has been working closely with NRCRI and other national breeding programmes to develop the right informatic tools and support services for the job. The International Cassava Information System (ICASS), the Integrated Breeding Fieldbook and the tablet are all part of the solution, backed up by a variety of bioinformatic tools for data management, data analysis and breeding decision support that have been developed to meet the specific needs of the users.

I enjoy working with the team. They pay attention to what we as breeders want and are determined to resolve the issues we raise”

Fastfoward to 2012: Based on feedback, a larger electronic tablet was favoured over the smaller handheld device. Yemi (centre) takes field staff through the paces in tablet use.

Fastfoward to 2012: Based on feedback, a larger electronic tablet was favoured over the smaller handheld device. Yemi (centre) takes field staff through the paces in tablet use.

The database and IB Fieldbook
“When I received the tablet I was excited! I had heard so much about it but only contributed ideas for its use through Skype and email,” Yemi remembers, echoing a sentiment that is frequently expressed by many partners who have been introduced to the device. “I experimented with the Integrated Breeding Fieldbook software focusing on pedigree management, trait ontology management, template design ‒ testing how easy it was to input data into the program and database.”  Yemi noted a few problems with layout and data uploading and suggested a number of additional features. The IBP Team found these insights particularly useful and worked hard to implement them in time for the 2nd Scientific Conference of the Global Cassava Partnership for the 21st Century (GCP21 II), held in Kampala, Uganda, in June, 2012.

“I enjoy working with the team. They pay attention to what we as breeders want and are determined to resolve the issues we raise,” says Yemi. He believes the IB FieldBook and the tablet, on which it runs, will greatly benefit breeders all over the world, but particularly in Africa. “At the moment, our breeders and researchers have to write down their observations in a paper field book, take that book back to their computer, and enter the data into an Excel spreadsheet,” he notes. “We have to double-handle the data and this increases the possibility of mistakes, especially when we are transferring it to our computers. The IB Fieldbook will streamline this process, minimising the risk of making mistakes, as we enter our observations straight into the tablet, using specified terms and parameters, which will upload all the data to the shared central database when it’s connected to the internet.”

The whole room was wide-eyed and excited when they first saw the tablets”

Bringing the tablet to Africa
After his trip to Mexico, Yemi was concerned that some African breeders would be put off using the IB Fieldbook and accompanying electronic tablet because both require some experience with computers. “I found the tablet and the FieldBook quite easy to use because I’m relatively comfortable with computers,” says Yemi. “The program is very similar to MS-Excel, which many breeders are comfortable with, but I still thought it would be difficult to introduce it given that computer literacy across the continent is very uneven.”

Slim, portable and nearly invisible. A junior scientist at NRCRI Umudike tries out the tablet during the 2012 training session.

Slim, elegant, portable and nearly invisible is this versatile tool. A junior scientist at NRCRI Umudike tries out the tablet during the 2012 training session.

At the GCP21 II meeting in Uganda, Yemi helped the IBP team run IB Fieldbook workshops for plant breeders from developing countries, with an emphasis on data quality and sharing. “The whole room was wide-eyed and excited when they first saw the tablets. They initially had trouble using them and I thought it was going to be a very difficult workshop, but by the end they all felt confident enough to use them by themselves and were sad to have to give them back!”

They … go back to their research institutes and train their colleagues, who are more likely to listen and learn from them than from someone else.”

Providing extra support, cultivating trust
Yemi recounts that attendees were particularly pleased when they received a step-by-step ‘how-to’ manual to help them train other breeders in their institutes, with additional support to be provided by the IBP or Yemi’s team in Nigeria. “They were worried about post-training support,” says Yemi. “We told them if they had any challenges, they could call us and we would help them. I feel this extra support is a good thing for the future of this project, as it will build confidence in the people we teach. They can then go back to their research institutes and train their colleagues, who are more likely to listen and learn from them than from someone else.”

In developing nations, it is important that we share data, because we don’t all have the capacity to carry out molecular breeding at this time, and data sharing would facilitate the dissemination of the benefits to a wider group”

Sharing data to utilise molecular breeding
Yemi asserts that incorporating elements of molecular breeding has helped NRCRI a great deal. With conventional breeding, it would take six to 10 years to develop a variety before release, but with integrated breeding (conventional breeding that incorporates molecular breeding elements) it is possible to develop and release new varieties in three to four years ‒ half the time. Farmers would hence be getting new varieties of cassava that will yield 20‒30 percent more than the lines they are currently using in a much shorter time.

