Feb 182014
 

Mark Sawkins

Mark Sawkins

Mark the man in the middle, and of the markers…

Today, we talk to Mark Sawkins (pictured), the ‘middleware’ man in our Integrated Breeding Platform (IBP) so to speak, seeing as he is the human ‘interface’ between crop breeders on the one hand, and the developers of our Integrated Breeding Platform (IBP) on the other hand. Mark is the ‘bridge’ that connects IBP users and IBP developers – a special position which gives him a privileged and fascinating perspective on both sides of the coin, with a dash of public–private sector pragmatic partnership thrown in too. Here’s more on Mark, in this dispatch from and on his special perch on the bench…

Bridge to bench, abuzz on BMS: A ‘tinker’ at Toulouse…
Mark Sawkins is always busy tinkering away on his Workbench at his base in Toulouse in southern France. It’s not your traditional wooden workbench, covered in sawdust, soil or splattering of paint. Nor is it one carpeted in documents lit by the warm glow of a computer monitor. In fact, the workbench Mark is working on is virtual, having no physical form and residing solely online, or on a user’s computer, once downloaded.

Known as the Breeding Management System (BMS) the Workbench, comprising software tools linked to a database for access to pedigree, phenotypic and genotypic data, has been developed by GCP’s Integrated Breeding Platform. The BMS has what a crop breeder would require to conduct an analysis of phenotypic and genotypic data generated as part of a crop-breeding or evaluation experiment, covering a broad spectrum of needs from conventional breeding to advanced molecular breeding applications. Version 2 of the Breeding Management System was released just last month.

… it [BMS] will be of most help to breeders both in the public and private sector in Africa and Asia who, up to now, have had little or no access to tools and data to allow them to shift gears in their breeding programme…The BMS has a lot of tools and all the foundational data necessary for a breeder’s routine day-to-day activities…The BMS is also anticipated to have enormous positive impact on food security in developing countries in the years ahead, enabling crop breeders to evaluate their progenies using the most sophisticated statistical methods available”

A hands-on BMS orientation workshop underway for breeders in Africa, held in Ethiopia in July 2013 under the auspices of the GCP-funded cassava breeding community of practice. Standing, Yemi Olojode, of Nigeria’s National Root Crops Research Institute (NRCRI), Umidike, who was one of the trainers.

Previously known as the Integrated Breeding Workflow System (IBWS), the BMS incorporates both statistical analysis tools and decision-support tools. The tools are assembled in a way that data can flow seamlessly from one application to the next in tandem with the various stages of the crop-breeding process. It allows the breeder to accurately collect, securely store and efficiently analyse and synthesise their data on a local private database, and also share, or compare, their data with other breeders via a central public crop database.

“The BMS has a lot of tools and all the foundational data necessary for a breeder’s routine day-to-day activities,” explains Mark, a plant geneticist who joined IBP in 2011. “Any breeder can use it, but it will be of most help to breeders both in the public and private sector in Africa and Asia who, up to now, have had little or no access to tools and data to allow them to shift gears in their breeding programme, particularly in adopting modern breeding practices, including the use of molecular markers.”

The BMS is also anticipated to have enormous positive impact on food security in developing countries in the years ahead, enabling crop breeders to evaluate their progenies using the most sophisticated statistical methods available, and make selections on which lines to advance to the next phase of development in the progression towards more productive and resilient crop varieties.

Phenotyping and field trials are becoming the most expensive part of the breeding process… The biggest hurdle in the public sector in the past was the massive investment required to set up genotyping laboratory facilities… outsourcing, we believe, will help convince breeders to consider integrating molecular techniques into their breeding programmes”

Why integrated breeding?
For almost 30 years, the private sector has been implementing molecular-breeding approaches in developing more productive and resilient crops. These approaches allow breeders to select for plant characteristics (traits) early in the breeding process and then test whether a plant has the targeted trait, which they cannot visually identify.

“Phenotyping and field trials are becoming the most expensive part of the breeding process,” says Mark. “Using molecular markers is a way to reduce the investment in that process. By using markers, early in the development of a given crop line, you can reduce the number of plants you need to grow and test, reducing the time and cost associated with field trials.”

Mark hopes that the Workbench will in time enable breeders, in under-resourced public breeding institutes to access some of the leading molecular-marker databases, and make use of the markers therein for the desired traits they are breeding for, along with technical support from molecular breeders to guide them in making their breeding decisions.

“The biggest hurdle in the public sector in the past was the massive investment required to set up genotyping laboratory facilities,” explains Mark “but now there are plenty of professional service providers that people can send their samples to and get back good results at a very reasonable cost. This time- and cost-saving reality of outsourcing, we believe, will help convince breeders to consider integrating molecular techniques into their breeding programmes.”

We are currently conducting a three-year course to train scientists from national programmes in West and Central Africa, East and Southern Africa and South and Southeast Asia, who we hope will promote and support the adoption of modern breeding in their institutes and countries.”

An IB-MYC training course in session in April 2013 for the West and Central Africa group. Clarissa Pimentel, IBP's Data Manager/Training Specialist, at the front, traching trainees tricks on using Fieldlab in the tablet for data collection.

An Integrated Breeding Multiyear Course (IB-MYC) training course in session in April 2013 for the West and Central Africa group. Clarissa Pimentel, IBP’s Data Manager/Training Specialist, at the front, giving trainees tricks and tips on using FieldLab on the electronic tablet for field data collection.

Running with champions
Mark knows that giving breeders the tools and means to integrate molecular breeding into their programmes is one thing. To actually have them adopt them is another. But he has a plan.

In keeping with the core mission of GCP, which is to build sustainable capacity in developing-country breeding programmes, Mark proposes to recruit and train selected breeders in molecular-breeding techniques and set them up as champions and advocates for their particular crop or region.

Marker implementation methods can be varied but the tools required need to help the breeder make a quick informed decision on what to take forward to the next generation: What plants need to be crossed? Which plants should be kept and which ones discarded? The decision-support tools provided by the IB Workbench will help the breeder make these decisions.

“We are currently conducting a three-year course to train scientists from national programmes in West and Central Africa, East and Southern Africa and South and Southeast Asia, who we hope will promote and support the adoption of modern breeding in their institutes and countries,” Mark enthusiastically explains. The three-year training programme is known as the Integrated Breeding Multiyear Course (IB–MYC). Mark continues, “We believe that people will be more willing to listen to someone who is right there on the ground, whom they know and trust and can easily get in contact with if they need help.”

While the champions concept is still in its infancy, Mark believes it has real merit but must overcome two major barriers – time and confidence. “Identifying the champions won’t be hard,” he observes, “What will be hard is getting them to add this extra task to their already busy agenda. It will require buy-in from management at the institutional level to enable the champions to carry out their mission. It will also be individually hard for each champion, who will only be successful when they have the confidence in their own integrated breeding and extension skills. This confidence would be the thing that would really help sell the message.”

Engaging the private sector
Mark oversees the design, testing and deployment of the system that underpins the BMS, ensuring that both the system and the tools embedded in it are easy to use and meet the needs and expectations of the breeders. However, he and his team have had some trouble getting feedback on the system from the breeders it is intended for, due to their inexperience with such tools and systems. That is why he has called on his private-sector contacts, developed when he was at Syngenta where he worked for five years prior to his current assignment.

“We hope to show them what we’ve been doing in IBP with the Workbench, and hopefully get some private-sector buy-in and see how they can help us – not in developing tools, but with feedback on functionality and usability of the tools we are developing,” he explains. “We don’t have a core set of breeders who are routinely using markers in their breeding programme amongst the partners we are working with on the IBP project. So we are tapping into the private sector which has teams of molecular breeders who are more familiar with the types of breeding workflows and tools we are developing. We’re hoping that we can take advantage of their knowledge and experience to get some really useful feedback, which we will use to improve the usability and effectiveness of our tools.”

To maximise adoption and use, GCP has been actively engaged in extensive capacity building, and this will be reinforced with a comprehensive awareness-creation and communication effort immediately before and after a projected mid-year release of a newer BMS version incorporating the all-essential user feedback. The impact of the analytical pipeline in developing countries will be particularly enhanced with the availability of efficient user support services, which Mark will be overseeing.

