Jul 042012
 

The GCP community, its labours and joys

If tools and resources are not put to use, then we labour in vain...GCP contributes to food security by providing breeders with integrated tools, techniques and services to speed up the selection cycle, be this by conventional or molecular breeding. GCP focuses on developing new materials and new techniques and delivering these, and the appropriate breeding tools, technologies and services, to breeders. I think GCP has been one of the most successful builders of research and development partnerships.

The Board’s focus is now on auditing the Programme, and mapping a strategy to sustain its successful partnerships and systems, so that these can continue to deliver products and capacity to the developing world.”

Seatbelts on please! Time to take a tour with Andrew, for an ‘aerial’ view of GCP from the very  ‘top’.

Please meet Andrew Bennett (pictured), the Chair of GCP’s Executive Board. Among other responsibilities, he is also President of the Tropical Agricultural Association, UK, chairs the SciDev.Net Board, and previously chaired the CIFOR Board. He was formerly Executive Director of the Syngenta Foundation and Director of Rural Livelihoods and Environment at the Department for International Development (DFID, UK) where he was responsible for professional advice on policy and programmes on livelihoods, natural resources, environment, sustainable development and research. Andrew has worked on development programmes in Africa, Asia, Latin America, the Pacific and the Caribbean.

Today, Andrew shares his perspectives on GCP’s work, its impact, the challenges, the community GCP has built, and the role of the Board. Please read on…

When was the GCP Board established, and what is its profile and role?
The Board was set up in mid-2008 towards the end of the first phase of the Programme. A review recommended that there be a fully independent Board, comprising people who had no conflict of interest with the Programme to facilitate decision-making.

Board members have between them a wide variety of skills and backgrounds, ranging from expertise in molecular biology to development assistance, socioeconomics, academia, finance, governance and change management.

We are committed to the role that can be played by science in development, and to the Programme. We have offered advice and helped the Programme’s Consortium Committee and management refocus the Programme. By all accounts, they seem happy with how things have evolved.

Because GCP is hosted by CIMMYT, the Board does not have to deal with any policy issues. That is the responsibility of the Consortium Committee. Our role is more to provide advice and to help with decision-making and implementation, which is great as we’ve been able to focus on the Programme’s science and people.

How long have you been involved with GCP?
Since the Board was established in 2008.

What does the GCP tagline – ‘Partnerships in modern crop breeding for food security’ – mean for you?
It means that all our undertakings are geared towards producing crop varieties that are tolerant to a range of environments, as well as being socially acceptable and appealing to farmers and markets.

How do you upgrade the planting material farmers have by fortifying it to combat the biotic and abiotic stresses? Half the challenge is breeding and selecting good material, and the other half is ensuring delivery of tools to breeders and new planting materials to farmers.

So GCP focuses on developing new materials and new techniques and delivering these, and the appropriate breeding tools, technologies and services, to breeders.

Why is GCP’s work important, and what does it mean for food security?
People who are food-secure have access to adequate food at all times to maintain healthy active lives. There are two sides to making this happen – access and availability.

GCP is increasing the number of varieties and lines tolerant to the conditions farmers are facing. What we cannot do is put money in the hands of poor people. If we supply people with the means to produce sustainable and healthy crops, they will have the means to produce food for themselves, and a means of making an income.

GCP contributes to food security by providing breeders with integrated tools, techniques and services to speed up the selection cycle, be this by conventional or molecular breeding.

For you, what have been the major outcomes of GCP so far?
GCP has shown that it is possible to form very productive partnerships across CGIAR institutes and advanced research establishments and those countries that have less scientific capacity. I think it has been one of the most successful builders of research and development partnerships. GCP has also shown public researchers can work very well with the private sector. The public sector has the means to build a lot of capacity.

I think GCP has demonstrated that it is possible to establish molecular breeding programmes in those parts of the world that do not have well-developed scientific infrastructure.

Just a little bit of money – relatively speaking of course – clear vision, and good leadership, can go very far, and produce tremendous benefits and progress.

GCP has also identified the constraints that we have to work within – the challenge of phenotyping and restrictions on the movement of genetic material to other parts of the world. GCP has paid particular attention to intellectual property [IP] because the information and materials GCP produces must remain in the public domain. IP in the international arena within which the Programme operates must span potentially conflicting national legislation regimes. It is a very complex area.

‘Challenge’ is in GCP’s name. What are the major challenges that the Programme has so far overcome?
Quite a number and more could be on the horizon. GCP has overcome some of these challenges. They include the problem of poor-quality phenotyping. This has been addressed through a comprehensive capacity-building programme, including laboratory and field infrastructure, and the training of research support staff in the developing-country field sites where GCP projects are being implemented.

Another challenge was focusing the Programme. At the start, the Programme was spread too thin, spanning too many crops and partners, but these have been progressively narrowed down in Phase II.

This narrowing is no mean feat in the public sector. In the private sector, you start with, say, a hundred projects, then after six months you halve them. After a year, you are down to 10 projects and you put all your resources into making those 10 ‘winners’ work. In the public sector, you keep the entire hundred going for three years, then you look for funding to keep them all running for another cycle. It’s a different culture: the private sector is product-oriented, while some aspects of the public sector emphasise contributing to the growth of knowledge and information, and to building or maintaining relationships, without necessarily asking about their usefulness and benefits to society.

The Board’s focus is now on auditing the Programme and mapping a strategy to sustain its successful partnerships and systems, so that these can continue to deliver products and capacity to the developing world.”

What are the future challenges that the Programme must overcome to remain sustainable?
There are many GCP activities that can be integrated into the new CGIAR Research Programmes. However, there may be other activities such as capacity building and IP management which – at this point in time – appear somewhat less easy to integrate into the new CGIAR Research Programmes.

There is also a danger – not unique to GCP but with all aid-assisted programmes – that when the money ends, everything will disappear into the archives. We have to make sure that doesn’t happen in this instance.

The Board’s focus is now on auditing the Programme and mapping a strategy to sustain its successful partnerships and systems, so that these can continue to deliver products and capacity to the developing world.

What are some of the lessons learnt so far?
GCP was born at a time when we thought molecular biology could solve all our problems quickly and efficiently. What I think we are finding is that molecular tools –while extremely useful – cannot entirely replace understanding the agronomy and phenotypic activities. Molecular biology alone is not a panacea or silver bullet for crop breeding; but it is a valuable tool.

Then there is capacity building: molecular breeding is a tool that you can only use if you have the capacity. Many parts of the world will require a lot of capacity building and support to be able to use the tools. GCP and its Integrated Breeding Platform can make a modest contribution to meeting this need through the proof-of-concept GCP Research Initiatives for selected crops and countries and establishing communities of practice.

If tools and resources are not put to use, then we labour in vain.

What has been the most enjoyable aspect of your position with GCP?
Without a doubt, attending the General Research Meetings has been the most enjoyable, meeting scientists from a wide range of institutes, backgrounds and countries.

These scientists come together because they share the same interests and a common goal. There’s a lively buzz of conversation. It is good to hear about what they are doing, what their aspirations are, and to learn from the knowledge and posters they bring to the meeting.

You don’t have to be a cutting-edge scientist to listen to these people whose enthusiasm is palpable. They are passionate, have a strong sense of community, enjoy what they are doing, and are just as keen to share this knowledge and enthusiasm. It’s all highly infectious!

