Jan 122015
 
James profile

James Gethi and one of the crops closest to his heart – maize. He also has a soft spot for hardy crop varieties that survive harsh and unforgiving drylands, such as Machakos, Kenya, where this June 2011 photo of him with drought-tolerant KARI maize was taken.

As we tell our closing stories on our Sunset Blog, in parallel, we’re also catching up on the backlog of stories still in our store from the time GCP was a going concern. Our next stop is Kenya, and the narrative below is from 2012, but don’t go away as it is an evergreen – a tale that can be told at any time, as it remains fresh as ever. At that time, and for the duration of the partnership with GCP, the Food Crops Research Institute of the Kenya Agricultural and Livestock Research Organisation (KALRO) was then known as the Kenya Agricultural Research Institute (KARI), and we shall therefore stay with this previous name in the story. KARI was also the the name of the Kenyan institute at the time when James Gethi (pictured) left for a sabbatical at the International Maize and Wheat Improvement Center (CIMMYT by its Spanish acronym). On to the story then, and please remember we’re travelling back in time to the year 2012. 

“I got into science by chance, for the fun of it,” muses James, maize breeder and former GCP scientist “With agricultural school promising a flight to overfly the country’s agricultural areas– this was an interesting prospect for a village guy. ‘This could be fun’, I thought!”

And it turned out to be a chance well worth taking.  His first step was getting the requisite education. And so he armed himself with a BSc in Agriculture from the University of Nairobi, Kenya, topped with a Master’s and PhD in Plant Breeding from the University of Alberta (Canada) and Cornell University (USA), respectively. Beyond academics, in the course of his crop science career, James has developed 13 crop varieties, that included maize and cassava, published papers in numerous peer-reviewed papers (including the 2003 prize for Best paper in the field of crop science in the prestigious Crop Science journal. And in leadership, James headed the national maize research programme in his native Kenya. These are just a few of the achievements James has garnered in the course of his career, traversing  and transcending not only the geographical frontiers initially in his sights, but also scientific ones, reaching professional heights that perhaps his younger self might never have dreamt possible.

As a Research Officer at KARI, a typical day sees James juggling his time between hands-on research (developing maize varieties resistant to drought, field and storage pests) and project administration, coordinating public–private partnerships and the maize research programme at both institutional and country level. What motivates the man shouldering much of the responsibility for the buoyancy of his nation’s staple crop? James explains, “Making a difference by providing solutions to farmers. That’s my passion and that’s what makes me get up in the morning and go to work. It’s hugely satisfying!”

Without GCP, I would not be where I am today as a scientist… [it] gave me a chance to work with the best of the best worldwide… You develop bonds and understanding that last well beyond the life of the projects.”

Rapid transitions: trainee to trainer to leader
It was this passion and unequivocal dedication to his vocation – not to mention a healthy dollop of talent – that GCP was quick to recognise back in 2004, when James first climbed aboard the GCP ship. Like a duck to water, he proceeded to engage in all manner of GCP projects and related activities, steadily climbing the ranks from project collaborator to co-Principal Investigator and, finally, Principal Investigator in his own right, leading a maize drought phenotyping project. Along the way, he also secured GCP Capacity building à la carte and Genotyping Support Service grants to further the maize research he and his team were conducting.

Combo1

FLASHBACK: At a GCP drought phenotyping course in mid-2006 at Montpellier, France. (1) James (left) pays keen attention during one of the practical sessions. (2) In the spirit of “All work and no play, etc”, taking a break from the course to take in some of the sights with colleagues. Clearly, James, “the guy from the village” is anything but a dull boy! Next to James, second left, is BM Prasanna, currently leader of CIMMYT’s maize programme.

DSC00606_w

From trainee to trainer and knowledge-sharer: James (behind the camera) training KARI staff on drought phenotyping in June 2009 at Machakos, in Kenya’s drylands.

The GCP experience, James reveals, has been immensely rewarding: “Without GCP, I would not be where I am today as a scientist,” he asserts. And on the opportunity to work with a capable crew beyond national borders, as opposed to operating as a solo traveller, he says: “GCP gave me a chance to work with the best of the best worldwide, and has opened up new opportunities and avenues for collaboration between developing-country researchers and advanced research institutes, creating and cementing links that were not so concrete before. This has shown that we don’t have to compete with one another; we can work together as partners to derive mutual benefits, finding solutions to problems much faster than we would have done working alone and apart from each other.”

The links James has in mind are not only tangible but also sustainable: “You develop bonds and understanding that last well beyond the life of the projects,” James enthuses, citing additional professional engagements (the African Centre for Crop Improvement in KwaZulu-Natal, South Africa, and the West Africa Centre for Crop Improvement, have both welcomed James and his team into their fold), as well as firm friendships with former GCP project colleagues as two key take-home benefits of his interaction with the Programme. These new personal and professional circles have fostered a happy home for dynamic debates on the latest news and views from the crop-science world, and the resultant healthy cross-fertilisation of ideas, James affirms.

Reflecting on what he describes as a ‘mentor’ role of GCP, and on the vital importance of capacity building in general, he continues: “By enhancing the ability of a scientist to collect germplasm, or to analyse that germplasm, or by providing training and tips on how to write a winning project proposal to get that far in the first place, you’re empowering scientists to make decisions on their own – decisions which make a difference in the lives of farmers. This is tremendous empowerment.”

Another potent tool, says James, is the software made available to him through GCP’s Integrated Breeding Platform (IBP), which is a handy resource package to dip into for – among other things – analysing data and selecting the right varieties at the right time. The next step for IBP, he feels, should be scaling up and aiming for outreach to the wider scientific community, forecasting that such a step could bring nothing but success: “The impacts could be enormous!” he projects, with a palpable and infectious enthusiasm.