Access the Breeding Management System (no-cost registration required)

More information

VIDEO: IBP’s comparative advantage for developed countries, while also relevant for developed countries.

SLIDES: IBP’s Breeding Management System

 

Dec 122013
 

Down memory lane with Masdiar Bustamam, from generation to generation

Masdiar Bustamam

In some circles, Masdiar Bustamam (pictured right) is a mother figure of molecular breeding in Indonesia. In a marathon career spanning 37 years as a horticulturist and agricultural researcher, she helped develop and nurture the practice at the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD).  Staying with the marathon metaphor, this quote from a celebrated middle- and long-distance Kenyan champion runner, Kipchoge Keino, is very apt: “This life we have is short, so let us leave a mark for people to remember.”

Back to Masdiar: having retired in early 2012, we were recently lucky enough to gain a rare insight into Masdiar’s life, and to witness the mark she has already made, by simply tagging along when she checked in on two of her ICABIOGRAD charges and mentees whose PhD studies were supported by GCP – Wening Enggarin and Joko Prasetiyono. At ICABIOGRAD, Wening and Joko have both taken the torch from Masdiar for GCP projects, as well as for other projects.

She was the best teacher for me … instilled in me a spirit to never lose hope in the research I’m doing – Joko

She was a great role model… Her persistence and positive can-do nature was exactly what I needed as a young researcher … to not just offer me assistance in my work but also in life and religion. For me, she has become a second mother  – Wening

… That project really helped us out a lot and we are grateful to GCP  for recognising the potential in us and supporting it – Masdiar

Here’s more of what Masdiar (and her charges) had to say as we tagged along, and chatted her up…

Tell us about your early life
I grew up and lived in West Java for most of my life. My father was a farmer and my mother a housewife. I was their first of five children.

I went to Andalas University in Padang and graduated with a Bachelor in Biology in 1974. After graduating, I worked as a staff researcher at a local horticulture research institute focusing on pests and diseases, particularly fungi in tomato soils. I was lucky early in my career to have opportunities to visit research institutes in The Netherlands, Japan and USA, all of which enhanced my skills. While in USA, I completed my Masters in rice blast disease – a fungus-related disease, which severely hampers rice yields in Indonesia, and all around the world.

After my time in USA, I accepted a position at the International Rice Research Institute (IRRI) in The Philippines. This was the start of the second phase of my career, in which I began to focus on molecular biology. When I returned from The Philippines, I realised that we needed to improve our capacity to use molecular markers for breeding, which led me to take a job at ICABIOGRAD.

Setting up a lab – GCP lends a hand
When I first started at ICABIOGRAD we had empty benches. It took a lot of time and money to fill them with the equipment we have today. Rebecca Nelson from Cornell University in USA provided us with a lot of support in getting us started. We were involved in one of her GCP projects for two years working on blast resistance in rice.

We were also working on another GCP project led by Abdelbagi Ismail studying phosphorus-deficiency tolerance in rice too, dubbed the Pup1 project. Joko was actually my PhD student for that project and did a lot of the work.

Selecting Pup1 lines in farmers' fields in Sukabumi, West Java, in 2010. L–R: Masdiar Bustamam, Tintin Suhartini and Ida Hanarida Sumantri.

Selecting Pup1 lines in farmers’ fields in Sukabumi, West Java, in 2010. L–R: Masdiar Bustamam, Tintin Suhartini and Ida Hanarida Sumantri.

Both Rebecca and Adbdelbagi helped me draft a proposal to GCP in 2007 for a project to enhance our capacity in phenotyping and molecular analysis to develop elite rice lines suitable for Indonesia’s upland regions. We had the understanding to do the science, but needed to enhance our facilities to carry it out.

That project really helped us out a lot and we are grateful to GCP  for recognising the potential in us and supporting it.”

GCP recognised the need for such a project as many of Indonesia’s brightest researchers were leaving the country because of the lack of suitable facilities, and so funded the two-year ICABIOGRAD-defined capacity-building project. The grant covered – among other areas – intensive residential staff training at IRRI; PhD student support, which allowed Wening to complete her PhD; infrastructure such as a moist room, temperature-controlled centrifuge apparatus, computers and appropriate specialised software; and blast and inoculation rooms.

Writer’s note: The tailor-made grantee-driven capacity-building project above was a cornerstone of  GCP Phase I’s capacity-building strategy, and was dubbed ‘Capacity building à la carte’. With this historical note, we take an interlude here, to tour the facilities Masdiar has mentioned above.

Our first stop is the Rice Blast Nursery…

....Front view...

….Front view…

...side view...

…side view…

 

 

 

 

 

 

 

 

... and a close-up on the sign in the side view.

… and a close-up on the sign in the side view.

 

Next, we visit the Inoculation and Moist Rooms…

 

Inoculation and Moist Rooms

Inoculation and Moist Rooms…

 

Close-up

…and a close-up on the sign at the front.

 

 

 

 

 

 

 

After our tour of the facilities, Masdiar resumes her story: “That project really helped us out a lot and we are grateful to GCP  for recognising the potential in us and supporting it so that researchers like Wening bloom and blossom, now and into the future,” says Masdiar glowingly of one of her mentees and successors.

I’m proud of how they have matured and I’m really looking forward to when they and their teams produce new rice varieties, from the facilities I helped establish, that will help the farmers…I sacrificed what I enjoyed doing for a challenge whose benefits I recognised for my country.”

Mission-driven researcher, nurturer and mentor, all rolled into one
For Masdiar, it wasn’t work, but rather a passion and a hobby. “Throughout my career, I always enjoyed research, especially in plant pathogens,” she remembers. “Working with biotechnology was difficult because I didn’t have a background in the area. I sacrificed what I enjoyed doing for a challenge whose benefits I recognised for my country.”

Photo: ICABIOGRAD

From generation to generation: Masdiar (2L) drops in on her charges and torch-bearers at ICABIOGRAD’s Molecular Biotechnology Lab. L–R: Wening Enggarini, Masdiar Bustamam, Tasliah Zulkarnaeni, Ahmad Dadang and Reflinur Basyirin.

In the later half of her career, Masdiar recollects how she enjoyed training and mentoring younger researchers like Joko and Wening. “I’m proud of how they have matured and I’m really looking forward to when they and their teams produce new rice varieties, from the facilities I helped establish, that will help the farmers.”

Both Joko and Wening attest that Masdiar’s support and supervision were vital for their professional development and consequent career advancement. “She was the best teacher for me. She taught me how to manage a project, how to forge international collaborations, and how to write a good publication,” remembers Joko. “She also instilled in me a spirit to never lose hope in the research I’m doing.”

“She was a great role model for me!” exclaims Wening proudly. “Her persistence and positive can-do nature was exactly what I needed as a young researcher who was just starting a career. Even more so was her ability to take time out of her busy day to not just offer me assistance in my work but also in life and religion. For me, she has become a second mother  in this life. I’m blessed to be so lucky!”

Clearly, Masdiar has made her mark, leaving a cross-generational living legacy in molecular breeding embodied in these young researchers.

Links

  • Masdiar’s project report, with a picture of the blast nursery under construction (p 156 in this PDF)
  • Photo-story on Facebook
  • Rebecca Nelson’s project, Targeted discovery of superior disease QTL alleles in the maize and rice genomes (p 16 in this PDF)
  • GCP’s capacity building

 

Nov 282013
 

The focus of GCP’s work – using genetic diversity and advanced plant science to improve crops for greater food security in the developing world, with a particular focus on drought-prone and harsh environments – seemed to resonate well in the research for development community during 2013, with a number of international events and publications turning the spotlight on drought and its effects on agriculture.

Field under drought duress

In our GCP corner, it all began in March, when GCP Director, Jean-Marcel Ribaut, began the year’s drought discourse with a talk entitled ‘Understanding drought tolerance to best breed for it: how far do we go?’ which he presented at the 49th Annual Illinois Corn Breeders’ School in Champaign, Illinois from 4–5 March.

Interdrought-presentation-JM-Ribaut-web-240

Keynote concentration on crops & drought worldwide: Jean-Marcel Ribaut’s presentation at InterDrought IV

Early September started with a ‘Harvest Festival’ of drought pickings, beginning with the InterDrought IV conference in Perth, Australia, from 2nd to 6th of the month. This conference, in addition to being partly sponsored by GCP, had Jean-Marcel presenting the keynote address, which explored the complexities of climate change on crop productivity, and delved deep into drought – a ‘complex and capricious’ creature, before considering the many facets of breeding for drought tolerance (see it all on SlideShare).