Relevant links

Jul 032012
 

Where we’ve come from, where we are, and where we’re going

Travel with Dave from the beginning – and before the beginning – of GCP, and how the Programme will be brought to an orderly close. Dave also elaborates on the role of the Consortium Committee.

There’s no doubt that the Programme has enabled new partnerships and rekindled and rejuvenated old or existing partnerships amongst the different partners. Some of these are between the different CGIAR Centres and others are between these Centres and partners outside the CGIAR. These partnerships have been very fruitful.

People speak of GCP almost as if it were the 16th Centre. They speak of it with pride and respect. They understand the important role it can play.

GCP has a lot of credibility with national programmes. When you go to GCP’s General Research Meetings, there’s clearly a feeling of being part of the community, and that we are all improving our efficiency because of the Programme.

…I think it’s been one of the more successful Challenge Programmes.

Dave Hoisington (pictured)  is the Chair of GCP’s Consortium Committee, and currently ICRISAT’s Director of Research. Dave was previously with CIMMYT, GCP’s host Centre. He has therefore been involved with GCP “since day minus one” in his words. “It’s equally exciting to be involved in the Programme’s closure, because I think that is even more important with regard to keeping its legacy alive.” Dave now walks us through the workings of the Programme today, its achievements and challenges, and what the early formative years were like….

What is the role of the GCP Consortium Committee?
GCP was set up as a multi-institutional endeavour. As an elaborate and broad partnership representing various interests, the decision at the Programme’s inception was to set up a committee representing all the key members from CGIAR Centres, developing-country programmes and advanced research institutes.

This Consortium Committee is ultimately the one that ‘owns’ GCP and oversees the basic functioning of the Programme to make sure that it is going in the right direction. We have an Executive Board which the Consortium appointed and it’s that Executive Board that Jean-Marcel [GCP Director] reports to. Because we set up the Board, they actually report to us.

…by having this Committee of the key players in research as well as an independent Board, we can all make sure GCP is going in the right direction, by giving voice to both the ‘players’ and ‘referees’.

Why have a Committee as well as a Board, and why seek broad partnerships?
During a mid-term review of GCP, the need for both a Committee and an independent Executive Board was recognised to give the Programme more structure and guidance. The Consortium Committee was established in 2008, and its precursor was the Programme Steering Committee.

GCP is not a research programme run by a single institute but really a consortium to enhance effectiveness. So, by having this Committee of the key players in research as well as an independent Board, we can all make sure GCP is going in the right direction, by giving voice to both the ‘players’ and ‘referees’.

There’s no doubt that the Programme has enabled new partnerships and rekindled and rejuvenated old or existing partnerships amongst the different partners. Some of these are between the different CGIAR Centres and others are between these Centres and partners outside the CGIAR. These partnerships have been very fruitful.

GCP’s tagline – ‘Partnerships in modern crop breeding for food security’ – what does this mean for you?
It really captures the essence of GCP – GCP is about creating opportunities for these partnerships. It’s about using a modern approach, a more integrated approach to breeding, to aid food security in the developing world.

Why is GCP’s work important?
The whole premise of setting up GCP 10 years ago was really the fact that our major crops were not registering the necessary increases in yield to meet food needs in developing countries. There are many reasons for that. The reason that became the main driving force for GCP was that we had not been able to tap the rich genetic diversity that exists for almost all of these crops. So the idea was to come up with mechanisms, methods, examples and proofs-of-concept that tap into this genetic diversity, and package it such that breeding programmes can integrate it into their operations. By so doing, we would broaden the horizon of breeding programmes for more rapid gains in yields and productivity in farmers’ fields.

Originally, the whole idea was mostly a proof-of-concept. Once we realised it could work, we realised that capacity needed to be built within national programmes since GCP’s scope was 10 years. So, the emphasis began to rightly shift from exploration and discovery to application and impact, buttressed by more training and capacity building within national programmes for sustainability. Genetic research was – and still remains – the backbone, but there has been a growing reliance on other tools including IT and molecular breeding. Now the technology has matured, costs have decreased, making it more viable for public research.

Unfortunately, we don’t have the alternative case of what it would have been like without GCP… but I think that many institutes within and outside CGIAR are trying to use genomics as a technology, and I think a lot of that can be traced back to projects that GCP supported.

What have been the major outcomes of GCP so far?
The greatest overall outcome is a stronger awareness and use of genomics in our research programmes across the board.

Unfortunately, we don’t have the alternative case of what it would have been like without GCP, which we could compare to, but I think that many institutes within and outside CGIAR are trying to use genomics as a technology, and I think a lot of that can be traced back to projects that GCP supported and encouraged.

In the early years, characterisation of genetic resources was very beneficial and it’s encouraging to see it still continues, with characterising genetic resources now considered routine.

What outcomes are you most looking forward to?
I think one of the most promising, and potentially important outcomes will be the adoption of GCP’s Integrating Breeding Platform.

‘Challenge’ is in GCP’s name. What are the major challenges that the Programme has so far overcome?
When GCP was being designed, there was no definition or case study for what a Challenge Programme had to do. The preliminary idea was that for projects to succeed and overcome major challenges, partnerships were key and no single institute could do it alone: they needed to do business differently, whether among the CGIAR Centres, or with partners outside the CGIAR. We had all these genebanks, all this diversity, genetic and genomic tools for some crops but not all crops. So, we put our heads together and asked ourselves, “What if we combine these modern molecular approaches used in one crop and apply them to another crop? Can we unlock the genetic diversity within it to improve quality and yield? How do we get all partners to work together towards a common goal?”

At the beginning, GCP had probably way too many facets and we were trying to move ahead on all the different fronts, so I think the mid-term reshaping and redefinition of the Programme helped it gain more focus to actually do what it set out to do.

GCP has built capacity, tools, methodologies and technologies. All these need to continue so as to increase and improve outputs and enhance outcomes.

What future challenges must the Programme overcome to remain sustainable?
Ensuring its achievements are sustained. While it was a time-bound programme from day one, the results and successes are not time-bound. They should be sustained and continued in other shapes and forms.

The challenge now is filtering these successes and figuring out how best to continue them. GCP has built capacity, tools, methodologies and technologies. All these need to continue so as to increase and improve outputs and enhance outcomes.

What are the main lessons learnt so far?
Partnerships are not easy. They take a lot of time. It’s one thing to write a proposal and say we will work together but it’s another thing to make that work effectively. I know GCP has had some instances where partners brought in have not been effective. I’m sure the GCP management has learnt lessons on how to deal with that.

People work together because they trust and respect one another and recognise and understand each other’s roles. They don’t view it as a competition. Some partnerships occur spontaneously, while others take time. They have to build trust, understanding and communication.

We’ve all learnt lessons from the research side, such as what does and doesn’t work. Focussing was a good lesson that GCP and all of us have learnt. At the beginning, we just spread ourselves too thin, trying to do too many things, making it very difficult to measure progress.

What is the most enjoyable aspect of your involvement with GCP?
I’ve been involved in GCP from day minus one. I used to be at CIMMYT and was involved in the ‘pre-pre-birth’ of the Programme, even before it had been conceptualised. Through the years since then, I’ve had different levels of engagement – and even periods of disengagement – but have always enjoyed my involvement.