People… don’t eat publications, they eat food… I’m not belittling knowledge, but we can do both”

Fast but not loose on the R&D continuum: double agent about?
For James, outreach and impacts are not limited to science alone. In parallel with his activities in upstream genetic science, James’ efforts are equally devoted to the needs of his other client base-–the development community and farmers. For this group, James’ focus is on putting tangible products on the table that will translate into higher crop yields and incomes for farmers. Yet whilst products from any highly complex scientific research project worth its salt are typically late bloomers, often years in the making on a slow burner as demanded by the classic linear R&D view that research must always precede development, adaptation and final adoption, James has been quick to recognise that actors in the world of development and the vulnerable communities they serve do not necessarily have this luxury of time.

 August 2008: a huge handful, and more where that came from in Kwale, Kenya. This farmer's healthy harvest came from KARI hybrids.

August 2008: a huge handful, and more where that came from in Kwale, Kenya. This farmer’s healthy harvest came from KARI hybrids.

His solution for this challenge? “Sitting where I sit, I realised from very early on that if I followed the traditional linear scientific approach, my development clients would not take it kindly if I still had no products for them within the three-year lifespan of the project. The challenge then was to deliver results for farmers without compromising or jeopardising their integrity or the science behind the product,” he recalls. In the project he refers to – a GCP-funded project to combat drought and disease in maize and rice – James applied a novel double-pronged approach to get around this seeming conundrum of the need for sound science on the one hand, and the need for rapid results for development on the other hand. Essentially, he simultaneously walked on both tracks of the research–development continuum.

The project – led by Rebecca Nelson of Cornell University and with collaborators including James’ team at KARI (leading the maize component), the International Rice Research Institute (IRRI), researchers in Asia, as well as other universities in USA – initially set out with the long-term goal of dissecting quantitative trait loci (QTLs) for rice and maize with a view to combating drought and disease in these crops. Once QTLs were dissected and gene crosses done, James and his team went about backcrossing these new lines to local parental lines, generating useful products in the short term. The results, particularly given the limited resources and time invested, have been impressive, with seven hybrid varieties developed for drylands and coastal regions having been released in Kenya by 2009, and commercialised from 2010.

James and his colleagues have applied the same innovative approach to other GCP projects, grappling to get a good grasp of the genetic basis of drought tolerance, whilst also generating intermediate products for practical use by farmers along the way. James believes this dual approach paves the way for a win-win situation: “People on the ground don’t eat publications, they eat food,” he says. “As we speak now, there are people out there who don’t know where their next meal will come from. I’m not belittling knowledge, but we can do both – boiled maize on the cob and publications on the boil. But let’s not stop at crop science  and knowledge dissemination – let’s move it to the next level, which means products,” he challenges, adding: “With GCP support, we were able do this, and reach our intended beneficiaries.”

It is perhaps this kind of vision and inherent instinct to play the long game that has taken James this far professionally, and that will no doubt also serve him well in the future.

As our conversation comes to a close, we ask James for a few pearls of wisdom for other young budding crop researchers eager to carve out an equally successful career path for themselves, James offers “Form positive links and collaborations with colleagues and peers. Never give up; never let challenges discourage you. Look for organisations where you can explore the limits of your imagination. Stay focused and aim high, and you’ll reach your goal.”

Upon completion of his ongoing sabbatical at CIMMYT in Zimbabwe, where he is currently working on seed systems, James plans to return to KARI, armed with fresh knowledge and ready to seize – with both hands – any promising collaborative opportunities that may come his way .

Certainly, prospects look plentiful for this ‘village lad’ in full flight, and who doesn’t look set to land any time soon!

DSC03659_w

In full flight – Montpellier, Brazil, Benoni, Bangkok, Bamako, Hyderabad… our boy voyaged from the village to Brazil and back, and far beyond that. Sporting the t-shirt from GCP’s Annual Research Meeting in Brazil in 2006, which James attended, he also attended the same meeting the following year, in Benoni, South Africa, in 2007, when this photo was taken. James is a regular at these meetings which are the pinnacle on  GCP’s calendar (http://bit.ly/I9VfP4). But he always sings for his supper and is practically part of the ‘kitchen crew’, but just as comfortable in high company. For example, he was one of the keynote speakers at the 2011 General Research Meeting (see below).

Links:

 

 

Jan 082015
 

Welcome to Brazil! Journey by road six hours northwest from Rio de Janeiro and you’ll arrive to Sete Lagoas,  a city whose name means ‘Seven Lagoons’ in Portuguese. Although cloistered in farmlands, the city is largely a commercial centre, but also the seat of Embrapa Milho e Sorgo, the nerve centre of EMBRAPA’s maize and sorghum research, and so could pass for the ‘sede’ (Portuguese for headquarters) of the these two cereals. EMBRAPA is the Portuguese acronym for Empresa Brasileira de Pesquisa Agropecuária; the Brazilian Agricultural Research Corporation. EMBRAPA is a GCP Consortium member, and contributed to the proposal that founded GCP.

Photo provided by J MagalhãesJurandir Magalhães (pictured), or Jura, as he likes to be referred to in informal settings such as our story today, is a cereal molecular geneticist who has been working at the Embrapa Milho e Sorgo centre since 2002. “The centre develops projects and research to produce, adapt and diffuse knowledge and technologies in maize and sorghum production by the efficient and rational use of natural resources,” Jura explains.

Such qualities are exactly what appeal to GCP, which has supported Jura as a Principal Investigator since 2004. Beyond science and on to governance and advisory issues, Jura is also EMBRAPA’s representative on the GCP Consortium Committee.

Home and away, on a journey of discovery in sorghum
Hailing from Belo Horizonte, Minas Gerais State, where he was born, Jura attended the Federal University of Viçosa in his home state. Upon completing his Master’s degree at the university in 1995, he proceeded to USA’s Cornell University in 1998 for his PhD, under the watchful eye of Leon Kochian, another GCP Principal Investigator.