Late September continued the flavour of the month with the publication of a special issue of Nature tackling ‘Agriculture and Drought’. The article entitled ‘Plant Breeding: discovery in a dry spell’ by Michael Eisenstein poses the question: “Improved crops have helped farmers maintain yields in times of drought. But as climate change looms, will the gains keep coming?”  The special issue features, among others, past and present GCP scientists:

Crops coping with cracked earth

  • Arvind Kumar (IRRI) ponders the position of drought-tolerant rice and the effects of recent climate change;
  • François Tardieu (INRA, France) discusses maize yield in drought-prone conditions; he is the author of the chapter Assessing effects of water deficit in GCP’s publication Drought phenotyping in crops: from theory to practice  (an open-access book published in 2011);
  • Rajeev K Varshney (ICRISAT), GCP’s Theme Leader for Genomics until August this year, illustrates the effects of molecular breeding on legumes, in particular marker-assisted selection and quantitative trait loci for drought-tolerance related traits;
  • Jose Luis Araus Ortega (University of Barcelona, Spain), digs into the disparity between people with biotech and field experience in the area;  (he is co-author of the chapter Phenotyping maize for adaptation to drought in GCP’s phenotyping publication);
  • GCP itself is mentioned in the article as an example of a project which helps build local capacity in the developing world in order to maximise on advances in crop technology.
Richard Trethowan delivers on drought at the GCP GRM 2013

Richard Trethowan delivers on drought at the GCP GRM 2013

Just one day after the publication of the Agriculture & Drought special issue mentioned above, GCP’s General Research Meeting began, running from 27–30 September in Lisbon, Portugal. The focus of this year’s meeting was also on drought from day 1: setting the tone was the keynote address by GCP’s Product Delivery Coordinator for wheat, Richard Trethowan (University of Sydney, Australia) entitled Delivering drought tolerance to those who need it; from genetic resource to cultivar. More on GRM13

Drought phenotyping in crops: from theory to practice

The original GCP drought phenotyping publication

In keeping with the drought theme, we had on offer to GRM participants our 2011 open access book, Drought phenotyping in crops: from theory to practice. We also shared copies of chapters which had been republished by Frontiers. Republishing this work gave contributing authors an opportunity to refresh and update their findings, and to bring state-of-the-art research in phenotyping to the public once more via open access publishing, with each author moving at their own pace. Republished chapters will be compiled into an open-access e-book coming soon.

The closing chapter to this current chronicle on drought dialogues is a success story, by GCP Principal Investigators, Emmanuel Okogbenin (NRCRI, Nigeria), Chiedozie Egesi (NRCRI, Nigeria), and collaborator Martin Fregene (Donald Danforth Plant Science Center), which appears in a new FAO book, Biotechnologies at Work for Smallholders: Case Studies from Developing Countries in Crops, Livestock and Fish. The team’s GCP work on cassava is in chapter 2.4, entitled Molecular markers and tissue culture: technologies transcending continental barriers to add value and improve productivity of cassava in Africa, which describes the many hurdles they have successfully overcome to breed high-yield, disease-resistant, drought-tolerant cassava for breeding programmes in Nigeria. Going beyond drought, the chapter dwells on disease and other drawbacks – aspects also touched upon in this lively profile of Chiedozie Egesi. For in a narrative high and heavy on the devastation of drought and disease, it’s important not to lose sight of the gains, and also important to celebrate the good news despite the bad.

Cassava leaf waving woes away

Our balanced but upbeat cassava tale today has deep roots in the past. Check this out in these links:

Nov 202013
 
Chiedozie Egesi

Chiedozie Egesi

Despite the social injustice around me, I always thought there was opportunity to improve people’s lives…GCP helped us to build an image for ourselves in Nigeria and in Africa, and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.”
 
– Chiedozie Egesi, a would-have-been surgeon who switched sides to biology and crop genetics, and who got acquainted with GCP through the Internet.

Backdrop: A booming economy and a wealth of natural resources may be among some of the common preconceptions of the average Jane and Joe regarding Africa’s most populous nation. Lamentably, however, Nigeria, like numerous robust economies worldwide, is still finding its feet in addressing severe inequality and ensuring that the nation’s wealth also flows to the poorest and most marginalised communities.

It’s a problem Chiedozie Egesi (pictured above), a molecular plant breeder at Nigeria’s National Root Crops Research Institute (NRCRI), understands well: “Nigeria is an oil-producing country, but you still see grinding poverty in some cases. Coming from a small town in the Southeast of the country, I grew up in an environment where you see people who are struggling, weak from disease, poor, and with no opportunities to send their children to school,” he reveals. The poverty challenge, he explains, hits smallholder farmers particularly hard: “Urban ‘development’ caught up with them in the end: some of them don’t even have access to the land that they inherited, so they’re forced to farm along the street.”

Maturing cassava fruits.

Food first! A man with a mission and fire in his belly, determined to make a difference
For this gifted and socially conscious young man, however, the seemingly bleak picture only served to ignite a fierce determination and motivation to act: “Despite the social injustice around me, I always thought there was opportunity to improve people’s lives.” And thus, galvanised by the plight of the Nigerian smallholder, plans for a career in medical surgery were promptly shelved, and traded for biological sciences and a PhD in crop genetics, a course he interspersed with training stints at USA’s Cornell University and the University of Washington, Seattle, along the way, before returning to the motherland to accept a job as head of the cassava breeding team, and – following a promotion in 2010 – Assistant Director of the Biotechnology Department, at NRCRI.

As evident from the burgeoning treasure chest of research gems to his name, it was a professional detour which paid off, and which continues to bear fruit today.

Making a marked difference, cultivating new partnerships, and looking beyond subsistence
In 2010, work by Chiedozie and his NRCRI team resulted in the official release of Africa’s first molecular-bred cassava variety which was both disease-resistant and highly nutritious – an act they followed in 2012 with the release of a high-starch molecular-bred variety. The team’s astute navigation of molecular markers resulted in breeding Latin American cassava varieties resistant to cassava mosaic disease (CMD), leading to the release of CMD-resistant cassava varieties in the African continent for the first time. Genetic maps intended to enhance breeding accuracy for cassava – the first of their kind for the crop in Africa – have been produced, and quantitative trait loci (QTLs) for cassava breeding are in the making. In 2011, the team, together with their partners at the International Institute of Tropical Agriculture (IITA) and HarvestPlus (a CGIAR Challenge Programme), released three pro-vitamin A-rich varieties of cassava, which hold the potential to provide children under five and women of reproductive age with up to 25 percent of their daily vitamin A allowance – a figure Chiedozie and his team are now ambitiously striving to increase to 50 percent.

These new and improved varieties – all generated as a direct or indirect result of his engagement in GCP projects – are, Chiedozie says, worth their weight in gold: “Through these materials, people’s livelihoods can be improved. The food people grow should be nutritious, resistant and high-yielding enough to allow them sell some of it and make money for other things in life, such as building a house, getting a motorbike, or sending their kids to school.”

Prior to my GCP work, I was more or less a plant breeder, and a conventional one at that. Whilst I’d been exposed to molecular tools during my early work on yam and other crops, I was not applying them in my work back then…GCP was not only there to provide technology but also to guide you in how to operate that technology… Now all our staff understand what is meant by good breeding, data analysis or applying genotypic data. My whole team benefitted.”

A chance ‘meeting’, with momentous manifold connections
Having first stumbled across the GCP website by chance when casually surfing the internet one day in a cyber café back in 2004, Chiedozie’s attention was caught by an announcement for a plant breeders’ training course in South Africa, an opportunity which he applied for on the off chance…and for which, hey presto!, he was accepted! Thus, his GCP ‘adventure’ began!

Chiedozie Egesi (left) and Emmanuel Okogbenin (right) in a cassava field.

Chiedozie Egesi (left) and Emmanuel Okogbenin (right) in a cassava field.