It’s always been a good group of people working together, even when there have been problems. I think the Programme has scored high on successes. Jean-Marcel and his team deserve a lot of credit. They’ve really been able to keep the momentum going.

It’s equally exciting to be involved in the Programme’s closure, because I think that is even more important with regard to keeping its legacy alive.

People speak of GCP almost as if it were the 16th Centre. They speak of it with pride and respect. They understand the important role it can play.

GCP has a lot of credibility with national programmes… Ithink it’s been one of the more successful Challenge Programmes.

Jean-Marcel talks of the ‘GCP spirit’ and how successful partners share this spirit. What are your thoughts on this?
GCP definitely has a strong ‘entity’, although I’m not sure if this is a spirit! People speak of GCP almost as if it were the 16th Centre. They speak of it with pride and respect. They understand the important role it can play.

GCP has a lot of credibility with national programmes. When you go to GCP’s General Research Meetings, there’s clearly a feeling of being part of the community, and that we are all improving our efficiency because of the Programme.

I think it’s been one of the more successful Challenge Programmes.

Relevant links

 

Jul 022012
 

A walk down memory lane with Masa

Photo: JIRCASWe caught up with Masaru Iwanaga (pictured right), previously Director General of CIMMYT  from 2002 to 2008, and now President of the Japan International Research Center for Agricultural Sciences (JIRCAS), based in Tsukuba, Japan. CIMMYT is GCP’s host Centre. Here’s what Masa had to say about GCP’s early years, and where the Programme is today…

What was the vision for GCP at its foundation?
Our vision for GCP was to unlock genetic diversity through the application of modern science.

In 2002, as CIMMYT’s Director General, I proposed GCP to CGIAR. I’m proud that I was successful in convincing CGIAR to add GCP to its suite of Challenge Programmes.

GCP was based on partnerships. Partnerships were key because we wanted to mobilise modern science, both inside and outside CGIAR. We wanted to utilise modern science and CGIAR genetic resources for crop improvement.

Dave Hoisington and Peter Ninnes helped me draft the concept framework for how GCP would work.

GCP’s tagline – ‘Partnerships in modern crop breeding for food security’ – what does this mean for you?
I think we wanted to take advantage of our progress, especially in genomics to utilise genetic resources for the betterment of rural livelihoods. We wanted to utilise partnerships to enhance the gains made. I was involved in the establishment of GCP, overseeing the appointments of previous and current Directors, Bob Zeigler and Jean-Marcel Ribaut. GCP has made outstanding progress since its founding.

Practically all CGIAR activities are based on partnerships. Historically, CGIAR had been viewed in some quarters as technology-supply-driven – that technology was pushed on farmers who had to adapt to new varieties and adopt the technology that accompanied it. In the early years, GCP was viewed in the same light. I wanted to correct that view. Our objective was the effective utilisation of the genetic diversity that CGIAR is conserving –utilising this diversity for crop improvement. I had to work very hard to make people see this.

From what I’ve heard and been involved in, GCP has been one of the more successful Challenge Programmes in terms of meeting expectations. My view is very positive.

I left CIMMYT four years ago, and the progress that GCP has made during this time has astounded me.

For me, my life back then seems so distant to where I am now. But, recently I visited a national programme in a developing country, and the people I met had a positive view of GCP, saying it added value to their programme.

I’m currently head of the Japan International Research Center for Agricultural Sciences [JIRCAS, Tsukuba, Japan]. We conduct technical research activities.

I have mentioned partnership several times. This is because GCP is a partnership involving many organisations for the purpose of enhancing the capacity of national programmes to utilise advanced technology for crop improvement, taking advantage of genetic diversity.

Germplasm conservation by CGIAR Centres can be centralised but crop improvement needs to be decentralised because it is, of course, influenced by the local environment. It means we need to have capable crop breeders in national programmes. However, national programmes have been weakened in many developing countries, for various reasons.

By building capacity for developing-country breeders, we can contribute to stability by offering them the necessary resources, services and tools to progress and advance their work, and make them more efficient – and therefore more effective – in doing their work.

My fondest memory of my involvement with GCP was attending technical meetings and hearing the dialogue between a biotechnologist and a germplasm curator who were discussing how they could utilise each other’s strengths to conserve germplasm and enhance crop breeding.

What role did CIMMYT play then in supporting GCP?
In my role as Director of CIMMYT, I tried hard to make sure that CIMMYT was not misinterpreted as taking over GCP. Our role was to provide a management and administrative support framework for GCP to develop in its own way.

It’s been a real pleasure revisiting this chapter of my life.

Relevant links

Jul 012012
 

A shared vision

What is GCP all about and why is its work important? Why was GCP created? Read recollections from key people involved in GCP’s conceptualisation, and find out how realisation of the shared vision continues today. Featuring candid conversations with Masa Iwanaga, former Director General, CIMMYT; Dave Hoisington, Consortium Committee Chair; Andrew Bennett, Executive Board member; and Jean-Marcel Ribaut, GCP Director.

When was the last time you went to your local shop to buy something only to be told they’ve run out of it? How did you react? Like most of us, did you question how they could have run out – after all, isn’t it their business to adequately supply the demand?

Most likely you just went to another store. But what if there wasn’t another store around that had your product, or worse, there was actually a national shortage of your product? This is the reality that faces not just those after the latest iPad, but billions of people who just want something, anything, to eat.

With less productive land on which to grow crops, a more variable climate and more extreme weather events, farmers across all continents are struggling to produce crops, let alone increase yields to meet an ever-growing demand.

This scenario has continually raised its ugly head over the last 200 years as the world’s population has grown exponentially and shifted to urban surroundings. If not for the Green Revolution, inspired by the late Norman Borlaug’s agricultural development research within the Office of Special Studies in Mexico (now the International Maize and Wheat Improvement Center, more commonly known as CIMMYT, its Spanish acronym), the world population would have already suffered losses into the billions.

Even so, food insecurity is still recognised as a global challenge by the UN’s Food and Agriculture Organization (FAO). While there is debate over the cause for such insecurity, the advances of agricultural technology born from a Mexican-flavoured research programme are once again coming to the fore to meet the challenge.

Genebanks are not limited to conservation but are also a source of new alleles for crop improvement.

The genies in the genebank
Seedbank collections serve as insurance against unanticipated future threats to food security, the degradation of our environment and the loss of plant biodiversity.

But that is not all: the banks are not limited to conservation but are also a source of new alleles for crop improvement. The temperature-controlled CGIAR genebanks are a veritable treasure trove for plant breeding. Over the past four decades, their curators have scoured the planet, collecting, categorising and conserving more than 650,000 samples of crop, forage and agroforestry genetic resources, held in trust on behalf of humanity.

One such temperature-controlled genebank is located just outside the sweltering Mexico City: the CIMMYT genebank holds more than 150,000 unique samples of wheat and its relatives from more than 100 countries – said to be the largest collection of a single crop.

While genebank ‘stocks’ have always been open to plant breeders, it wasn’t until 2002 that CGIAR researchers embarked on a more structured and systematic approach using modern technologies to tap their breeding potential, thereby elevating the genebanks beyond their traditional collection and conservation role. Prior to that, far-sighted individual pioneering researchers had been studying (termed ‘screening’ in breeder-speak) the stocks for solutions to breeding problems and to improve crops, but the turning point for a concerted ‘institutional’ effort, would come in the early noughties.