Sorghum rainbow_A Borrell

No, it’s not photo-shopped. This Australian sorghum-and-double-rainbows shot is from Supa Snappa, Andy Borrell, also a GCP sorghum Principal Investigator. See http://bit.ly/1tBAOMW

At Cornell, Jura worked with Leon on identifying the genes associated with aluminium tolerance in sorghum. “At the time, genes associated with aluminium tolerance were known for cereals in the Triticeae family (wheat, barley and rye). But the same genes were not found in the Poaceae family (sorghum, rice and maize). This suggested that there were different aluminium-tolerance genes at play, so it was a really pioneering project.” Continuing with the Cornell team after his PhD, Jura worked with Leon to  map the location of a major aluminium-tolerance genetic ‘hotspot’ in sorghum, which the project team contracted to  AltSB  for short (aluminium-tolerance gene or locus in Sorghum bicolor). The mapping also marked the next chapter  of what was to be a long-term professional relationship for the pair.

Brazil beckons, joining GCP, leadership and enduring partnerships
But in between, Brazil broke in and beckoned her native son home. And so it was that in 2002, Jura packed his bags and accepted a position with EMBRAPA’s maize and sorghum research centre. And despite the geographical distance, it wasn’t long before he and Leon teamed up again. “When I left Cornell, Leon and I had finished mapping AltSB and we were keen to clone it so we could then develop aluminium-tolerant sorghum varieties more efficiently,” says Jura.

Two years after his return to Brazil,  Leon and Jura – in 2004 – submitted a joint proposal for a competitive grant for their first GCP project on aluminium tolerance in cereals, premised on AltSB. This project contributed to GCP’s foundation work on sorghum in this and other projects, the common goal being a bid to provide farmers in the developing world with sorghum crops that would be able to tolerate harsh soils. But the project contributed much more with a deep taproot in pre-history, as that which we today call ‘sorghum’, ‘maize’ and ‘rice’ were once one millions of ‘Jurassic’ years ago. More on that interesting side-story.

And since this first project, EMBRAPA and Cornell University have collaborated with several other research institutes around the world, particularly in Africa.

Left to right (foreground): Leon Kochian, Jurandir Magalhães (both EMBRAPA) and Sam Gudu (Moi University) examine crosses between Kenyan and Brazilian maize, at the Kenya Agricultural Research Institute (KARI), Kitale, in May 2010.

Left to right (foreground): Leon, Jura and Sam Gudu (Moi University) examine crosses between Kenyan and Brazilian maize, at the Kenya Agricultural Research Institute (KARI), Kitale, in May 2010.

Jura leads several EMBRAPA and GCP collaborative projects across three continents (Africa, Asia and the Americas). The partnerships forged by and through these projects go well beyond project life and frame, and will therefore continue after GCP’s sunset. Jura is both team leader and team player. And a couple of GCP projects in which Jura is part of the project team will run on in 2015 (see page 10), after GCP’s closure in December 2014.

Links

 

Aug 312014
 

 Crop disease costs farmers billions of dollars each year in lost yields and inputs. For farming communities in developing countries, such losses can mean deepening poverty, food insecurity, and the resulting poor nutrition and health. 

In Africa alone, it is estimated that crop pests and diseases lead to losing more than half the crops planted. Added to this, some fungal pathogens cause toxic compounds to accumulate in food. In extreme cases, crop diseases have led to widespread famine, social disruption and loss of life – the Irish Potato Famine in the 19th century is a case in point.

Overcoming this reality is what motivates plant pathologists like Rebecca Nelson (pictured below, and profiled here), of Cornell University, USA. For the past quarter century, Rebecca has worked across four continents to understand the ways in which plants defend themselves against diseases.

Rebecca Nelson

Rebecca Nelson

“Pesticides are the dominant way in which pests and diseases are managed, in spite of the many downsides to this approach,” says Rebecca. “For resource-limited farmers, this is often not an option. For those who use pesticides, the health impacts hit harder in the tropics, where protective clothing is not the norm. That’s why we’re trying to understand how plants naturally defend themselves, so that we can then tap into this, and learn from nature to breed crops that are resistant to disease.”

With this premise and funding from GCP, Rebecca collaborated with an interdisciplinary international team from USA, The Philippines, Indonesia and Kenya to identify genes associated with disease resistance in maize and rice. Although the project itself ended in 2009, that was far from the end of the story. In many ways, the end of the GCP project was in fact the beginning of life-changing chapters that followed. Thus far, the project has led to several locally developed disease-resistant varieties of rice in Indonesia and maize in Kenya.

We now already know quite a lot about the genetic architecture of several critical diseases, and this knowledge is enough for us to get started on improving the efficiency of resistance breeding”

Dissecting resistance – the genie in the genes
To understand the genetic reason behind resistance, Rebecca and her team used a range of genetic tools to dissect various forms of genetic resistance, understand the mechanisms that the plants use to reduce pathogen success, and identify the genes that provide resistance.

To create a near isogenic line, an organism with the phenotype of interest, often a plant, is crossed with a  standard line of the same plant. The F1 generation is selfed to produce the F2 generation.

NILS explained: To create a near-isogenic line, a plant with the phenotype of interest is crossed with a standard line of the same plant. The F1 (1st filial) generation is thereafter selfed (ie, crossbred within itself) to produce the F2 (2nd filial) generation.

“There has been a lot of work done on sequencing the genomes of rice and maize, so we tapped into this work and combined our team expertise in genetics, pathology and plant breeding to help identify these disease-resistance genes,” says Rebecca. “We used recombination breeding and other genetic techniques to dissect the genomes and identify specific regions that convey disease resistance. We now already know quite a lot about the genetic architecture of several critical diseases, and this knowledge is enough for us to get started on improving the efficiency of resistance breeding. In addition, we’re identifying the genes and the ways they work, so as to interrupt pathogenesis [the manner in which a disease develops]. This involved breeding near-isogenic lines of rice and maize with the genes of interest, infecting these plants with a disease of interest, and monitoring their resistance in the field.”

Identifying genes responsible for resistance
Through this process, the team identified several genomic regions and specific genes responsible for protecting resistant rice plants against rice blast and sheath blight and resistant maize plants against northern and southern leaf blight, grey leaf spot and ear rot.

An underlying objective of the project was to also investigate if some of these genes were responsible not for just one specific disease, but for multiple diseases.

“We were intrigued by the idea of multiple disease resistance, because farmers face a range of diseases in their fields. In maize, we identified a gene associated with resistance to three diseases – southern leaf blight, northern leaf blight and grey leaf spot.”