Promptly revealing an exceptional craftsmanship for all things cassava, Chiedozie soon became engaged in subsequent opportunities, including a one-year GCP fellowship at the International Centre for Tropical Agriculture (CIAT) in Colombia, a number of GCP Capacity building à la carte-facilitated projects, and, more recently, a major role as a Principal Investigator in the GCP Cassava Research Initiative (RI), teaming up with NRCRI colleague and Cassava RI Product Delivery Coordinator, Emmanuel Okogbenin. The Cassava RI is where Chiedozie’s energies are primarily invested at present, with improving and deploying markers for biotic stresses in cassava being the name of the game.

The significance of his GCP engagements was, Chiedozie affirms, momentous: “Prior to my GCP work, I was more or less a plant breeder, and a conventional one at that. Whilst I’d been exposed to molecular tools during my early work on yam and other crops, I was not applying them in my work back then.”

Collaboration in a GCP-funded project with CIAT led to the development of a new laboratory space for NRCRI, bolstered by support for basic materials as well as training. “GCP was not only there to provide technology but also to guide you in how to operate that technology,” Chiedozie comments. (For more on how it all began, see At home and to go and Molecular bonds in pp 26–29 in this e-book)

GCP’s Integrated Breeding Platform (IBP), he says, has played a vital role in this regard: “By opening the door to training, generation of data, analysis of data, and by giving support in making decisions, GCP’s IBP serves as a one-stop shop for cassava breeding.” It’s a sentiment shared by his NRCRI colleagues, he says: “GCP is providing a comprehensive full-package deal. Besides myself, several colleagues have been trained at NRCRI. Now all our staff understand what is meant by good breeding, data analysis or applying genotypic data. My whole team benefitted.”

A real deal-breaker is the facilitation of self-empowerment amongst national programmes, and the new avenues unfolding for enhanced collaboration at the local, national and regional level…What we’re seeing is a paradigm shift. In the past there was a general belief that this kind of advanced molecular science was only feasible in the hands of CGIAR Centres or developed-country research institutes – the developing-country programmes were never taken seriously. When the GCP opportunity to change this came up we seized it, and now the developing-country programmes have the boldness and capacity to do molecular breeding and accurate phenotyping for themselves.”

Growth in numbers, capital, capacity, collaboration, reach and impact
Strength in numbers, Chiedozie says, is a vital lifeline for cassava, a crop which has suffered years of financial neglect. As such, a real deal-breaker in Chiedozie’s eyes is the facilitation of self-empowerment amongst national programmes, and the new avenues unfolding, thanks to his involvement in the GCP cassava breeding Community of Practice (CoP), for enhanced collaboration at the local, national and regional level: “We now have a network of cassava breeders that you can count on and relate with in different countries. This has really widened our horizons and also made work more visible,” he offers, citing effective links formed with Ghana, Sierra Leone, Liberia, Mozambique, Malawi and Côte d’Ivoire, amongst several other cassava-breeding neighbours near and far.

Cassava leaf

Cassava leaf

The achievements amongst this mushrooming community are, he stresses, unprecedented: “Participation in the CoP means many countries can now create their own hybrids and carry out their own selection, which they could not do before,” he affirms.

And it’s a milestone Chiedozie and colleagues are justifiably proud of: “What we’re seeing is a paradigm shift. In the past there was a general belief that this kind of advanced molecular science was only feasible in the hands of CGIAR Centres or developed-country research institutes – the developing-country programmes were never taken seriously. When the GCP opportunity to change this came up we seized it, and now the developing-country programmes have the boldness and capacity to do molecular breeding and accurate phenotyping for themselves,” Chiedozie confirms.

GCP helped us to build an image for ourselves in Nigeria and in Africa, and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.” 

Building on success, going from strength to strength as the sands shift

With internal capacity now blossoming of its own accord – in no small measure due to the leading role played by NRCRI in the sensitisation of cassava plant breeders throughout Nigeria and beyond – the sands are certainly shifting: “GCP helped us to build an image for ourselves in Nigeria and in Africa, and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.”

Anthony Pariyo (left) of NaCRRI, Uganda

Visitors with working clothes on: NaCRRI Uganda’s Anthony Pariyo (left) and Williams Esuma (right) visiting NRCRI Umudike on a breeder-to-breeder visit in July 2012. Williams’ postgraduate studies were funded by GCP through the cassava CoP.

And the beauty of it, Chiedozie continues, is that the cassava crew is going from strength to strength: “Nigeria is seen as a really strong cassava-breeding team, not only within Africa but also globally. And we have not yet realised all the benefits and potential – these are still unfolding,” he enthuses.

Also yet to unfold are Chiedozie’s upcoming professional plans, which, he reveals, will soon see him engaging with the USA’s Cornell University, the Bill & Melinda Gates Foundation, the International Institute of Tropical Agriculture (IITA) and Uganda’s National Crop Resources Research Institute (NaCRRI) in an initiative which, through its focus on genomic selection in cassava breeding, promises to be, Chiedozie reveals, “at the frontier of cutting-edge technology.” Genomic selection for this initiative is already underway.

Readers intrigued by this tantalising taster of what to expect in Chiedozie’s next professional chapter are encouraged to watch this space over the coming years…Judging by his remarkable research record to date, we feel confident that future installments will not disappoint!

Meantime, here’s Chiedozie’s presentation at the GCP General Research Meeting in September 2013. We are also working on videos of Chiedozie and his work. Yet more reason to watch this space!

Links
  • For a picture of Chiedozie’s work near the beginning in 2006, see pp 26–29 here (At home and to go and Molecular bonds)
  • More recent updates are on the Cassava InfoCentre

 

Feb 282013
 

Drought stalks, some die
Despite the widespread cultivation of beans in Africa, yields are low, stagnating at between 20 and 30 percent of their potential. Drought brought about by climate change is the main culprit, afflicting 70 percent of Africa’s major bean-producing regions in Southern and Eastern Africa.Bean plant by R Okono

Today we turn the spotlight on Zimbabwe, where drought is a serious and recurrent problem. Crop failure is common at altitudes below 800 meters, and livestock death from shortage of fodder and water are all too common. In recent history, nearly every year is a drought year in these low-lying regions frequently plagued by delayed rains, as well as by intermittent and terminal drought.

The ‘battleground’ and ‘blend’
Zimbabwe is divided into five Natural Regions or agroecological zones. More than 70 percent of smallholder farmers live in Natural Region 3, 4 and 5, which jointly account for 65 percent of Zimbabwe’s total land area (293,000 km2). It is also here that the searing dual forces of drought and heat combine to ‘sizzle’  and whittle bean production.

The rains are insufficient for staple foods such as maize, and some of their complementary legumes such as groundnuts. In some areas where temperatures do not soar too high (less than 30oC), beans blend perfectly into the reduced rainfall regime that reigns during the growing season.

A deeper dig: the root of the matter

Godwill Makunde

Godwill Makunde

Research from Phase I of the Tropical Legumes I (TLI) project under GCP’s Legume Research Initiative showed that deep rooting is one of the ways to confer drought tolerance in common beans. High plant biomass at pod-filling stage also confers drought tolerance. “These important findings from TLI refined our breeding objectives, as we now focus on developing varieties combining deep roots and high plant biomass,” reveals Godwill Makunde (pictured), a bean breeder at Zimbabwe’s Crop Breeding Institute (CBI), which falls under the under the country’s Department of Research & Specialist Services. Zimbabwe is one the four target countries in Eastern and Southern Africa for GCP’s bean research (the other three being Ethiopia, Kenya and Malawi).

From America to Africa…the heat is on, so is the battle…

The battle is on to beat the heat: through the project, CBI received 202 Mesoamerican and Andean bean breeding lines from the reference set collection held by the International Center for Tropical Agriculture (CIAT, by its Spanish acronym). A ‘reference set’ is a sub-sample of existing germplasm collections that facilitates and enables access to existing crop diversity for desired traits, such as drought tolerance or resistance to disease or pests. The Institute also embarked on bringing in more techniques to breed for heat tolerance.

Kennedy Simango

Kennedy Simango

Drought, pests and disease
“We embraced mutation breeding in collaboration with the International Atomic Energy Agency, and we primarily look for heat tolerance in small-seeded beans,” says Kennedy Simango (pictured right and below), a plant breeder at CBI. “Preliminary results suggested that just like drought, the reproductive stages of common bean are when the crop is most sensitive to heat. Flower- and pod-drop are common. Yield components and yields are severely reduced. In addition, we also focus on developing pest- and disease-resistant varieties.”