“In developing nations, it is important that we share data, because we don’t all have the capacity to carry out molecular breeding at this time, and data sharing would facilitate the dissemination of the benefits to a wider group,” says Yemi. “I enjoy helping people with this technology because I know how much it will make their job easier.”

Links

Feb 182014
 

Mark Sawkins

Mark Sawkins

Mark the man in the middle, and of the markers…

Today, we talk to Mark Sawkins (pictured), the ‘middleware’ man in our Integrated Breeding Platform (IBP) so to speak, seeing as he is the human ‘interface’ between crop breeders on the one hand, and the developers of our Integrated Breeding Platform (IBP) on the other hand. Mark is the ‘bridge’ that connects IBP users and IBP developers – a special position which gives him a privileged and fascinating perspective on both sides of the coin, with a dash of public–private sector pragmatic partnership thrown in too. Here’s more on Mark, in this dispatch from and on his special perch on the bench…

Bridge to bench, abuzz on BMS: A ‘tinker’ at Toulouse…
Mark Sawkins is always busy tinkering away on his Workbench at his base in Toulouse in southern France. It’s not your traditional wooden workbench, covered in sawdust, soil or splattering of paint. Nor is it one carpeted in documents lit by the warm glow of a computer monitor. In fact, the workbench Mark is working on is virtual, having no physical form and residing solely online, or on a user’s computer, once downloaded.

Known as the Breeding Management System (BMS) the Workbench, comprising software tools linked to a database for access to pedigree, phenotypic and genotypic data, has been developed by GCP’s Integrated Breeding Platform. The BMS has what a crop breeder would require to conduct an analysis of phenotypic and genotypic data generated as part of a crop-breeding or evaluation experiment, covering a broad spectrum of needs from conventional breeding to advanced molecular breeding applications. Version 2 of the Breeding Management System was released just last month.

… it [BMS] will be of most help to breeders both in the public and private sector in Africa and Asia who, up to now, have had little or no access to tools and data to allow them to shift gears in their breeding programme…The BMS has a lot of tools and all the foundational data necessary for a breeder’s routine day-to-day activities…The BMS is also anticipated to have enormous positive impact on food security in developing countries in the years ahead, enabling crop breeders to evaluate their progenies using the most sophisticated statistical methods available”

A hands-on BMS orientation workshop underway for breeders in Africa, held in Ethiopia in July 2013 under the auspices of the GCP-funded cassava breeding community of practice. Standing, Yemi Olojode, of Nigeria’s National Root Crops Research Institute (NRCRI), Umidike, who was one of the trainers.

Previously known as the Integrated Breeding Workflow System (IBWS), the BMS incorporates both statistical analysis tools and decision-support tools. The tools are assembled in a way that data can flow seamlessly from one application to the next in tandem with the various stages of the crop-breeding process. It allows the breeder to accurately collect, securely store and efficiently analyse and synthesise their data on a local private database, and also share, or compare, their data with other breeders via a central public crop database.

“The BMS has a lot of tools and all the foundational data necessary for a breeder’s routine day-to-day activities,” explains Mark, a plant geneticist who joined IBP in 2011. “Any breeder can use it, but it will be of most help to breeders both in the public and private sector in Africa and Asia who, up to now, have had little or no access to tools and data to allow them to shift gears in their breeding programme, particularly in adopting modern breeding practices, including the use of molecular markers.”

The BMS is also anticipated to have enormous positive impact on food security in developing countries in the years ahead, enabling crop breeders to evaluate their progenies using the most sophisticated statistical methods available, and make selections on which lines to advance to the next phase of development in the progression towards more productive and resilient crop varieties.

Phenotyping and field trials are becoming the most expensive part of the breeding process… The biggest hurdle in the public sector in the past was the massive investment required to set up genotyping laboratory facilities… outsourcing, we believe, will help convince breeders to consider integrating molecular techniques into their breeding programmes”

Why integrated breeding?
For almost 30 years, the private sector has been implementing molecular-breeding approaches in developing more productive and resilient crops. These approaches allow breeders to select for plant characteristics (traits) early in the breeding process and then test whether a plant has the targeted trait, which they cannot visually identify.