While the team found several gene loci in both maize and rice that provide resistance to more than one disease, they have so far found little cross-benefit from the work on the two crops. But from their research they have ‘handles’ on the rich diversity of resistance loci in each of the two crops.

“Plant breeders will be able to use this information to breed crops for multiple disease resistance, increasing the security of the crop and farmers’ livelihoods,” says Rebecca.

A 2008 update: A slide from Rebecca's presentation at the GCP General Research Meeting in September of that year.

A 2008 update: a slide from Rebecca’s presentation at the GCP General Research Meeting in September of that year.

Working with that great group of people and being a part of the larger GCP family, which comprises of an amazing talent pool, was really valuable.”

Collaborating with old friends, and new
Rebecca credits her collaborators and support from the GCP family for the success of the project, saying none of the outcomes could have been achieved without everyone playing their part.  “Working with that great group of people and being a part of the larger GCP family, which comprises of an amazing talent pool, was really valuable. I really appreciated that GCP supported my work at a time when I was making a transition in my career. GCP gave me and my team time and inspiration to find our feet. All of our labs are now well established, and we have since been able to diversify our funding sources.”

Project scientists from the Kenya Agricultural Research Institute (KARI) and the Indonesian Centre for Agricultural Resources Research and Development (ICABIOGRAD) reflect the involvement of country agricultural research programmes. Other partners included the International Rice Research Institute (IRRI) and four universities: Bogor Agriculture University in Indonesia and Colorado State, Cornell and North Carolina State Universities, all in USA.

Masdiar Bustamam

A highlight of the project for Rebecca was reconnecting with old colleagues at IRRI, where she had previously worked for eight years. “It was great to involve my IRRI mentor, Hei Leung, and our collaborator Jan Leach, as well as several other IRRI people whom I worked with on several rice disease-resistance projects. It was also great to involve Masdiar Bustamam of ICABIOGRAD. My team at IRRI had worked with her laboratory as she was getting it started. It was such a pleasure to see how far she and her lab had come since our earlier collaboration. They were able to make a significant contribution to the project in advancing the understanding of inheritance of rice blast and sheath blast resistance, and they developed germplasm that has really good resistance to these diseases.”

Having a limited background in maize research before the project began, Rebecca was grateful for her close collaboration with KARI’s James Gethi, who was a lead researcher in Kenya. At the time of the proposal, James was a recent Cornell graduate who was returning home to contribute to his nation’s crop-research capabilities.

“James and I were both getting our maize programmes going and the support was terrific for our labs and for our collaboration. We’ve continued to work together since our GCP project wrapped up.”

Rebecca (left) on a field visit to Kenya in September 2006. On the left is John Okalembo of Moi University, with James Gethi behind the camera.

A partnership of long standing: Rebecca (left) on a field visit to Kenya in September 2006. On the right is John Okalembo of Moi University, with James Gethi behind the camera.

You can’t see it, you can’t taste it, you can’t feel it. The population is being poisoned without knowing about it.”

Continuing projects, tracking a silent cereal killer, and spreading a positive epidemic
One such project, which Rebecca and James have worked tirelessly on, is understanding genetic resistance to aflatoxins in maize. “We were travelling through Kenya together in 2005 when there was an aflatoxin outbreak,” remembers Rebecca. “Ever since, we’ve been obsessed with the problem.”

Aflatoxin is the most carcinogenic natural substance known. It is produced by species of fungi, especially Aspergillus flavus, which can colonise and contaminate grain before harvest or during storage. Maize is particularly susceptible to infection during drought, or when it is attacked by insects, or improperly stored. In 2004, 125 people died in Kenya after eating maize with very high aflatoxin levels.

“This food-safety problem is rigorously and carefully managed in developed countries but less so in cash-strapped developing nations,” says Rebecca. “In tropical countries where maize and groundnuts are often grown under stress and stored under suboptimal conditions, it is a huge problem. Yet you can’t see it, you can’t taste it, you can’t feel it. The population is being poisoned without knowing about it.”

Rebecca and James spent years trying to get support for their work on aflatoxin – the silent cereal killer – and trying to get funding for a graduate student who could take a lead. They made headway while Rebecca was on sabbatical at the Biosciences eastern and central Africa (BecA) Hub in Nairobi. BecA eventually received a major grant from Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO), and Rebecca says a strong team is now tackling the issue.

We’re indebted to GCP for bringing us together to tackle cereal diseases”

“One of our big goals was to support a promising young talent named Samuel Mutiga. I’m delighted to say that he is just finishing his PhD at Cornell now, and has done some terrific work on aflatoxin in collaboration with James and BecA.”

Samuel is one of several PhD students at Cornell who are passionate about improving food safety in Africa by beating the aflatoxin problem. “One American students is working with a Kenyan student in Nairobi to develop an improved spectroscopic grain sorter for people processing their maize at small grain mills. This will allow them to remove the toxic kernels before they mill and eat the grain, something that cannot be done visually.”

Rebecca says it’s “exciting to see this new generation take on this huge challenge. There are more scientists who are coming on board and sharing their expertise. James and I are gratified that we helped ‘infect’ these people with the conviction that something needs to be done and can be done. We’re indebted to GCP for bringing us together to tackle cereal diseases.”

 Links

 

Aug 272014
 
Leon Kochian

Leon Kochian

“By being involved with GCP, I’ve had more opportunities to travel to the developing world and witness the problems that local farmers in these countries are facing, as well as to meet with the local researchers who are trying to overcome these problems. It has made me appreciate that these  researchers also need the capacity to sustainably deal with agricultural problems once the project money starts to dry up.” – Leon Kochian (pictured), Professor, Cornell University, USA; and Director of Robert W Holley Center for Agriculture and Health, United States Department of Agriculture – Agricultural Research Service. Also Product Delivery Leader for GCP’s Comparative Genomics Research Initiative.

Bright and early beginnings in biology
For as long as Leon Kochian can remember, he’d always wanted to be a biologist.