 

Kennedy Simango at work a the Crop Breeding Institute.
Kennedy Simango at work a the Crop Breeding Institute.

The CBI project’s primary diseases and pests of focus are angular leaf spot (ALS), common bacterial blight (CBB), rust and bean stem maggot, and aphids. “This came from our realisation that drought co-exists with heat, diseases and pests,” Kennedy adds. “So, a variety combining drought, heat, disease and pest tolerance all together would increase common bean productivity under harsh environments or drought-prone areas.”

At first glance, piling up all these vital survival traits may appear insurmountable, but it is all feasible, thanks to advances in plant science. “Breeding methods are changing rapidly, and it is vital that we keep up with the technology,” says Kennedy.

The CBI team is using molecular breeding to identify drought-tolerant parents, and then cross them into preferred bean varieties to confer to the ‘offspring’ the best of both worlds – drought tolerance and market appeal.

All-round capacity and competence
GCP’s support does not stop at enabling access to breeding lines alone, or introduction to molecular breeding. “We got a lyophiliser, which is specialised equipment that enables us to extract DNA and send it for genotyping,” says Kennedy. “From the genotyping exercise, we hope to be able to trace the relationships among breeding lines so that we design better crossing programmes, and thereby maximise the diversity of our breeding lines. In addition, we hope to select recombinants carrying desirable genes in a short period of time, and at times without even needing to test them in the target environment.” GCP assists with genotyping through its Genotyping Support Service offered through the Integrated Breeding Platform.

For phenotyping, CBI has benefitted from a mobile weather station, a SPAD meter (for measuring chlorophyll content), a leaf porometer (for measuring leaf stomatal conductance) and water-marks (probes for measuring soil moisture).

Human resources have not been forgotten either. Godwill Makunde, a CBI bean breeder, is studying for a TLII-funded PhD in Plant Breeding at the University of the Free State, South Africa. A group of four scientists (Godwill and Kenedy,  plus Charles Mutimaamba, and Munyaradzi Mativavarira) are in GCP’s three-year Integrated Breeding Multi-Year Course (IB–MYC). The curriculum includes design of experiments, data collection, analysis and interpretation, molecular breeding and data management techniques. In addition, GCP also trains research technicians. For CBI, Clever Zvarova, Anthony Kaseke, Mudzamiri and Chikambure have attended this training. Their course also includes phenotyping protocols (data collection and use of electronic tablets in designing field-books). To date, CBI has received five tablets for digital data collection , of which two are outstanding.

Photo: CBI

Godwill doing what he does best: bean breeding.

Bringing it all together, and on to farms
But how relevant are all these breeder-focused R&D efforts to the farmer? Let’s review this in proper context: in the words of Mr Denis Mwashita, a small-scale farmer at the Chinyika Resettlement Scheme in Bingaguru, Zimbabwe, “Beans have always carried disease, but from the little we harvest and eat, we and our children have developed stomachs.”

“What Mr Mwashita means is that despite the meagre harvests, farm families fare better in terms of health and nutrition for having grown beans,” explains Godwill.

With this solid all-round support in science, working partnerships, skills and infrastructure, the CBI bean team is well-geared to breed beans that beat both heat and disease, thereby boosting yields, while also meeting farmer and market needs. Trials are currently underway to select lines that match these critical needs which are the clincher for food security.

“The Zimbabwe market is used to the sugar type, which is however susceptible to drought. We hope to popularise other more drought-tolerant types,” says Kennedy. “We plan to selected a few lines in the coming season and test them with farmers prior to their release. Our goal is to have at the very least one variety released to farmers by mid-2013.”

A noble goal indeed, and we wish our Zimbabwe bean team well in their efforts to improve local food security.

VIDEO: The ABCs of bean breeding in Africa and South America, with particular focus on Ethiopia, Kenya, Malawi and Zimbabwe

Related blogposts

Other links

 

 

Dec 212012
 

I’ve always enjoyed my job, particularly teaching students and young researchers, but this project has made me think about how I can do more practical science.” – Zeba Seraj, Biochemistry and Molecular Biology Professor, University of Dhaka, Bangladesh

Zeba Seraj

Growing up with a botanist as a father, Zeba Seraj was nurtured to look at plants in a scientific light. But at one stage in her life, she took a different fork on the road: she was more interested in rat livers and cow eyes, before becoming a ‘late bloomer’ in applied science and molecular plant breeding, which is her current niche.

Taking that fork: rats seduced, cows made eyes, but both lost…
Having completed her Undergraduate and Master’s in Biochemistry at the University of Dhaka, Bangladesh, during the 70s and 80s, she moved to Scotland for a PhD at the University of Glasgow. After being persuaded that molecular biology and recombinant DNA technology were not likely to be too different in animals and plants, she focused on the separation of nuclear proteins involved in post-transcriptional processing in the rat liver system.

“I then went on to work as a postdoc at the University of Liverpool, UK, for 18 months, where I worked on a bovine retina cDNA [complementary DNA] library,” Zeba recalls. “I was exposed to a number of recombinant DNA techniques and was pleasantly surprised to find DNA much easier to work with compared to proteins! I enjoyed it, but when I returned to the Bangladesh, there was no work in that field, so I turned to plants.”

The rise of rice, propelled by ‘Petrra’ project and petri dish
Back at her old University, one of Zeba’s first projects was working on salt tolerance in rice which allowed her to set up plant tissue culture facilities and establish a modest molecular biology laboratory. Zeba thereafter worked with the International Rice Research Institute (IRRI) and the Bangladesh Rice Research Institute (BRRI) on the Petrra project (poverty elimination through rice research assistance). The project was funded by the Department for International Development, UK. Meanwhile, she also spent a couple of months in the laboratory of the illustrious Dr John Bennett at IRRI, learning the latest technology in DNA markers and polymerase chain reaction (PCR) technology. This inital work would, in a way, lead her to GCP.

Meeting GCP, and banking on potential
Zeba joined the GCP community in 2005, working on the rice Saltol (salt tolerance) project. She was a focal collaborator in Bangladesh for this IRRI-led project that aimed to revitalise marginal ricelands by discovering and breeding into popular rice varieties ‘survival’ genes to enable rice to not only survive but also thrive on saline or phosphorus-poor soils.

“We were introduced to the project through the Principal Investigator, Abdel Ismail,” recalls Zeba. “Our lab was not very modern, but we did have all the facilities to do marker work, as well as a firm grasp on the theory, so IRRI and GCP must have seen potential in us.”

 …doing the research helped me understand the practical application better… It was a real eye-opener.”

Transiting from theory to practice
After 15 years of working as an associate professor and professor at the University of Dhaka (DU), mainly nurturing young biochemists, Zeba was re-energised by the thought of working on such a practical project that would have a direct impact on her country’s food security, and on its farmers’ livelihoods.

In the background, genotyping in progress at the Department of Biochemistry and Molecular Biology, University of Dhaka. In thef oreground, student– supervisor consultations. Pictured (left to right) are: Zeba I Seraj, Roman, Adnan, Sarwar, Debashis,Rabin, Dost, Mishu, Shamim and Rejbana.

Nearly one million hectares along the Bangladesh coast are affected by varying degrees of salinity which has severely limited the introduction of modern high-yielding rice varieties, as few of these are saline-tolerant. Given Bangladesh’s high population, farmers need as bountiful yields as possible, and minimum risk of failure.

“After reading and teaching theory for so long, it was really exciting to actually put it into practice and work towards a practical outcome,” says Zeba.

“Actually doing the research helped me understand the practical application better too. It was a real eye-opener.”

 Using molecular markers allowed us to at least halve the time it would take to release stress-tolerant rice.” 

Gaining time: the ‘miracles’ and ‘magic’ of molecular makers
Zeba’s lab was responsible for the molecular evaluation and selection of rice lines bred by BRRI for insertion of the genomic region containing Saltol (discovered to confer salt toleranceby the previous IRRI-led GCP-funded project).

Md Sazzadur Rahman of BRRI assesses progress on a salt-tolerant rice variety in the field.