By studying the genes of wild versions of, let’s say, wheat, researchers can find genes that could help cultivated wheat to better battle drought.

The dawn of a new generation
One of these researchers was Dave Hoisington (pictured), then with CIMMYT, and now Chair of GCP’s Consortium Committee, and ICRISAT’s Director of Research. Dave worked with the then newly appointed CIMMYT Director General, Masa Iwanaga, and helped draft a joint proposal with other institutes to CGIAR to form a Challenge Programme that could use the recent advances in molecular biology to harness their rich global stocks of crop genetic resources to create and provide a new generation of plants to meet farmers’ needs. This successfully gave rise to the CGIAR Generation Challenge Programme.

“GCP’s first task was to go in and identify the genetic wealth held within the CGIAR banks,” says Dave.

“To do this, we wanted to use the most recent molecular tools, like molecular markers, to help scan the genomes and discover genes in species related to crops of interest that could help increase yield.”

Let’s use an analogy from a familiar medium – text: think of this story you are now reading as the plant’s genome, its words as its genes and a molecular marker as a text highlighter. You can use different markers to highlight different keywords in this story. Once you can see these keywords, you can then study them in more detail, and, in the case of genes, see what they control in the plant, and how they affect its different aspects.

Photo: JIRCASBy studying the genes of wild versions of, let’s say, wheat, researchers can find genes that could help cultivated wheat to better battle drought.

“At that time, we recognised that a Centre like CIMMYT could no longer undertake this tremendously complex task on its own,” recounts Masa (pictured).”We needed to work within a programme that could concentrate on the task and that rallied together various CGIAR Centres as well as research institutes outside CGIAR, especially in developing countries.”

Partnerships with spirit
Partnerships have always been a key ingredient to success. At the same time, they have led to the downfall of many projects.

Back in the early noughties, CGIAR recognised their business model and research system were not actively fostering partnerships between their different research Centres as much as they should have been, nor were they vigorously encouraging Centres to seek collaboration outside CGIAR.

This was one of the fundamental reasons for establishing the Challenge Programmes, says Jean-Marcel Ribaut (pictured), who, in his role as GCP Director, has been credited by the Board and Committee for the significant time he has taken to broker, nurture and manage GCP’s partnerships.

“One of our major outputs has been the human assets,” says Jean-Marcel with great pride. “We have created this amazing chain of people from the lab to the field.”

In fact, GCPs greatest asset – its ‘crown jewel’ – is its network of people and the capacity the Programme provides them with to buttress all the hard work, particularly in countries where the end products (crops) will be of most benefit.

…the GCP Spirit’ … is visible and palpable: you can recognise people working with us have a spirit that is typical of the Programme.”

“To make a difference in rural development, to truly contribute to improved food security through crop improvement and income for poor farmers, we knew we had to build capacity in these areas,” observes Jean-Marcel.

“I see our management style as fairly ‘paternal’, in the positive sense of wanting to see these groups of people succeed, and us helping them to do so. If a research site needs a pump for fieldwork, we work with a local or international consultant who will visit the partner and evaluate their needs, advise them on what type of pump they need, as well as other infrastructure they’ll need for the whole system to be sustainable. We’ll then provide training on how to use the pump most effectively. It’s an investment in the people as much as in the products they are working on because we are trying to change the system of how science within partnerships is conducted and supported, as much as we are trying tap genetic diversity and breed resilient crops for the developing world.”

We were attracted to GCP because of its strong facilitating role, which offered considerable support to addressing the bottlenecks associated with research programmes that researchers and CGIAR identified.”

This support and change have been major selling points for potential partners who have resonated with what Jean-Marcel calls ‘the GCP Spirit’ – partners open to sharing their skills, tools and knowledge, willing to sacrifice their views and leadership and, most importantly, support one another.

“It is visible and palpable: you can recognise people working with us have a spirit that is typical of the Programme,” says Jean-Marcel.

Funders like the Swiss Agency for Development and Cooperation (SDC) are attracted to, and impressed by, GCP’s approach as an honest and impartial ‘broker’.

“We were attracted to GCP because of its strong facilitating role, which offered considerable support to addressing the bottlenecks associated with research programmes that researchers and CGIAR identified,” says Carmen Thönnissen (pictured), Senior Advisor at SDC.

“GCP is also in line with SDC’s internal guidelines on Green Biotechnology, where it is our aim not to support single-donor initiatives but to work in larger programmes that have a clear focus on strengthening the national partner capacities too.”

At the beginning, most project leaders were from developed nations and CGIAR Centres. … now more than half of our projects are led by scientists in developing countries.”

A structured revolution within an evolution: aiming for products and sustainable change
GCP was designed in two phases over its 10-year life. The first was about the research and using genetic plant breeding techniques. The second and current phase focuses more on accessing modern breeding technologies and building capacity in developing countries to do the research for themselves.

Within nine years, GCP has produced useful tools and products from its studies of genetic resources.
These products have contributed to advancing knowledge, and will continue to do so into the future, particularly in plant breeding.

“At the very beginning, most project leaders were from established universities and institutes  in developed nations, and CGIAR Centres. However, over time there has been a major shift and now we are proud that more than half of our projects are led by scientists in developing countries,” says Jean-Marcel. “They’ve moved from the position of implementers to the role of leaders, while the CGIAR Centres and institutes in developed countries have evolved more into mentors and teachers. We hope this empowerment will allow national programmes to grow and establish themselves to be sustainable when the funding dries up.”

Challenges within the Challenge Programme
All this talk about spirit, collaboration and partnerships does make it sound as if GCP has found the winning formula, but Jean-Marcel is quick to counter such notions, and there have been constant course corrections in charting the Programme’s path. “If anything, our strength comes from recognising our weaknesses, acknowledging that we don’t have it all worked out, and embracing change where it is needed.”

A mid-term external review was conducted in 2008 to audit the Programme’s weaknesses, strengths and lessons learnt from both. This review resulted in some governance reforming, bringing about the Consortium Committee and an independent Executive Board.

“It’s a major improvement that we have an independent Board, allowing for focus, and without any conflict of interest. I think they are doing a great job,” says Jean-Marcel. “They are monitoring and evaluating what we are doing, providing plenty of feedback and ideas on how to move forward, and contributing a lot to the success of the Programme.”

The Board’s focus now turns to auditing the Programme and mapping a strategy to sustain its successful partnerships and systems, so they can continue to deliver products and capacity to the developing world.

Bird’s eye view from the Board
With more than 45 years of experience in international development and disaster management and, having worked in development programmes in Africa, Asia, Latin America, the Pacific and the Caribbean, Andrew Bennett (pictured) was a perfect candidate for the Board Chair.

“We are committed to the role that can be played by science in development, and to the Programme,” says Andrew. “We have offered advice and helped the Programme’s Consortium Committee and management refocus the Programme. By all accounts, they seem happy with how things have evolved.”

Advice and helping aren’t normally the words associated with how a Board works but, like so much of the GCP family, this isn’t a classical board.

Andrew explains “Because GCP is hosted by CIMMYT, the Board does not have to deal with any policy issues. That is the responsibility of the Consortium Committee. Our role is more to provide advice and to help with decision-making and implementation, which is great as we’ve been able to focus on the Programme’s science and people.”