“I remember my second-grade teacher reading a story to us about the white cliffs of Dover and thinking to myself ‘They’re white because they’re covered in the prehistoric remains of dead protozoan’,”’ says Leon with a chuckle. “Yes, I was a weird kid and that sort of stuff [biology] has always interested me.”

Having completed a Bachelor’s Degree in Botany at the University of California, Berkeley, and a PhD in Plant Physiology at the University of California, Davis (both in USA), Leon joined the United States Department of Agriculture based at Cornell University.

For 30 years, he has combined lecturing and supervising duties at Cornell, with his quest to understand the genetic and physiological mechanisms that allow some cereals to tolerate acidic soils.

The GCP model has always attracted me, particularly its focus on making an impact on farmers’ lives… I had already been a successful researcher having published more than 250 papers, but I felt little of that had made any real impact on the world.”

Identifying genes and breeding tolerant crops for African farmers
Leon and Cornell University have been involved with GCP since the Programme’s inception in 2004, playing a lead role in GCP’s Comparative Genomics Research Initiative, of which Leon is the Product Delivery Coordinator. Cornell University is a member of the GCP Consortium, with Leon as Cornell’s representative in the GCP Consortium Committee.

“The GCP model has always attracted me, particularly its focus on making an impact on farmers’ lives,” says Leon, who has been a Principal Investigator for several Comparative Genomics Research Initiative projects. “I had already been a successful researcher having published more than 250 papers, but I felt little of that had made any real impact on the world.”

During the first phase of the project, Leon led a team comprising of researchers from Cornell, EMBRAPA in Brazil and Moi University in Kenya.

In the foreground, left to right, Leon, Jura and Sam in a maize field in Kenya.

Leon (left) with project colleagues, Jurandir Magalhães (EMBRAPA) and Sam Gudu (Moi University) in a maize field in Kenya in May 2010.

“We had been working for many years with both EMBRAPA and Moi University to identify the genes associated with aluminium tolerance in sorghum and maize and saw the potential to apply our research and expand it to explore other cereals such as rice and wheat,” explains Leon.

During GCP Phase I (2004–2008), the team successfully identified and cloned the major sorghum aluminium tolerance gene (AltSB). In Phase II (2009–2014), they are working towards breeding aluminium-tolerant sorghum lines for sub-Saharan Africa as well as applying what they have learnt to discover similar genes in rice and maize.

“Aluminium toxicity is a problem all over the world, but more so in Africa, as most farmers don’t have the money to manage it,” says Leon “These new aluminium-tolerant crops will improve African farmers’ yields, and, in turn, improve their quality of life.”

It’s like match.com for collaborative research and will hopefully foster greater collaboration between the two continents.”

Insights, connections and matchmaking
According to Leon, the funding from GCP has been very beneficial in making significant research progress on the projects he’s been involved with so far, and he is also quick to note the unexpected and very welcome non-monetary benefits from being involved with GCP.

“By being involved with GCP, I’ve had more opportunities to travel to the developing world and witness the problems that local farmers in these countries are facing, as well as to meet with the local researchers who are trying to overcome these problems. It has made me appreciate that these  researchers also need the capacity to sustainably deal with agricultural problems once the project money starts to dry up.”

Working with GCP, Leon has designed and run workshops to train African scientists on molecular breeding techniques and hosted several postgraduate researchers at Cornell. He is now working with GCP collaborators to develop a database that will help African scientists find potential collaborators in USA and the rest of the Americas. “It’s like match.com for collaborative research and will hopefully foster greater collaboration between the two continents,” says Leon.

Research is such a fun and social experience! … I still love getting into the lab and discovering new things. I’ve also learnt to enjoy being the old guy in the lab!”

Growing greyer, growing wiser
Leon says his passion for biology and research is steadfast and has not waned through the years. Although he doesn’t get to do much of the hands-on work these days, it still remains the most enjoyable part of his job. “Research is such a fun and social experience! I still love getting into the lab and discovering new things. I’ve also learnt to enjoy being the old guy in the lab! Just watching and helping young researchers grow and develop their skills is really rewarding. Each of the 13 PhD students I’ve supervised is like one of my kids and I still keep in touch with all of them, as I do with my own PhD supervisor, 30 years on!”

Having recently celebrated his 60th birthday, Leon has no plans on slowing down anytime soon. “I’m currently Director of the Robert W Holley Center for Agriculture and Health, lecturing undergraduate and postgraduate students, supervising two PhD students and sitting on several boards, all the while trying to find time to write papers and do some research. It’s hard work but I enjoy it.”

The three faces of Leon: (1) in the lab in Cornell; (2) in the field courtesy of USDA-ARS; and, (3) delivering opening remarks as Director of the Robert W Holley Center

The three faces of Leon: (1) in the lab in Cornell; (2) in the field, courtesy of USDA–ARS; and, (3) delivering opening remarks as Director of the Robert W Holley Center.

Leon tries to impart this philosophy to his students, believing scientists need to enjoy what they are doing, work hard at it, be flexible and creative, and, most importantly, not have ‘fear of failure’. “I don’t care how smart you are. If you’re not willing to work really hard and learn to improve yourself, then you’re not going to succeed.”

With regard to his GCP projects soon coming to a close when GCP sunsets in December 2014, Leon hopes he and team will succeed in meeting all their goals, but even if they don’t, he’s sure they’ll continue the research and try to discover more about aluminium tolerance. More power to them!

Leon’s slides, with links to more supplementary material after the slides

Links

Aug 152014
 

 

Samuel Gudu

Samuel Gudu

Having funding to support PhD students and provide them with the resources they need to complete their research is very fulfilling and will go a long way to enhance the long-term success of our goal: to provide Kenyan farmers with cereal varieties that will improve their yields and make their livelihood more secure and sustainable.” – Samuel Gudu, Professor and Deputy Vice-Chancellor (Planning & Development) at Moi University, and now Principal, Rongo University College: a Constituent College of Moi University, Kenya.

Growing up, and getting dirty
Learner, teacher and leader. Sam Gudu has been all these, but this doesn’t mean he doesn’t like to get his hands dirty.