“We collected leaf samples from the BRRI-bred lines which were a combination of popular rice landraces and a Saltol donor.” explains Zeba ‘Landraces’ is ‘breeder-speak’ for varieties grown by, and popular with, farmers, but not necessarily improved by selective scientific breeding. Zeba continues, “We then used molecular markers which would indicate the presence of the Saltol genomic region.”

“The information we gathered guided the breeders at BRRI to select rice plants with the Saltol region. Selected plants were then further analysed with markers, to maximise the presence of popular alleles,” she adds. Allele is one of two, or more, forms of a gene – the alternative form of a gene responsible for a trait producing different effects.

“Using molecular markers allowed us to at least halve the time it would take to release stress-tolerant rice,” Zeba reveals.

 I will be the happiest person on earth the day they release the new lines, knowing that I’d helped to make a difference.”

Seven years on, what next?
Zeba is grateful that she and her lab were active partners in GCP projects for seven consecutive years: first in the IRRI-led project in 2005 to 2009, then in a follow-up supplementary capacity-building DU-led project from 2010 to 2011, for which Zeba was the Principal Investigator.

Nirmal Sharma and Jamal emasculate the first backcross population of a crosscombination for a second backcross at BRRI

“I don’t think we could have done the work without the various GCP networks. Several times in the project we would lag behind and they’d offer us support to get us back on track,” says Zeba. “They also instilled in us the importance of proper data management, and we have now implemented their system to collect, store and report data for all of our projects. We also now have all the equipment and processes in place, meaning that we’re now able to accommodate similar projects, now and into the future.”

Personally Zeba feels the project has given her a new direction in her career that she’s keen to further explore. “I’ve always enjoyed my job, particularly teaching students and young researchers, but this project has made me think about how I can do more practical science,” confides Zeba.

As for the Saltol project, she is keeping a close eye on the application waiting for the news of high-yield salt-tolerant lines becoming accessible to all Bangladeshi rice farmers.

“I will be the happiest person on earth the day they release the new lines, knowing that I’d helped to make a difference.”

Links

  • More on Zeba Seraj on page 40 here
  • The road behind us: read on the early days (2005/2006) of the rice salt-tolerance work:
    • on pages 36–39 here
    • on pages 28–30 here
    • on page 6 here
  • Profile: Abdel Ismail, Principal Investigator of the salt tolerance project

 

Nov 132012
 

Bean breeding in his bones: Asrat A Amele

For our bean team, we already see the benefits of being in the Tropical Legumes I  project. We now understand molecular breeding, and we are able to apply molecular breeding techniques.” – Asrat A Amele (pictured)

Asrat is a bean breeder at Ethiopia’s South Agricultural Research Institute (SARI) at the Awassa Research Centre.

Besides breeding beans that will better battle drought, Asrat’s team combines drought tolerance with resistance to the bean stem maggot (BSM) – a pest that afflicts all bean-growing zones in Ethiopia.

Connections, continuity and capacity building
The Tropical Legumes I (TLI) was not an entirely new connection, as Asrat’s involvement with GCP predates this particular project. He started off as a GCP-funded fellow in 2007, investigating bean genetics for drought tolerance. The fellowship would also seem him do a stint in Colombia at the International Center for Tropical Agriculture  (CIAT, by its Spanish acronym). His work at the time on root phenotyping and quantitative trait loci (QTL) analysis has since been published.

At that time, Asrat remarked:

The GCP fellowships programme is great for a person like me, working in a developing-country research institute. I can say it potentially provides researchers with up-to-date scientific knowledge in areas of specialisation. It provides better contact with scientists in other parts of the world and opens a wider window to think on problems and deliver better research products.”

Thorugh GCP, Asrat also attended a molecular breeding course at Wageningen University and Research Centre in The Netherlands. Wageningen is a GCP Consortium member.

The ravages wrought by bean stem maggot.

Having passed through that door of opportunity and looking back now, what does Asrat say? “Through TLI, we were able to access new parental sources of germplasm recommended for release and use for breeding. For instance, we’ve received more than 200 lines from CIAT, from which 10 have been selected to be used as parents. We plan to do crosses with these parents to develop a marker-assisted recurrent selection [MARS] population, based on the problems plaguing beans in Africa.”

And it’s not all about material but also matters cerebral (and matters manual, as we shall see further on): “From the science meetings we attend, we’ve also gained valuable new contacts and acquired new knowledge.” Asrat reveals.

Two…and two

Fitsum Alemayehu

Daniel Ambachew

The next step is to validate the workability of MARS, and SARI has a GCP-funded PhD student, Fistum Alemayehu (pictured right), registered at the South Africa’s Free State University and conducting his phenotyping in Ethiopia, alongside other well-trained staff that SARI now has. Fistum is working on marker-assisted recurrent selection for drought tolerance in beans, while Daniel Ambachew (pictured left), another GCP-funded MSc student enrolled at Haramaya University, Ethiopia, is evaluating recombinant inbred line populations and varieties for combined dual tolerance of drought and bean stem maggot.

Both students are using molecular breeding: “For this work, we’ll be using SNP* markers. It is probably the first use of bean SNPs in sub-Saharan Africa. We will now do QTL analysis with the bean population we have from CIAT,” reveals Asrat.

* SNP: (pronounced ‘snips’) is a technical term, and the abbreviation is derived from ‘single nucleotide polymorphism’ – an advanced molecular-marker system widely used in genetic science. You can read more about SNPs in this press release.

Of humans and machines

A training session on maintaining farm machinery.

Moving on to matters manual and mechanical, besides enhanced human resources, SARI has benefited from infrastructure support as part of GCP’s comprehensive capacity-building package: the Institute now has an irrigation system to enable them conduct drought trials, and SARI technicians from more than 20 different SARI stations have been trained in proper use and routine maintenance of farm machinery. SARI also received two automatic weather stations from GCP for high-precision climatic data capture, with automated data loading and sharing with other partners in the network.

Through this project, SARI is now well tuned into the international arena of bean research and development, and profiting in new ways from this exposure to growing international connections.

Water drilling to install irrigation equipment at SARI.

Institutional revolution and rebirth
The engagement with GCP has revolutionised bean breeding at SARI and institutionalised marker-assisted selection. As a result, SARI will soon have a small molecular breeding laboratory funded by another agency. This lab will support one more PhD student and an additional MSc student, both registered in Ethiopian universities and working on marker-assisted selection for beans.

Thus, in this southern corner of Ethiopia, bean breeders conversant in molecular methods will continue to be ‘born’, better-prepared and well-equipped to meet the challenges facing bean breeding today.

 

 

 

Asrat on video

Links

SLIDES: Phenotyping common beans for tolerance of drought and bean stem maggots in Ethiopia

 

Oct 302012
 

BREAK-TIME AND BRAKE-TIME from beans for a bit: Steve Beebe takes a pause to strike a pose in a bean field.

“These [molecular breeding] techniques, combined with conventional methods, shorten the time it takes to breed improved varieties  that simultaneoulsy combine several traits.

And this means that we also get them out to farmers more quickly compared to phenotypic selection alone.”
– Steve Beebe

THE NEAR-PERFECT FOOD: Common beans (Phaseolus vulgaris L) comprise the world’s most important food legume, feeding about 200 million people in sub-Saharan Africa alone. Their nutritional value is so high, they have been termed ‘a near-perfect food’. They are also easy to grow, adapting readily to different cropping systems and maturing quickly.

That said, this otherwise versatile, adaptable and dapper dicotyledon does have some inherent drawbacks and ailments that crop science seeks to cure….

Rains are rapidly retreating, and drought doggedly advancing
Despite the crop’s widespread cultivation in Africa, “yields are low, stagnating at between 20 and 30 percent of their potential,” remarks Steve Beebe, GCP’s Product Delivery Coordinator for beans, and a researcher at the International Center for Tropical Agriculture (CIAT, by its Spanish acronym).

“The main problem is drought, brought about by climate change,” he says. “And it’s spreading – it already affects 70 percent of Africa’s major bean-producing regions.”  Drought decimates bean harvests in most of Eastern Africa, but is particularly severe in the mid-altitudes of Ethiopia, Kenya, Tanzania, Malawi and Zimbabwe, as well as in southern Africa as a whole.

A myriad of forms and hues: bean diversity eloquently speaks for itself in this riot of colours.