“Phenotyping and field trials are becoming the most expensive part of the breeding process,” says Mark. “Using molecular markers is a way to reduce the investment in that process. By using markers, early in the development of a given crop line, you can reduce the number of plants you need to grow and test, reducing the time and cost associated with field trials.”

Mark hopes that the Workbench will in time enable breeders, in under-resourced public breeding institutes to access some of the leading molecular-marker databases, and make use of the markers therein for the desired traits they are breeding for, along with technical support from molecular breeders to guide them in making their breeding decisions.

“The biggest hurdle in the public sector in the past was the massive investment required to set up genotyping laboratory facilities,” explains Mark “but now there are plenty of professional service providers that people can send their samples to and get back good results at a very reasonable cost. This time- and cost-saving reality of outsourcing, we believe, will help convince breeders to consider integrating molecular techniques into their breeding programmes.”

We are currently conducting a three-year course to train scientists from national programmes in West and Central Africa, East and Southern Africa and South and Southeast Asia, who we hope will promote and support the adoption of modern breeding in their institutes and countries.”

An IB-MYC training course in session in April 2013 for the West and Central Africa group. Clarissa Pimentel, IBP's Data Manager/Training Specialist, at the front, traching trainees tricks on using Fieldlab in the tablet for data collection.

An Integrated Breeding Multiyear Course (IB-MYC) training course in session in April 2013 for the West and Central Africa group. Clarissa Pimentel, IBP’s Data Manager/Training Specialist, at the front, giving trainees tricks and tips on using FieldLab on the electronic tablet for field data collection.

Running with champions
Mark knows that giving breeders the tools and means to integrate molecular breeding into their programmes is one thing. To actually have them adopt them is another. But he has a plan.

In keeping with the core mission of GCP, which is to build sustainable capacity in developing-country breeding programmes, Mark proposes to recruit and train selected breeders in molecular-breeding techniques and set them up as champions and advocates for their particular crop or region.

Marker implementation methods can be varied but the tools required need to help the breeder make a quick informed decision on what to take forward to the next generation: What plants need to be crossed? Which plants should be kept and which ones discarded? The decision-support tools provided by the IB Workbench will help the breeder make these decisions.

“We are currently conducting a three-year course to train scientists from national programmes in West and Central Africa, East and Southern Africa and South and Southeast Asia, who we hope will promote and support the adoption of modern breeding in their institutes and countries,” Mark enthusiastically explains. The three-year training programme is known as the Integrated Breeding Multiyear Course (IB–MYC). Mark continues, “We believe that people will be more willing to listen to someone who is right there on the ground, whom they know and trust and can easily get in contact with if they need help.”

While the champions concept is still in its infancy, Mark believes it has real merit but must overcome two major barriers – time and confidence. “Identifying the champions won’t be hard,” he observes, “What will be hard is getting them to add this extra task to their already busy agenda. It will require buy-in from management at the institutional level to enable the champions to carry out their mission. It will also be individually hard for each champion, who will only be successful when they have the confidence in their own integrated breeding and extension skills. This confidence would be the thing that would really help sell the message.”

Engaging the private sector
Mark oversees the design, testing and deployment of the system that underpins the BMS, ensuring that both the system and the tools embedded in it are easy to use and meet the needs and expectations of the breeders. However, he and his team have had some trouble getting feedback on the system from the breeders it is intended for, due to their inexperience with such tools and systems. That is why he has called on his private-sector contacts, developed when he was at Syngenta where he worked for five years prior to his current assignment.

“We hope to show them what we’ve been doing in IBP with the Workbench, and hopefully get some private-sector buy-in and see how they can help us – not in developing tools, but with feedback on functionality and usability of the tools we are developing,” he explains. “We don’t have a core set of breeders who are routinely using markers in their breeding programme amongst the partners we are working with on the IBP project. So we are tapping into the private sector which has teams of molecular breeders who are more familiar with the types of breeding workflows and tools we are developing. We’re hoping that we can take advantage of their knowledge and experience to get some really useful feedback, which we will use to improve the usability and effectiveness of our tools.”

To maximise adoption and use, GCP has been actively engaged in extensive capacity building, and this will be reinforced with a comprehensive awareness-creation and communication effort immediately before and after a projected mid-year release of a newer BMS version incorporating the all-essential user feedback. The impact of the analytical pipeline in developing countries will be particularly enhanced with the availability of efficient user support services, which Mark will be overseeing.