Growing up in a small fishing village on the banks of Lake Victoria, in Western Kenya, Sam was always helping his parents to fish and garden, or his grandparents to muster cattle.

“I remember spending long hours before and after school either on the lake or in the field helping to catch, harvest and produce enough food to eat and support our family,” reminisces Sam.

He attributes this “hard and honest” work to why he still enjoys being in the field.

“Even though I now spend most of my days doing administration work, I’m always trying to get out into the field to get my hands dirty and see how our research is helping to make the lives of Kenyan farmers a lot more profitable and sustainable,” he says.

Sam in a maize field in Kenya.

Doing what he likes to do best: Sam in a maize field in Kenya.

I was… captivated by the study of genetics as it focused on what controlled life.”

Taking control: bonded to genetics, at home and away
Sam says his love for the land transferred to an interest and then passion in the classroom during high school. “I became very interested in Biology as I wanted to know how nature worked,” says Sam. “I was particularly captivated by the study of genetics as it focused on what controlled life.”

This interest grew during his undergraduate years at the University of Nairobi where he completed a Bachelor of Science in Agriculture and a Master’s of Science in Agriculture, focusing on genetics and plant breeding.

“I fondly remember a lecturer during my master’s degree studies who would continually give us challenges to test in the field and in the lab. If you had a viable idea he supported you to design an experiment to test your theory. I like to use the same method in teaching my students. I discuss quite a lot with my students and I encourage them to disagree if they use scientific process.”

Driven by an ever-growing passion and enthusiasm, Sam secured a scholarship to travel to Canada to undertake a PhD in Plant Genetics and Biotechnology at the University of Guelph.

[There has been an] influx of young Kenyans who are choosing degrees in science. The Kenyan Government has recently increased its funding for science and research…”

Nurturing the next breed of geneticists
After graduating from Guelph in 1993, Sam returned to Kenya to lecture at Moi University where he initiated and helped expand teaching and research in the disciplines of Genetic Engineering, Biotechnology and Molecular Biology.

In the past two decades, he has recruited young talented graduates in genetics and helped acquire advanced laboratory equipment that has enabled practical teaching and research in molecular biology.

“I wouldn’t be where I am now were it not for all the assistance I received from my teachers, lecturers and supervisors; notably my PhD supervisor – Prof Ken Kasha of the University of Guelph. So I’ve always tried my best to give the same assistance to my students. It’s been hard work but very rewarding, especially when you see your students graduate to become peers and colleagues.” (Meet some of Sam’s students)

Sam (2nd right), with some of his young charges: Thomas Matonyei (far left) , Edward Saina (2nd left) and Evans Ouma (far right)

Sam (2nd right), with some of his young charges: Thomas Matonyei (far left), Edward Saina (2nd left) and Evans Ouma (far right).

Sam is particularly buoyed by the influx of young Kenyans who are choosing degrees in science.

“The Kenyan Government has recently increased its funding for science and research to two percent of GDP,” explains Sam. “This has not only helped us compete in the world of research but has helped raise the profile of science as a career.”

Knowing which genes are responsible for aluminium tolerance will allow us to more precisely select for aluminium tolerance in our breeding programmes, reducing the time it takes for us to breed varieties that will have improved yields in acidic soils without the use of costly inputs such as lime or fertiliser.” (See the work that Sam does in this area with other partners outside Kenya)

So far we have produced 10 inbred lines that are outstanding for phosphorus efficiency, and two that were outstanding for aluminium toxicity. We are now testing unique verities developed for acid soils of Kenya.”

Slashing costs, increasing yields and resilience: genes to the rescue
Currently, Sam and his team of young researchers at Moi University are working with several other research facilities around the world (Brazilian Agricultural Research Corporation, EMBRAPA; Cornell University, USA; the International Rice Research Institute (IRRI); Japan’s International Research Center for Agricultural Sciences, JIRCAS; and the Kenya Agricultural Research Institute, KARI–Kitale) to develop high-yielding maize varieties adapted to acid soils in East Africa, using molecular and conventional breeding approaches.

Can you spot Sam? It’s a dual life. Here, he sheds his field clothes in this 2011 suit-and-tie moment with Moi University and other colleagues involved in the projects he leads. Left to right: P Kisinyo, J Agalo, V Mugalavai, B Were, D Ligeyo, S Gudu, R Okalebo and A Onkware.

Acid soils cover almost 13 per cent of arable land in Kenya, and most of the maize-growing areas in Kenya. In most of these areas, maize yields are reduced by almost 60 per cent. Aluminium toxicity is partly responsible for the low and declining yields.

“We found that most local maize varieties and landraces grown in acid soils are sensitive to aluminium toxicity. The aluminium reduces root growth and as such the plant cannot efficiently tap into native soil phosphorus, or even added phosphorus fertiliser. However, there are some varieties of maize that are suited to the conditions even if you don’t use lime to improve the soil’s pH. So far we have produced 10 inbred lines that are outstanding for phosphorus efficiency, and two that were outstanding for aluminium toxicity. We are now testing unique varieties developed for acid soils of Kenya.”

Sam (left)   a group of farmers and alking to farmers and researchers at Sega, Western Kenya, in June 2009

Sam (left) addressing a mixed group of farmers and researchers at Sega, Western Kenya, in June 2009.

In a related project, Sam is working with the same partners to understand the molecular and genetic basis for aluminium tolerance.

“Knowing which genes are responsible for aluminium tolerance will allow us to more precisely select for aluminium tolerance in our breeding programmes, reducing the time it takes for us to breed varieties that will have improved yields in acidic soils without the use of costly inputs such as lime or fertiliser.”

 … my greatest achievements thus far have been those which have benefited farmers and my students.”

 Summing up success
For Sam, the greatest two successes in his career have not been personal.

“If I’m honest, I have to say my greatest achievements thus far have been those which have benefited farmers and my students. Having funding to support PhD students and provide them with the resources they need to complete their research is very fulfilling and will go a long way to enhance the long-term success of our goal: to provide Kenyan farmers with cereal varieties that will improve their yields and make their livelihoods more secure and sustainable.”