Drought, doubt and duality − Diversity a double-edged sword
“Common beans can tolerate drought to some extent, using various mechanisms that differ from variety to variety,” explains Steve. But breeding for drought resistance is complicated by the thousands of bean varieties that are available. They differ considerably according to growth habit, seed colour, shape, size and cooking qualities, and cultivation characteristics.

“A variety might be fantastic in resisting drought,” says Steve, ‘but if its plant type demands extra work, the farmers won’t grow it,” he explains. “Likewise, if consumers don’t like the seed colour, or the beans take too long to cook, then they won’t buy.”

Molecular breeding deals a hand, waves a wand, and weaves a band
This is where molecular breeding techniques come in handy, deftly dealing with the complexities of breeding drought-resistant beans that also meet farmer and consumer preferences. No guesswork about it: molecular breeding rapidly and precisely gets to the heart of the matter, and helps weave all these different ‘strands’ together.

The bean research team has developed ‘genetic stocks’, or strains of beans that are crossed with the varieties favoured by farmers and consumers. The ‘crosses’ are made so that the gene or genes with the desired trait are incorporated into the preferred varieties.

The resulting new varieties are then evaluated for their performance in different environments throughout eastern and southern Africa, with particular focus on Ethiopia, Kenya, Malawi and Zimbabwe which are the target countries of the Tropical Legumes I (TLI) project.

Propping up the plant protein: a veritable tapestry of terraces of climbing beans.

GCP supported this foundation work to develop these molecular markers. This type of breeding – known in breeder parlance as marker-assisted selection (MAS) – was also successfully used to combine and aggregate resistance to drought; to pests such as bean stem maggot (BSM); and to diseases such as bean common mosaic necrosis potyvirus (BCNMV) and to bruchid or common bacterial blight (CBB). The resulting ‘combinations’ laden with all this good stuff were then bred into commercial-type bean lines.

“These techniques, combined with conventional methods, shorten the time it takes to breed improved varieties that simultaneoulsy combine several traits,” comments Steve. “This means that we also get them out to farmers more quickly compared to phenotypic selection alone.”

Informed by history and reality
Breeding new useful varieties is greatly aided by first understanding the crop’s genetic diversity, and by always staying connected with the reality on the ground: earlier foundation work facilitated by GCP surfaced the diversity in the bean varieties that farmers grow, and how that diversity could then be broadened with genes to resist drought, pests and disease.

What next?
Over the remaining two years of Phase II of the Tropical Legumes I (TLI) project, the bean team will use the genetic tools and breeding populations to incorporate drought tolerance into farmer- and market-preferred varieties. “Hence, productivity levels on smallholder farms are expected to increase significantly,” says Steve.

Partnerships
The work on beans is led by CIAT, working in partnership with Ethiopia’s South Agricultural Research Institute (SARI),  the Kenya Agricultural Research Institute (KARI),  Malawi’s Department of Agricultural Research and Technical Services (DARTS) and  Zimbabwe’s Crop Breeding Institute (CBI) of the Department of Research and Specialist Services (DR&SS).

Other close collaborators include the eastern, central and southern Africa regional bean research networks (ECABREN and SABRN, their acronyms) which are components of the Pan-African Bean Research Alliance (PABRA). Cornell University (USA) is also involved.

VIDEO: Steve talks about what has been achieved so far in bean research, and what remains to be done

Links

 

Sep 202012
 

Getting to the core of a world-favourite dessert by unravelling banana’s origin and genealogy

GCP has enabled us to lay a credible foundation, which gave us a leg-up in the intense competition that typifies the genome sequencing arena” – Angélique D’Hont, CIRAD researcher

‘A’ is also for Angélique, as you will see once you read on…

An ‘A’ to our banana team for ushering in a new era in banana genetics. But let soup precede dessert, and don’t let this worry you: stay with us because we’re still very much on the topic and focused on bananas, which offer the whole range from soup and starters, to main course and dessert, plus everything else in between, being central for the food security of more than 400 million people in the tropics: around a third each is produced in Africa, Asia-Pacific and Latin America, and the Caribbean. About 87  percent of all the bananas produced worldwide are grown by small-scale farmers.

Moving back then to soup for starters, we’re serving up our own unique blend of alphanumeric banana ‘soup’, spiced with ABCs, a pinch of 123s, plus a dash of alpha and omega. Curious about the ABCs? Look no further:‘C’ for getting to the core of ‘B’ for bananas, and an ‘A’ score for our ace genomics team that did it.

Read how GCP seeded … and succeeded, in helping open a new era in banana genetics. An achievement by itself, and an important milestone on the road to unlocking genetic diversity for the resource-poor, which is GCP’s raison d’être.

So get your travelling gear please, for time travel with a ‘midspace checkpoint’ in Malaysia.

We start in 2004, when GCP commissioned a survey of diversity with microsatellites (or SSRs, simple sequence repeats) for all mandate food crops in the CGIAR crop research Centres. The objective of that study was to make new genetic diversity from genebank accessions available to breeders.

The endpoint is opening new research avenues to incorporate genes for disease resistance, with the added bonus of an article published in Nature online on July 11 2012, entitled The banana (Musa acuminata) genome and the evolution of monocotyledonous plants.

It may not be quite as easy as the ABC and 123 that The Jacksons promise in song, but we promise you that the science is just as exciting, with practical implications for breeding hardy disease-resistant bananas. Onwards then to the first leg of this three-step journey!

(Prefer a shorter version of this story in pictures? We’ve got it! Choose your medium between Flickr and Facebook)

1) Let’s go Greek: the alpha and omega of it

Rewinding to the beginning

The proof of the pudding is in the eating: we imagine that Jean Christophe Glaszmann just has to be saying “Yummy!” as he samples this banana.

Start point, 2004: “At that time, several research groups had developed SSR markers for bananas, but there was no coordination and only sketchy germplasm studies,” recalls Jean Christophe Glaszmann (pictured), then the leader of what was GCP’s Subprogramme 1 (SP1) on Genetic Diversity on a joint appointment with CIRAD. He stepped down as SP1 Leader in March 2010, and is currently the Director of a multi-institutional research unit Genetic improvement and adaptation of Mediterranean and tropical plants (AGAP, by its French acronym) at France’s Centre de ccoopération internationale en recherche agronomique pour le développement (CIRAD) in Montpellier.

Jean Christophe continues, “The reference studies had been conducted with RFLP* markers, a very useful tool but far too cumbersome for undertaking large surveys. We mobilised Bioversity International, CIRAD and the International Institute of Tropical Agriculture for the project. The process took time, but delivered critical products.[*RFLP stands for restriction fragmented length polymorphism]

Fastforward to 2012, and gets just a little geeky…

Eight years down the road in 2012, the list of achievements is impressive, as evidenced by a suite of published papers which provide the details of the analysis of SSR diversity and describe how the data enabled the researchers to unravel the origin and genealogy of the most important dessert bananas. The origin of the predominant variety – Cavendish – suggested by the markers, involves two rounds of spontaneous hybridisation between three markedly differentiated subspecies. This scheme has been marvellously corroborated by linguistic patterns found in banana variety names as revealed in a paper published in 2011 in the proceedings of USA’s National Academy of Sciences.

But what else happened in between the start- and end-point? We now get to the really ‘sweet’ part of this bonanza for banana breeding!

It is now possible to conduct research to identify and incorporate genes for disease resistance within fertile populations that are close to the early progenitors, and then inter-cross them to re-establish sterility and obtain vigorous, disease-resistant and seedless progenies.

 2) Of bits, bananas, breeding and breadcrumbs

Threading all these bits together for breeding better bananas is akin to following a trail of breadcrumbs, in which GCP played an important facilitating role: where in the germplasm to undertake genetic recombination is one key; and then, how to expedite incorporation of disease resistance and how to control sterility – so as to first suppress it, then re-establish it – is another set of keys that are necessary for proficient breeding.

Hei Leung in the lab at IRRI.

In 2005, Hei Leung (pictured), then Leader of GCP’s Subprogramme 2 on Comparative Genomics (until June 2007) on a dual appointment with the International Rice Research Institute (IRRI), recognised that with GCP’s main focus being drought tolerance in crops, Musa (the banana and plantain botanical genus) was somewhat on the fringe. However, it was still important that GCP support the emergence of banana genomics.