Access the Breeding Management System (no-cost registration required)

More information

VIDEO: IBP’s comparative advantage for developed countries, while also relevant for developed countries.

SLIDES: IBP’s Breeding Management System

 

Jan 312014
 
Arllet Portugal

Arllet Portugal

Today, we chit-chat with Arllet Portugal (pictured) on crop research data management. Arllet’s greatest daily challenge is convincing crop breeders and other crop researchers that their research data are just as important as their core research work. She also educates us on what she means by ‘SHARP’ data management. But first, a little background on Arllet…

Transitions, travels and tools
Plant breeding is in Arllet Portugal’s blood. Her father (now retired), one of the original field staff of the International Rice Research Institute (IRRI) at Los Baños in The Philippines, nurtured it in her from a tender age. It’s easy to picture him sharing fascinating tales daily with his family upon coming home, after a day of hard work in sun-splashed paddies where he nurtured mysterious and exotic new lines of rice which he was told may hold the solution to world hunger.

“He loved what IRRI stood for and admired the research they did,” reminisces Arllet. “I think he hoped one day he would have a son or daughter working alongside the researchers, so I guess I fulfilled that wish!” She adds “His IRRI stories still continue to this day, and I have learnt much from him which continues to give me deeper insights in my work and interactions with crop scientists.”

Having lived most of her life under the canopy of IRRI, including 12 years working as a database administrator at the Institute, she decided it was time for a change, and she spread her wings – an adventure that would take her across the oceans, pose new challenges, and plunge her deeper into agricultural research beyond IRRI’s mandate crop, rice. So, in 2009, she packed her bags and headed to Mexico, having accepted a position as a crop informatician for wheat at the International Maize and Wheat Improvement Center (CIMMYT), and then moving over to GCP the following year as Informatics Coordinator, and later on Data Management Leader of GCP’s Integrated Breeding Platform (IBP).

The Platform is a one-stop shop for crop information, informatics tools and services designed to propagate and support the application of modern approaches to crop breeding, particularly targeting developing countries.

We are trying to show breeders that their ‘system’ can be enhanced and streamlined if they enter data straight into a computer when they’re in the field and then upload them into an online database.” 

Gunning for a digital data revolution: The challenge of changing mindsets
Arllet’s greatest daily challenge is convincing crop breeders and other crop researchers that their research data are just as important as their core research work, and they should therefore dedicate as much time, energy and resources to managing data.

“Like everyone else, most plant breeders tend to be generally comfortable with the ‘systems’ that they and their predecessors have always used,” says Arllet. “For plant scientists, this often consists of recording results using pen and paper when they are out in the field, then coming back to their office and either filing those paper records as is, or re-entering the data into a basic Excel spreadsheet that is for their eyes only. They will then pull these data out when they want to compare them with their previous data.”

Arllet explains that this age-old system is not necessarily wrong, but it wastes valuable time, is insecure and limits the capacity of breeders to efficaciously reuse and also share their data with colleagues – a practice by which they would help each others’ work. “We are trying to show breeders that their ‘system’ can be enhanced and streamlined if they enter data straight into a computer when they’re in the field and then upload them into an online database,” she says.

Walking with giants…” 

Dealing with data: maximising efficiency, security, value and sharing
“These data can then be better secured and managed for their benefit and that of other researchers doing similar or related work, in essence increasing their working capacity. They would also have access to the most current analytical tools to verify their results and do their research more efficiently.”

Arllet explains that such improved systems have been in place for decades in the developed world, particularly within the private sector but not as prevalent in the developing world or public sector. This is largely attributable to the high cost of the equipment and informatics tools, and a lack of personnel with the appropriate skills to make use of the tools.

Through a collaborative effort bringing together a wide array of partners, with funding primarily from the Bill & Melinda Gates Foundation, supplemented by the European Commission and the United Kingdom’s Department for International Development, IBP is working to overcome some of these barriers. With the release of the Integrated Breeding (IB) FieldBook, the foundational informatics tool for the proposed system, Arllet believes a giant step has been made towards achieving this objective.

Breeders will be able to use it to plan their trials from start to finish”

What is the IB FieldBook?
The IB FieldBook is a user-friendly computer program that facilitates the design of field trials and produces electronic field-books, field plans and labels. It collects together – in a single application – all the basic tools that a plant breeder requires for these diverse but intertwined functions.