That focus now turns to auditing the Programme and mapping a strategy to sustain its successful partnerships and systems, so they can continue to deliver products and capacity to the developing world.

Turning sunset to sunrise
With only two-and-a-half years left to run, Jean-Marcel and his team are working just as passionately on sustaining the partnerships, projects and outputs that GCP has created.

“We knew we weren’t going to be around forever, so we had a plan from early on to hand over the managerial reins to other institutes, including CGIAR,” says Jean-Marcel, with the slight affliction of a parent helping their child move out of home.

“We have begun integrating projects into the CGIAR Research Programmes (CRPs) which we hope will allow them to continue to grow and work effectively towards the goals set.”

At the same time, the Management Team, Committee and Board are all busy auditing the successes and failures of the Programme to quantify the achievements of what has been termed as one of the CGIAR’s more successful Challenge Programmes, and on how to make GCP products freely accessible to other research institutes and programmes.

Relevant links

Links to external websites

 

Jun 302012
 

Fikre Asnake (pictured)  is a researcher and breeder in both Tropical Legumes I and II projects (TLI and TLII), working at the Ethiopian Institute of Agricultural Research (EIAR).

He has been leading the project activities since 2008. Through the project, EIAR has obtained diverse chickpea germplasm from ICRISAT. This germplasm is undergoing different breeding schemes using marker-assisted recurrent selection (MARS) and marker-assisted backcrossing (MABC) for evaluation.

The germplasm is now in the pre-release testing phase. Some of the work is being done by postgraduate students trained by TLI (two PhDs and 1 MSc). The project is using MABC to introduce drought-resistant traits into proven superior cultivars. “We expect good gains in productivity for drought-prone environments, which will make a huge difference. The varieties we hope to release will increase not only quantity, but also quality,” says Fikre. “We anticipate some of these improved chickpea varieties will be released in the course of Phase II of the TLI project, based on work that began in Phase I.”

Building capacity
Capacity-building is a crucial cornerstone. “In addition to our three postgraduate students, about five or six of our researchers and technicians have been trained in molecular breeding and related areas, mostly at ICRISAT in India ,” reports Fikre. And that is not all: “We have also benefited from infrastructure improvements, including construction of a rainout shelter for our drought trials and coldrooms for seed preservation. A glasshouse will also be built for trials under controlled conditions.”

Fikre further notes, “These facilities and staff development will make us more effective in achieving the objectives we have set in the project. In addition, because the infrastructure is shared with other colleagues not directly involved in the TLI project, it is also an indirect conduit for further cementing synergies and collaboration, even as we already have good synergies with the national programme’s breeding scheme.”

Fikre is keen to see the capacity building translate into a larger critical mass of breeders conversant with molecular breeding, as well as an increase in the information on chickpeas, an area in which students have been extremely instrumental in eriching. “We are all learning a lot from molecular technologies through TLI, and beyond that, how to actually apply these technologies in a breeding programme.”

VIDEO: Fikre discusses capacity-building with other TLI colleagues

What next?
Looking into the future, what are Fikre’s projections and aspirations regarding TLI Phase II? “It is now time to test the drought-tolerant breeding lines already processed and tested through MARS. We will be undertaking this testing over the next two to three years or so, to see what gains have been made towards improving chickpeas.”

This testing will be done through multilocation trials both in research stations as well as on farmers’ fields, and will include a parallel evaluation and validation by colleagues outside the project.

“By the end of TLI Phase II, our goal is to have varieties that will go to farmers’ fields that will make a clearly discernible difference,” concludes Fikre.

VIDEO: Involving farmers in selecting varieties – Fikre and other TLI colleagues

Related links

 

Jun 302012
 

“When we first started working on this project in mid-2007, our breeding programme was very weak,” says Paul Kimurto (pictured), Lead Scientist for chickpea research in the Tropical Legumes I (TLI) project, Kenya, and a lecturer in Crop Science at Egerton University.

“We have since accumulated a lot of germplasm, a chickpea reference set, and a mapping population, all of which have greatly boosted our breeding programme. From these, we have been able to select appropriate genotypes, and we obtained 400 breeding lines. None of this would have been directly possible without GCP’s support,” adds Paul. [Editor’s note: A ‘reference set’ is a sub-sample of existing germplasm collections that facilitates and enables access to existing crop diversity for desired traits, such as drought tolerance or resistance to disease or pests]

Due to their hardiness against drought, chickpeas have been steadily gaining popularity in Kenyan drylands – including the dry highlands – where they are grown as a ‘relay’ crop after wheat and maize harvests during the short rains, when the land would otherwise lie fallow. “Chickpeas have therefore increased food security and nutritional status of more than 27,000 households living in Baringo, Koibatek, Kerio Valley and Bomet Districts in Kenya, who frequently face hunger due to frequent crop failure of main staples such as maize and beans owing to climate change,” says Paul.

Chickpea adoption in these areas has increased due to close collaboration between GCP, ICRISAT and Egerton University through funding, training, resources and germplasm facilitated by GCP.

Exposure and capacity building
Through the project, various members of the Egerton research team have benefited from training in Europe, Africa and Asia on wide-ranging aspects of modern breeding, including data management. The learning resources that the team accesses through GCP are also shared widely and used as teaching materials and resources for faculty staff and postgraduate students not directly involved in the project.

“We have also benefitted from physical infrastructure such as a rain-shelter, irrigation system, laboratory equipment and a greenhouse. We didn’t have these, and probably couldn’t have had them, because all these are costly investments. This has greatly improved the efficiency of not only our research, but also our teaching,” says Paul. In addition, three postgraduate students are supported by GCP – two are pursuing PhDs and one a Masters, all using modern molecular breeding methods in their studies.

VIDEO: Paul discusses capacity building in Kenya, alongside other TLI colleagues


Community gains

Besides the university, capacity building has benefited the broader community: agricultural extension staff from the Ministry of Agriculture and from Koibatek Farmers Training Centre (one of the project’s research site), have been trained in various fields. The Centre manager attended a GCP course in Ghana tailored for research station staff (link below), as did an Egerton University technician.

In addition to aiding research trials, the irrigation system and weather station installed at Koibatek help with teaching and producing crop seed and planting materials as well as pasture for the community, since the Centre has a mandate to provide high-quality seed and livestock breeds to the community.

According to Beatrice Komen, a farmer in Koibatek, the irrigation system “has enabled the Agricultural Training Centre supply us with high-quality pasture and crop seeds for planting during the right time because Egerton University uses it to produce sufficient seed without having to rely on seasonal conditions.”

Paul adds, “The automated weather station is a first in the region.” The weather station also feeds regional data into the national meteorological database and is used for teaching by secondary schools in the community.

Going further, faster
Paul observes “With the direct funding we obtain through the project, we are able to expand into other areas of dryland research such as soil science and nitrogen fixation for chickpeas. Our efficiency has also increased: with the greenhouse and rainout shelter, we can now rapidly obtain generation crosses. And the irrigation system means we can now do off-season trials without having to wait for seasonal changes.”

“We have learnt a lot through our involvement with the Programme, including outsourcing of genotyping services which GCP fully supports, the advanced tools and wide range of services offered by the Integrated Breeding Platform for both breeding and data management,” says Paul. “We have also received digital tablet for electronic field data collection in a more efficient and accurate manner compared to the traditional pen and paper.”