Hei is currently Programme Leader of Genetic Diversity and Gene Discovery at IRRI. He remembers, “We had a highly motivated group of researchers willing to devote their efforts to Musa. Nicolas Roux at Bioversity was a passionate advocate for the partnership. The GCP community could offer a framework for novel interactions among banana-related actors and players working on other crops, such as rice. The team led by Takuji Sasaki of Japan’s National Institute of Agrobiological Science, which had vast experience in rice genome sequencing, added the scientific power. So, living up to its name as a Challenge Programme, GCP decided to take the gamble on banana genomics and help it fly.”

Angélique D’Hont, CIRAD researcher and lead author of the article published in ‘Nature’.

Through several projects, GCP helped consolidate Musa genomic resources, contributed to the establishment of medium-throughput DArT markers as well as the construction of the first saturated genetic map. Additional contributions included the first round of sequencing of large chromosome segments (BAC clones) and its comparison with the rice sequence and a detailed analysis of resistance gene analogues. All these findings have now been published in peer-reviewed journals. And while publication takes time, it still remains a high-premium benchmark for quality and validation of results, and for efficient sharing of information. It reinforces the value of collaboration, builds capacity and gives visibility to all partners, thereby providing potential new avenues for funding.

Such was the case with bananas: using a collaborative partnership framework established with the Global Musa Genomics Consortium, animated by Nicolas Roux and now chaired by Chris Town, the community developed a case for sequencing the genome. With the mentorship of Francis Quétier, contacts were made with various major players in genomics, which in the end formalised a project between France’s CIRAD and CEA–Genoscope, funded by the Agence Nationale de la Recherche and led by Angélique D’Hont (pictured) and Patrick Wincker.

GCP contributed DArT analysis for anchoring the sequence to the genetic map. But, as stressed by Angélique, CIRAD researcher and lead author of the Nature paper: “Above all, GCP has enabled us to lay a credible foundation, which gave us a leg-up in the intense competition that typifies the genome sequencing arena. We were delighted that France rolled the dice in our favour by funding this work.”

3) Musa musings on the road to and from Malaysia checkpoint

Three years down the road, the team published a description of the genome of a wild banana from Malaysia.

Jean Christophe communes with a Musa plant, perhaps musing “What’s your family history and when will you be fully grown?”

Let’s drill down to some technical facts and figures here: the Musa genome has some 520 million nucleotides distributed across 11 chromosomes, revealing traces of past duplications and bearing some 36,000 genes. While most genes derived from duplication tend to lose their function, some develop novel functions that are essential for evolution; bananas seem to have an outstanding range of transcription factors that could be involved in fruit maturity.

And while the road ahead remains long, we now have a good understanding of banana’s genetic diversity, we have genomic templates for functional studies (a whole-gene repertoire) as well as for structural studies (the chromosome arrangement in one subspecies) aimed at unraveling the genomic translocations that could control sterility in the species complex.

It is now possible to conduct research to identify and incorporate genes for disease resistance within fertile populations that are close to the early progenitors, and then inter-cross them to re-establish sterility and obtain vigorous, disease-resistant and seedless progenies.

This is undoubtedly an inspiring challenge towards unlocking the genetic diversity in this crop, which is central to food security for more than 400 million people in the tropics.

Links

 

Sep 072012
 

Joko infront of his office at ICABIOGRAD’s Molecular Biology Division.

Indonesian upland rice growers can expect to receive improved varieties that thrive in phosphorus-poor soils within a few years, thanks to the hard work of their national breeding programmes.

Joko Prasetiyono is a proud Indonesian researcher who loves rice.

“I don’t know why. I just love researching ways to improve it so it grows and yields better. I also I love to eat it,” says Joko with a laugh.

Having worked as a molecular breeder, concentrating solely on rice for 17 years at the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD), one would expect a different reaction. But Joko says he’s as interested in the little white grain as much as when he started as an undergraduate with ICABIOGRAD.

And why wouldn’t he be when he and his team are contributing to research that has just been published in Nature and is set to reduce fertiliser application and improve rice yields in Indonesia and the world over by 20 percent!

Improving Indonesian varieties, no genetic modification

Farmers often use phosphate fertilisers to aid in growing rice in these areas, but this option is often too expensive for Indonesian upland growers.

The project has found plants that have a Pup1 locus (a collection of genes), with the specific gene PSTOL1, are able to tolerate phosphorus-deficient conditions and produce better yields than those not suited for the conditions. An Indian rice variety, Kasalath, was one such.

“We are breeding rice varieties that we know have a Pup1 locus and subsequent PSTOL1 gene in them with Indonesian varieties that are suited to Indonesia’s growing systems,” explains Joko.   

Partnering with the International Rice Research Institute (IRRI), ICABIOGRAD and their partner the Indonesian Center for Rice Research (ICRR) have improved the phosphorus tolerance of Indonesian rice varieties Dodokan, Situ Bagendit and Batur.

“The new plants we are creating are not genetically modified; just bred using smarter breeding techniques,” says Joko. “The aim is to breed varieties identical to those that farmers already know and trust, except that they will have the PSTOL1 gene and an improved ability to take up soil phosphorus.”

Joko says that these varieties are currently being tested in field trials and it will take another 2–3 years before Indonesian farmers will have a variety that will yield as well if not better, needing 30–50 percent less fertiliser.

Evolving Indonesian plant research 

ICABIOGRAD team selecting breeding material in 2010. L-R: Masdiar Bustamam, Tintin Suhartini and Ida Hanarida.

GCP is as much about its people and partnerships as its research and products. ICABIOGRAD benefited from a GCP capacity-building grant in mid-2007 to enhance the institute’s capacity in phenotyping and molecular analysis. The grant covered, among other areas, intensive residential staff training at IRRI; PhD student support; infrastructure such as a moist room, temperature-controlled centrifuge apparatus, computers and appropriate specialised software; and  a blast innoculation room. These capacity-building activities were coordinated by Masdiar Bustamam who has since retired, but was then a Senior Scientist at ICABIOGARD.

But coming back to Joko and the PSTOL1 work, Joko started on this project in 2005 as a GCP-funded PhD student at Bogor Agriculture University, Indonesia. He is grateful to be part of a transnational project, which has offered him technical support that he would not otherwise have been able to receive through ICABIOGRAD alone.

IRRI visits ICABIOGRAD in 2009. L-R: Matthias Wissuwa, Sigrid Heuer (both IRRI), Masdiar Bustaman (ICABIOGRAD) and Joong Hyoun Chin

Joko believes the experience of working with IRRI, as a joint partner on this project, will leave an important, and lasting, legacy for researchers at ICABIOGRAD and ICRR. The partnership has also challenged the two local institutes to broaden their horizons past their borders.

“IRRI is teaching us how to use marker-assisted selection and we [ICABIOGRAD and ICRR] are just as busy identifying phosphorus-deficient hotspots in upland areas, choosing the best Indonesian recipient rice varieties for the gene, conducting the breeding and phenotyping testing,” he clarifies.

Breeding for sustainability

The ultimate goal of this project is to help Indonesian growers use marginal land.

Over half the world rice lands are deficient of ‘plant-available’ phosphorus, and Indonesia is no different. Joko explains that while there is plenty of phosphorus in the soil, plants are not able to access it.

“Other minerals in the soil like aluminum, calcium and iron are bound to phosphorus, shielding it from plants roots so they can only absorb a fraction of it.”

Field test of Pup1 lines at Taman Bogo , Indonesia.

In most countries, farmers apply phosphate fertilisers to their crops to combat this deficiency. For Joko this is not a sustainable approach for a lot of Indonesia’s farmers because the fertilisers are expensive and costs will continue to rise as phosphate supplies dwindle.

“Our approach is a lot more sustainable and cost-effective than applying fertiliser. We’ll breed these new plants for phosphorus-poor soils to produce more roots so they can find more phosphorus. The more phosphorus they find, the more of it they can absorb.”

Joko hopes these new plants will help farmers on marginal lands to obtain decent yields without having to spend money on expensive phosphate fertilisers.

“It’s great that our work has been recognised by Nature for publication, but what we really want is to help rice growers here in Indonesia and around the world.”

Links

cheap ghd australia