With a dozen aluminium-tolerant and phosphorus-efficient breeding lines under their belt already, and two lines submitted for National Variety Trials (a pre-requisite step to registration and release to farmers), Sam and his team seem well on their way towards their goal, and we wish them well in their quest and labour.

Links:

 

Jul 242014
 

Read how this cocktail blends in a comparative genomics crucible, where both family genes and crop genes come into play in Brazil. Nothing whatsoever to do with the World Cup. It’s all about a passionate love affair with plant science – specifically a quest for aluminium-resilient maize – spanning a decade-and-a-half, and still counting…

Claudia

Claudia Guimarães

 

“I love the whole process of science; from identifying a problem, developing a method, conducting the experiments, analysing the data and evaluating the findings.” – Claudia Guimarães (pictured), Researcher at EMBRAPA Milho e Sorgo, Sete Lagoas, Brazil

I always enjoyed looking after the cattle and horses as well as planting and harvesting different crops.”

Forged on family farm, federal institute and foreign land
Claudia Guimarães is a plant molecular geneticist, with a pronounced passion for science. At the Federal University of Viçosa, Claudia studied agronomy because it provided a wide range of possibilities career-wise. She also believes her family’s farming background too had a part to play in her study and career choice. “My father has a farm in a small village 200 km north of Sete Lagoas. My whole family used to go there during our school holidays. I always enjoyed looking after the cattle and horses as well as planting and harvesting different crops.”

During her bachelor’s degrees, Claudia was increasingly drawn to plant genetics. She decided to pursue this field further and completed a Master’s degree in Genetics and Breeding, focusing on maize. She then completed a PhD in Comparative Genomics where she split her time between California and Brazil. “For my PhD, I got a scholarship from the Brazilian Council for Scientific and Technological Development which included international training in San Diego, California. During my PhD, I focused on comparative genomics for sugarcane, maize and sorghum, which involved genetic mapping and markers,” Claudia reveals.

Returning to Brazil after two years in California, Claudia joined the Brazilian Agricultural Research Corporation, commonly referred to as EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária), where she has worked for the last 15 years, since 1999.

bCIMMYTmaizeField_w

Preparing to put her shoulder to the wheel, literally? Claudia in a maize field at the International Maize and Wheat Improvement Center (CIMMYT), Tlaltizapan, Mexico, in January 2010.

dNutrientSolutionEmbrapa_w

Maize plantlets cultivated in nutrient solution, the methodology Claudia and her team use to evaluate aluminium tolerance.

Our next challenge is to develop specific markers for a wider marker-assisted selection of aluminium tolerance in maize.”

Long-term allies in aluminium tolerance
EMBRAPA first became involved with GCP through one of its foundation programmes headed by Leon Kochian and his former PhD student Jurandir Magalhães. “Jura has been a really close friend for a long time,” explains Claudia. “We went to university together and have ended up working together here at EMBRAPA. I was involved in Jura’s project, which sought to clone a sorghum aluminium-tolerance gene.”

This gene is called SbMATE. Claudia continues, “EMBRAPA had a long-term aluminium-tolerance programme on maize and sorghum, within which there was a QTL mapping project for aluminium tolerance in maize, in which we started to look for a similar gene as the sorghum team.”

[Editor’s note: QTL stands for quantitative trait locus or loci – gene loci where allelic variation is associated with variation in a quantitative trait. An allele is a variant (different version) of a gene, that leads to variation in a trait, eg different colour for hair and eyes in human beings.]

Working with Leon Kochian at Cornell University, USA, Claudia and her team were able to find an important aluminium-tolerance gene homologue (loosely meaning a relative or counterpart) to the sorghum SbMATE, which they named ZmMATE. This gene is responsible for a major aluminium tolerance QTL that improves yield in acidic soil in maize breeding lines and hybrids. (see why scientists work jointly on closely related cereals)

“Identifying and then validating ZmMATE as the primary aluminium tolerance QTL in maize was a great project,” says Claudia. “Our next challenge is to develop specific markers for a wider marker-assisted selection of aluminium tolerance in maize.”

1: Rhyzobox containing two layers of Cerrado soil – a corrected top-soil and lower soils with 15 percent of aluminium saturation. We can see that near-isogenic lines (NILs) introgressed with the Al tolerance QTL (qALT6) that encompasses ZmMATE1 show deeper roots and longer secondary roots in acid soils, whereas the roots of L53 are mainly confined in the corrected top soil.  2: Maize ears, representing the improved yield stability in acid soils of a NIL per se and crossed with L3. NILs have the genetic background of L53 introgressed with qALT6, the major aluminium-tolerance QTL.

March 2014. Photo 1: Rhyzobox containing two layers of Cerrado soil – a corrected top-soil and lower soils with 15 percent aluminium saturation. We can see that near-isogenic lines (NILs) introgressed with the aluminium-tolerance QTL (qALT6) that encompasses ZmMATE1 show deeper roots and longer secondary roots in acidic soils, whereas the roots of L53 are mainly confined in the corrected top soil. Photo 2: Maize ears, representing the improved yield stability in acidic soils of a NIL per se and crossed with L3. NILs have the genetic background of L53 introgressed with qALT6, the major aluminium-tolerance QTL.

 

 …the students have really become my arms…  helping me a lot with the experiments…

Giving and receiving: students step in, partners in print
Supervising students has become a larger part of Claudia’s life since becoming a member of the Genetics Graduate Programme at Universidade Federal de Minas Gerais, in 2004. Because of this, she credits the students for helping her with her research. “I don’t have as much time as I used to in the lab, so the students have really become my arms in that area, helping me a lot with the experiments,” Claudia reveals. “This isn’t to say that they don’t have to think about what they are doing. I encourage them to always be thinking about why they are doing an experiment and what the result means. At the end of the day, they need to know more about what they are doing than I do, so they can identify indiscretions and successes.”

Claudia says she is always preaching three simple instructions to her students – work hard, always continue to learn and like what you do. “The last instruction is particularly important because as a scientist you need to dedicate a lot of time to what you do, so it helps if you like it. If you don’t like it then it becomes frustrating and no fun at all. I don’t think of my work as a job, rather as a passion. I just enjoy it so much!”