The goal
“Our goal is to apply the modern breeding methods we have learnt to release new improved drought- and disease-resistant varieties before the project closes in mid-2014.” Some of these new methods include using quantitative trait loci (QTLs) through marker-assisted selection (MAS) and marker-assisted backcrossing (MABC).

“The results we obtain will provide foundation seed that can then be used for mass production through the Tropical Legumes II project,” says Paul.

“Our task is not complete until we have improved varieties in the hands of farmers,” he concludes.

VIDEO on farmer participation, and the relevance of genomics – Paul and TLI colleagues

Related links

Jun 272012
 

India is the world’s largest producer and consumer of chickpea, accounting for more than a third (66 percent) of world production.

The Indian Agricultural Research Institute (IARI) and the Indian Institute of Pulses Research (IIPR) are collaborating with the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) on marker-assisted backcrossing (MABC), to improve chickpeas for drought tolerance.

This complementary activity in the Tropical Legumes I project (TLI) Phase II is being funded by the Department of Biotechnology, Government of India.

Dr N Nadrajan (pictured left), IIPR Director, adds “We have been trained on the breeding tools offered by the Integrated Breeding Platform, including data management, and on electronic data collection using a handheld device.”

Shailesh Tripathi (pictured right) is a Senior Scientist working on chickpea breeding at IARI. “During Phase I of TLI, ICRISAT and its partners identified a root-trait QTL region which confers drought tolerance in chickpeas, and the markers by which to transfer this QTL region. By evaluating the chickpea reference set, ICRISAT and its partners in Africa identified about 40 lines for drought tolerance, and these lines are being used in Phase II of the project,” says Shailesh. [Editor’s note: A ‘reference set’ is a sub-sample of existing germplasm collections that facilitates and enables access to existing crop diversity for desired traits, such as drought tolerance or resistance to disease or pests]

“Through GCP, we have benefitted from training in molecular breeding. The benefits of this go beyond this project,” he adds.

The Indian scientists are using MABC as well as marker-assisted recurrent selection (MARS) in Phase II, applying genomic resources that came from Phase I of the project.

“Our goal is to obtain lines with good root traits for drought tolerance,” says Shailesh, realistically adding that “Variety release will take time, but the good news is that we already have the pre-release materials to identify donors for specific traits, like root biomass.”

Progress in chickpea research in Africa and Asia

Related links

Jun 262012
 

It’s all about water and weakness  or strength. The Greek legend has it that Achilles was dipped into River Styx by his mother, Thetis, in order to make him invulnerable. His heel wasn’t covered by the water and he later died of the wound from an arrow that struck his heel.

In our times, this analogy can be applied to chickpeas, where this streetwise tough customer in the crop kingdom that thrives on the most rugged terrains is hamstrung if there is no rain at the critical grain-filling period – its sole Achilles’ heel, when it cannot take the searing heat in the drylands it otherwise thrives in.

But before you read on about the latter-day borrowing of this ancient legend, and science’s quest to heal the hit from heat and to cure the crop’s fatal flaw on water, first, an important aside…

Who’s now calling the shots in chickpea research?

Molecular breeding in Phase I was led by ICRISAT, with country partners in a supporting role. In Phase II, activities are being led by country partners, which also assures sustainability and continuity of the work. ICRISAT is now in a facilitating role, providing training and data, while the research work is now in the hands of country partners.” – Pooran Gaur, Principal Scientist: Chickpea Breeding,  ICRISAT.

The facts
Chickpeas are an ancient crop that was first domesticated in central and western Asia. Today, this crop is cultivated in 40 countries and is second only to common beans as the food legume most widely grown by smallholders. The two main types of chickpeas – desi and kabuli – are valuable for both subsistence and cash.

Even for the hardy, times are tough
“Chickpeas are well-known to be drought-tolerant,” says Rajeev K Varshney, Principal Investigator of the project to improve chickpeas work in the Tropical Legumes I Project (TLI). He explains, “The plants are very efficient in using water and possess roots that seek out residual moisture in deeper soil layers.” However, he points out that, with changing climatic conditions, especially in drier areas, terminal drought – when rain does not fall during grain-filling – is the crop’s Achilles’ heel, and principal production constraint.

“Chickpeas are such tough plants that, even for conditions of terminal drought, yields can be increased by improving root characteristics and water-use efficiency,” says Rajeev. The research team has identified several lines with superior traits such as drought tolerance, after screening a set of 300 diverse lines selected based on molecular diversity of large germplasm collections.

VIDEO CLIP: Recipe for chickpea success

Enhancing the genetic makeup to beat the heat
The team went on to develop genomic resources such as molecular markers. With these markers, the team developed a high-density genetic map, and identified a genomic region containing several quantitative trait loci (QTLs), conferring drought tolerance. “QTLs help pinpoint, more specifically, the location of genes that govern particular traits like root length” explains Rajeev.

Longer roots will naturally give the plants a deeper reach into the water table. Root length is the difference between survival and perishing, which is why trees will be left standing on a landscape otherwise laid bare by prolonged drought.

Q for ‘quick’: QTLs speed things along from lab to field, and running with the winners
The discovery of QTLs makes identifying tolerant plants not only easier, but also cheaper and faster. “This means that better-adapted varieties will reach farmers faster, improving food security,” says Rajeev.

Pooran Gaur, GCP’s Product Delivery Coordinator for chickpeas, Principal Scientist for Chickpea Breeding at ICRISAT, and an important collaborator on the TLI project, adds, “We began marker-assisted selection backcrossing (MABC) in Phase I. By 2011, lines were already being evaluated in Ethiopia, India and Kenya. We are now at the stage of singling out the most promising lines.”

Putting chickpeas to the test: Rajeev Varshney (left) and Pooran Gaur (right) inspecting a chickpea field trial.

What was achieved in Phase I, and what outcomes are expected?
Phase I run from mid-2007 to mid-2010, during which time 10 superior lines for improved drought tolerance and insect resistance were identified for Ethiopia, Kenya and India. As well, a total of 1,600 SSR markers and 768 SNPs on GoldenGate assays were developed, along with an expanded DArT array with more than 15,000 features. A high-density reference genetic map and two intraspecific genetic maps were developed.

“We now have materials from marker-assisted backcrossing by using the genomic resources we produced in Phase I. These materials were sent to partners last year [2011]. And because in most cases we have the same people working in TLI as in TLII, this material is being simultaneously evaluated across six to seven locations by all TLI and TLII partners,” says Pooran.

“Preliminary analysis of data is quite encouraging and it seems that we will have drought-tolerant lines soon,” adds Rajeev.

Future work, and who’s now calling the shots in the field
In Phase II, 1,500 SNPs on cost-effective KASPar assays have been developed that have been useful to develop a denser genetic map. In collaboration with University of California–Davis (USA) and the National Institute of Plant Genome Research (India), a physical map has been developed that will help to isolate the genes underlying the QTL region for drought tolerance. A novel molecular breeding approach called marker-assisted recurrent selection (MARS) has been adopted. Over the remaining two years of Phase II, the chickpea work will focus on developing chickpea populations with superior genotypes for drought tolerance through MABC and MARS.