“Breeders will be able to use it to plan their trials from start to finish,” says Arllet. “This is important as it will, for example, keep track of all the identities of plant crosses, minimising the chance that the breeder, or assisting technician, will record the data incorrectly, while emphasising the importance of accurate data for correct crop-breeding decisions.”

Live demonstration: Taking the tablet through the paces at a training workshop for research technicians in January 2012. The regional workshop for West Africa (in French and English) was hosted by L’Institut d’économie rurale (IER) at Sotuba, Mali. A similar workshop was held in Ethiopia in English for the Eastern and Southern Africa region.

She and her team have been conducting training workshops on data management for breeders at which they demonstrate the IB FieldBook and the use of handheld electronic devices (such as tablets) for data collection, which breeders can conveniently take to the field with them and directly enter the phenotyping data they would normally capture in paper field-books.

Tablets and feedback
“The training has been challenging but fun,” says Arllet. “When we present the breeders with a tablet at the start of the exercise, they get really excited. It takes a while for them to learn how to use it, but once they do, they see how this technology could save them time and reduce the risk of mistakes. It’s a little sad for them and for us though when we have to take the tablets back at the end of the exercise, as demand always outstrips supply. We have however distributed around 200 tablets to breeders, university academic staff, researchers and postgraduate students of plant breeding. Majority of the recipients are from Africa and Asia. And the good news is that,  as a result, some of the institutes and programmes the recipients come from have gone ahead to purchase more units for themselves.”

Arllet observes that the workshops have not only allowed her team to educate breeders and build awareness, but also to receive valuable feedback on how the IB FieldBook could be improved to make it even better, and learn what other tools breeders need. “Based on this feedback, we worked on the IB FieldBook version 4, which was released in June 2013, as well as on a number phenotypic and genotypic data management tools to incorporate into both the FieldBook and the primary crop databases.”

‘SHARP’ data – shareable, available, reusable and preservable. 

Left to right: Diarah Guindo (IER), Ardaly Abdou Ousseini (L’Institut national de la recherche agronomique du Niger, INRAN) and Aoua Maiga (IER) at the January 2012 training at IER Sotuba, Mali.

SHARP and secure data management
Plant breeders are collaborating more often than they used to, and also drawing much more on specialised experts for each stage of the crop variety development chain. These experts are able to verify the data to make sure they are correct, do their job quickly and pass the data onto the next expert, an economical resource- and time-efficient process. However, as Arllet explains, consistent and secure data management is key to the success of these collaborations.

For Arllet, data that are properly managed are ‘SHARP’shareable, available, reusable and preservable. “By collecting data in a consistent format, uploading them to a secure database with easily identifiable tags, and making them available to other researchers, the data will be more accessible to partners, enable reliable analysis and conclusions, be more likely to be reused, and most importantly, save time and money. For example, breeders who share their data on the IBP database will receive support from researchers outside of their own breeding programme and enlist the help of experts and specialists  they require for particular tasks,” says Arllet. “This includes access to, say, a molecular biologist in Europe or Asia for the breeder in Africa or America who may need that kind of specialist help, for example.”

Arllet and her team of four consultants are currently helping breeders from all around the world upload their historical research data into the central crop databases of the Integrated Breeding Platform, a massive task given the issues of trust, language barriers, slow internet connections, inadequate computer skills and the sheer volumes of the data. However, these are challenges that are becoming easier to handle with greater awareness and the enthusiasm that comes with that.

What next, and what difference will it make?
Adoption and broad use of the FieldBook will of course also make the process easier in the future, enabling a single step uploading of phenotypic data – hence setting breeders free to get on with their work without the wastefulness of having to enter and re-check the data multiple times.

“What it all means is that we will facilitate the more rapid and efficient development of higher-yielding  more stress-tolerant crops that can benefit the farmers and the people they feed,” says Arllet, “and that is the ultimate goal of a plant breeder’s work.”

Links

See videos below: ‘ Masses of crop breeding information: How can it be handled?’ and “Why use IBP’s breeding and data management tools?“, which, in the view of one of our Australian partners, explains why IBP is particularly important for developing countries, and why they have a comparative advantage compared to the developed world.

Next video below:

PRIZE AND FUN! If you’ve survived this far, you deserve a prize, in the form of seeing Ms Portugal in party mode. To see what Arllet gets up to when she’s not crunching data, flip through this fun album

cheap ghd australia