Pooran adds, “Molecular breeding in Phase I was led by ICRISAT, with country partners in a supporting role. In Phase II, activities are being led by country partners, which also assures sustainability and continuity of the work. ICRISAT is now in a facilitating role, providing training and data, while the MABC and MARS aspects are both in the hands of country partners.”

“Another important activity in Phase II is development of multi-parents advanced generation intercross (MAGIC) population that will help generation of genetic populations with enhanced genetic diversity,” says Rajeev.

Partnerships
The chickpea work is led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), working with partners at the Ethiopian Institute of Agricultural Research, Egerton University in Kenya, and the Indian Agricultural Research Institute. Additional collaborators in Phase I included the University of California–Davis (USA), the National Center for Genome Resources (USA) and DArT P/L (Australia).

For more information on the overall work in chickpeas, please contact Rajeev K Varshney, Principal Investigator of the chickpea work.

Video: Featuring Rajeev and partners Fikre Asnake (Ethiopia) and Paul Kimurto (Kenya)

Related links

 

 

Jun 202012
 

Breathing life into support services

By addressing the needs at the heart of quality agricultural research, right there on the station, GCP was the first to cotton on to a crucial missing link between researcher, research station, and support services.” – Hannibal Muhtar (pictured)

“One thing that really energises me,“ enthuses GCP Consultant Hannibal Muhtar, “is seeing people understand why they need to do the work, and being given the chance to do the how.”

And so was born another wonderfully fruitful GCP collaboration. Hannibal, who describes the assignment as “a breath of fresh air,” was asked to identify, together with GCP project Principal Investigators, African research sites of ongoing or potential GCP Research Initiative projects where effective scientific research might be hampered by significant gaps in one fundamental area: infrastructure, equipment and support services. As at June 2012, 19 sites had been selected.

Meet Hannibal Muhtar (audio clip)

Embarking on the voyage to change, storms ‘n’ all
In 2010 and 2011, Hannibal visited these stations, meeting staff at all levels and functions, for an in-depth analyses and appropriate recommendations to assure high-quality field evaluations for GCP-funded projects. With funding from GCP’s Integrated Breeding Platform (IBP), and with the openness, commitment and energy of station staff to implement these recommendations, the efforts are, starting to bear fruit.

Photos: AgCommons

Flashback to 2010. Photo 1: Hannibal (centre) at a planning session at Sega, Western Kenya, with Samuel Gudu of Moi University  (right) and Onkware Augustino (left). Photo 2: Similarly, at Tanzania’s Agricultural Research Institute, Naliendele, with Omari Mponda (right).

But it has not all been smooth sailing, and the storms encountered along en route should not be underestimated.

Weeds, wear and tear, and a walk on the wild side
“The real challenge,” says GCP’s Director of Research, Xavier Delannay (pictured), “is not in the science, but rather in the real nuts-and-bolts of getting the work done in local field conditions.” The obstacles, are often mundane – missing or faulty, weather stations or irrigation systems; weed-infested fields ravaged, or poor drainage, for example. Yet such factors compromise brilliant research. Take unfenced plots for example – equipment gets stolen, and animals roam freely.

Getting down to the brass tacks of local empowerment, and aiming higher
The overarching objective is, in Xavier’s words, “The effective running of local stations, for facilitating local research, improving local crops, and ultimately leading to empowerment and self-reliance of local farming communities.”

In tackling the matter, Hannibal employed a multi-faceted customised approach, based on the needs of each site, for both equipment and training for technicians, tractor operators and station managers. The dedication of the managers to both learn and continue these efforts after the training was particularly gratifying, since it assures sustainability.

“At the end of the day, it’s about achieving food security and improving livelihoods… which pave the way for healthy families and profitable agriculture,” concludes Hannibal.

Lights, curtain… action!
Much like in theatre, with all the ‘props’ in place, field trials are now performing well, thanks to streamlined ‘backstage’ support. Hannibal likens the positive feedback from the partners he has worked with to “A glass of cold water, after a long day in the sun!”

“With proper infrastructure in place, and with research station staff duly equipped with the hands-on expertise and practical know-how to utilise and apply this infrastructure and training, we’re now seeing field experiments being conducted as they should be, and getting good-quality phenotyping data as a result,” says Xavier. “Moreover,” he continues, “by providing glass-houses or the capacity to irrigate in the dry season, we are enabling breeders to accelerate their breeding cycles, so that they can work all year round, rather than having to wait until the rain comes.”
Examples include sites in Kenya, Mali and Nigeria.

The missing link
As the nuts-and-bolts begin to fall in place for, Hannibal reveals: “By addressing the needs at the heart of quality agricultural research, right there on the station, GCP was the first to cotton on to a crucial missing link between researcher, research station, and support services.”

…and yet another missing link…
But the job is not quite done. One crucial gap is the sensitisation of upper management – those at the helm of national research institutes and research station Directors – to support and sustain infrastructure, training and related services. In some cases, costs could be easily met by utilising a priceless asset that most institutes already have, and which they could put to greater us – land and a controlled environment.

Upper management needs to be actively on board. “A research institute should work like a good sewing machine,” says Hannibal. “All well-oiled, all parts working well, and everybody knowing what they need to do.”

In the meantime, however, results from the field suggest that researchers in GCP projects are already reaping the benefits from improved infrastructure and support services, and are already off to a good start.

The ‘stage’ is therefore set: ‘backstage’ and ‘props’ are well primed, performance trials are acting like they should, and the ‘theatre directors’ have an eye on sustainability after GCP’s final curtain call in 2014.

So, long may the show go on, with a cautionary word, however, to continually seek ways to not only maintain but also enhance performance!

Want more details? Read the extended version of this story

Relevant links

  • PODCASTS: You can also listen to Hannibal, by tuning into Episode 2 for the entire interview, or zooming in on your particular area of interest in the mini-podcasts labelled Episodes 2.1 to 2.7 c here.
  • Capacity building
  • Research Initiatives
  • Integrated Breeding Platform website
Jun 202012
 

Breathing life into support services

By addressing the needs at the heart of quality agricultural research, right there on the station, GCP was the first to cotton on to a crucial missing link between researcher, research station, and support services.” – Hannibal Muhtar

Want to cut to the chase and only need the bare bones of this story? Skip over to the short version

“One thing that really energises me,” enthuses GCP Consultant Hannibal Muhtar, “is seeing people understand why they need to do the work, and being given the chance to do the how.” And so was born another wonderfully fruitful GCP collaboration. Hannibal, who describes the assignment as “a breath of fresh air,” was asked to identify, together with GCP project Principal Investigators, African research sites of ongoing or potential GCP Research Initiative projects where effective scientific research might be hampered by significant gaps in one fundamental area: infrastructure, equipment and support services.

Meet Hannibal Muhtar (Audio clip)

As at June 2012, the 19 sites selected were:

Burkina Faso – L’Institut de l’environnement et de recherches agricoles sites at :
1.  Banfora
2.  Farako-Bâ Regional Centre
Ethiopia
3.  Hawassa Agricultural Research Station
4.  The Southern Agricultural Research Institute
Ghana – Council for Scientific and Industrial Research, Crops Research Institute sites at:
5.  Kumasi
6.  Tamale
Kenya
7.    Moi University (site 1)
8.    Moi University (site 2)
9.    Egerton University (Njoro site)
10.    Egerton University (Koibatek Farmers Training Centre)
Mali – L’Institut d’Économie Rurale sites at:
11.    Sotuba
12.    Cinzana
13.    Longrola
Niger – ICRISAT site
14.    Sadore
Nigeria
15.    National Cereals Research Institute
National Root Crops Research Institute sites at:
16.    Umudike
17.    Kano
Tanzania – Agricultural Research Institute at:
18.    Naliendele
19.    Mtwara

Flashback to 2010. Picture on the left: Hannibal at a planning session at Sega, Western Kenya, with Samuel Gudu and  Onkware Augustino. Picture on the right: Similarly, at Naliendele, in Tanzania with Omari Mponda.

Flashback to 2010. Picture on the left: Hannibal at a planning session at Sega, Western Kenya, with Samuel Gudu and  Onkware Augustino. Picture on the right: Similarly, at Naliendele, in Tanzania with Omari Mponda.

Embarking on the voyage to change, storms ‘n’ all
Hannibal, armed with years of practical experience in the application of engineering sciences in agriculture and developing countries, as well as an attentive ear to the real needs of researchers, embarked on a series of visits to these research stations in 2010 and 2011, meeting with staff of all levels, departments and functions, carrying out in-depth analyses and draw up concrete recommendations for infrastructure and support service investments for each of the sites so that good-quality field evaluations (‘phenotyping’ in ‘breeder-speak) of GCP-funded projects could be conducted. Thanks to funding from GCP’s Integrated Breeding Platform (IBP), and to the openness, commitment and energy of research staff on the ground to implement these recommendations, the efforts of multiple cross-cutting partnerships across Sub-Saharan Africa are, in 2012, starting to bear fruit. But it has not all been smooth sailing, and the storms encountered along the way to reach this end goal should not be underestimated.

Weeds, wear and tear, and a walk on the wild side
The obstacles, says GCP’s Director of Research, Xavier Delannay (pictured, can often be mundane in nature – a  lack of or faulty weather stations or irrigation systems, or fields ravaged by weeds or drainage problems and in dire need of rehabilitation, for example. Yet such factors compromise brilliant research. A simple lack of fencing, Xavier and Hannibal expound, commonly results not only in equipment being stolen, but also in roaming cattle and wild animals – boars, monkeys, hippopotamus and hyena, to name but a few – stomping over precious experiment sites and posing serious threats to field staff safety. “The real challenge lies not in the science, but rather in the real nuts-and-bolts of getting the work done in local field conditions,” he explains.’’

Hannibal concurs: “If GCP had not invested in these research support infrastructure and services, then their investment in research would have been in vain. Tools and services must be in place as and when needed, and in good working order. Tractors must be able to plough when they should plough.’’

But a critical change is also needed in mindset and budgeting. ‘’The word ‘maintenance,’’’ a Senegalese partner commented to Hannibal, describing his institute, “does not exist in our vocabulary and is not a line-item on our budget.”

The problem then is not always about limited funds but rather much more on how the funds available are budgeted, excluding the all-essential support services.

Getting down to the brass tacks of local empowerment, and aiming higher
Multi-lingual and fluent in English, Arabic and French, Hannibal employed a multi-faceted customised approach, based on the needs of each site, be it sharing his tricks-of-the-trade and improvising local solutions, or guiding researchers in identifying their specific needs, as well as on where and how to request equipment, just to mention a few examples. In other cases he would teach local station managers to build and apply simple yet revolutionary tools such as land-levellers (referred to as ‘floats’ in industrial-speak), as well as row-markers for more uniform spacing between rows and plants in the field.

In addition, he would organise a training workshops in either English or French, with different content for technicians, machine operators and station managers. The dedication demonstrated by this latter group to both learn and continue these efforts after the training was particularly pertinent for ensuring the long-term sustainability of the investments.

A colourful menu of options, then, for achieving one common overarching objective, which, as summarised neatly by Xavier, is: “The effective running of local experiment stations, for facilitating local research, improving local crops, and ultimately leading to empowerment and self-reliance of local farming communities.”

“At the end of the day, it’s about achieving food security and improving livelihoods,” Hannibal emphasises. Looking back at some of the research stations that are now well-equipped and are being managed well, and the improved crop varieties being produced and projected, Hannibal highlights the “harmonious chain” triggered as a result: “Food security and better livelihoods pave way for healthy, well-fed families, and agriculture growing beyond subsistence into an economic activity,” Hannibal concludes.

Lights, curtain… ACTION!
Much like in theatre, with all the ‘props’ in place, Hannibal reports that field trials are now performing well, thanks to the all-important ‘backstage’ support service elements being in good shape. Hannibal likens the positive feedback from the partners he has worked with to “A glass of cold water, after a long day in the sun!”

And there’s a beautiful simplicity to the impacts described: “With proper infrastructure in place, and with research station staff duly equipped with the hands-on expertise and practical know-how to utilise and apply this infrastructure and training, we’re now seeing field experiments being conducted as they should be, and getting good-quality phenotyping data as a result,” says Xavier. “Moreover,” he continues, “by providing glass-houses or the capacity to irrigate in the dry season, we are enabling breeders to accelerate their breeding cycles, so that they can work all year round, rather than having to wait until the rain comes.” Sites hosting GCP projects on rice in Nigeria, as well as on sorghum and rice in Mali, are just a few examples of those enjoying off-season work thanks to new irrigation systems.

Similar good news is expected soon for cassava in Ghana and in northern Nigeria. And yet more good news: in some cases, the impacts have not been limited to the trials, or even to the research trials and stations alone, as Xavier highlights with an example from Kenya: “The establishment of an irrigation system on a plot at Koibatek Farmer Training Centre – a partner of Egerton University – yielded excellent results for chickpea experiments. We emphasised that we did not want the equipment to be ‘bracketed’ exclusively for science and experiments. So, it was also used to train staff and farmers from the local community as well. This was greatly appreciated.”

Seeing the nuts-and-bolts now firmly in place for the majority of the sites visited, Hannibal believes GCP has facilitated a pioneering approach to local capacity building: “By addressing the needs at the heart of quality agricultural research, right there on the station, GCP was the first to cotton on to a crucial missing link between researcher, research station, and support services,” he reveals.

…Another missing link…
But the job is not quite done. One crucial gap is the sensitisation of upper management – those at the helm of national research institutes and research station Directors – to support and sustain infrastructure, training and related services. In some cases, costs could be easily met by utilising a priceless asset that most institutes already have, and which they could put to greater us – land and a controlled environment.

Upper management needs to be actively on board. “A research institute should work like a good sewing machine,” says Hannibal. “All well-oiled, all parts working well, and everybody knowing what they need to do.”

In the meantime, however, results from the field suggest that researchers in GCP projects are already reaping the benefits from improved infrastructure and support services, and are already off to a good start.

The stage is therefore set: backstage and props are well primed, performance trials are acting like they should, and the ‘theatre directors’ have an eye on sustainability after GCP’s final curtain call in 2014.

So, long may the show go on, with a cautionary word, however, to continually seek ways to not only maintain but also enhance performance!

Relevant links

  • PODCASTS: You can also listen to Hannibal, by tuning into Episode 2 for the entire interview, or zooming in on your particular area of interest in the mini-podcasts labelled Episodes 2.1 to 2.7 c here.
  • Capacity building
  • Research Initiatives
  • Integrated Breeding Platform website

 

cheap ghd australia