Claudia’s passion is not just a matter of the heart but also of the head, expressing itself in print. Her latest publication reflects the most current results on maize aluminium tolerance, highlighting GCP support, partnerships within and beyond EMBRAPA embracing Cornell University and the Agricultural Research Services of the United States Department of Agriculture (USDA–ARS) , as well as the strong presence of students. Check it out

Links:

SLIDES

Jul 232014
 

 

DNA spiral

DNA spiral

Crop researchers including plant breeders across five continents are collaborating on several GCP projects to develop local varieties of sorghum, maize and rice, which can withstand phosphorus deficiency and aluminium toxicity – two of the most widespread constraints leading to poor crop productivity in acidic soils. These soils account for nearly half the world’s arable soils, with the problem particularly pronounced in the tropics, where few smallholder farmers can afford the costly farm inputs to mitigate the problems. Fortunately, science has a solution, working with nature and the plants’ own defences, and capitalising on cereal ‘family history’ from 65 million years ago. Read on in this riveting story related by scientists, that will carry you from USA to Africa and Asia with a critical stopover in Brazil and back again, so ….

… welcome to Brazil, where there is more going than the 2014 football World Cup! Turning from sports to matters cerebral and science, drive six hours northwest from Rio de Janeiro and you’ll arrive in Sete Lagoas, nerve centre of the EMBRAPA Maize and Sorghum Research Centre. EMBRAPA stands for Empresa Brasileira de Pesquisa Agropecuária  ‒  in  English, the Brazilian Agricultural Research Corporation.

Jura_w

Jurandir Magalhães

Jurandir Magalhães (pictured), or Jura as he prefers to be called, is a cereal molecular geneticist and principal scientist who’s been at EMBRAPA since 2002.

“EMBRAPA develops projects and research to produce, adapt and diffuse knowledge and technologies in maize and sorghum production by the efficient and rational use of natural resources,” Jura explains.

Such business is also GCP’s bread and butter. So when in 2004, Jura and his former PhD supervisor at Cornell University, Leon Kochian, submitted their first GCP project proposal to clone a major aluminium tolerance gene in sorghum they had been searching for, GCP approved the proposal.

“We were already in the process of cloning the AltSB gene,” remembers Jura, “So when this opportunity came along from GCP, we thought it would provide us with the appropriate conditions to carry this out and complete the work.”

Cloning the AltSB gene would prove to be one of the first steps in GCP’s foundation sorghum and maize projects, both of which seek to provide farmers in the developing world with crops that will not only survive but thrive in the acidic soils that make up more than half of the world’s arable soils (see map below).

More than half of world’s potentially arable soils are highly acidic.

More than half of world’s potentially arable soils are highly acidic.

… identifying the AltSB gene was a significant achievement which brought the project closer to their final objective, which is to breed aluminium-tolerant crops that will improve yields in harsh environments, in turn improving the quality of life for farmers.”

A star is born: identifying and cloning AltSB
For 30 years, Leon Kochian (pictured below) has combined lecturing and supervising duties at Cornell University and the United States Department of Agriculture, with his quest to understand the genetic and physiological mechanisms behind the ability of some cereals to withstand acidic soils. Leon is also the Product Delivery Coordinator for GCP’s Comparative Genomics Research Initiative.

Leon Kochian

Leon Kochian

Aluminium toxicity is associated with acidic soils and is the primary limitation on crop production for more than 30 percent of farmland in Southeast Asia and Latin America, and approximately 20 percent in East Asia, sub-Saharan Africa and North America. Aluminium ions damage roots and impair their growth and function. This results in reduced nutrient and water uptake, which in turn depresses yield.

“These effects can be limited by applying lime to increase the soil’s pH. However, this isn’t a viable option for farmers in developing countries,” says Leon, who was the Principal Investigator for the premier AltSB project and is currently involved in several off-shoot projects.

Working on the understanding that grasses like barley and wheat use membrane transporters to insulate themselves against subsoil aluminium, Leon and Jura searched for a similar transporter in sorghum varieties that were known to tolerate aluminium.

“In wheat, when aluminium levels are high, these membrane transporters prompt organic acid release from the tip of the root,” explains Leon. “The organic acid binds with the aluminium ion, preventing it from entering the root. We found that in certain sorghum varieties, AltSB is the gene that encodes a specialised organic acid transport protein – SbMATE*  –  which mediates the release of citric acid. From cloning the gene, we found it is highly expressed in aluminium-tolerant sorghum varieties. We also found that the expression increases the longer the plant is exposed to high levels of aluminium.”

[*Editor’s note: different from the gene with the same name, hence not in italics]

Leon says identifying the AltSB gene and then cloning it was a significant achievement and it brought the project closer to their final objective, which he says is “to breed aluminium-tolerant crops that will improve yields in harsh environments, in turn improving the quality of life for farmers.”

This research was long and intensive, but it set a firm foundation for the work in GCP Phase II, which seeks to use what we have learnt in the laboratory and apply it to breed crops that are tolerant to biotic or abiotic stress such as aluminium toxicity and phosphorus deficiency.”

Comparative genomics: finding similar genes in different crops
Wheat, maize, sorghum and rice are all part of the Poaceae (grasses) family, evolving from a common grass ancestor 65 million years ago. Over this time they have become very different from each other. However, at a genetic level they still have a lot in common.

Over the last 20 years, genetic researchers all over the world have been mapping these cereals’ genomes. These maps are now being used by geneticists and plant breeders to identify similarities and differences between the genes of different cereal species. This process is termed comparative genomics and is a fundamental research theme for GCP research as part of its second phase.

rajeev-varshney_1332450938

Rajeev Varshney

“The objective during GCP Phase I was to study the genomes of important crops and identify genes conferring resistance or tolerance to biotic or abiotic stresses,” says Rajeev Varshney (pictured), Director, Center of Excellence in Genomics and Principal Scientist in applied genomics at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). “This research was long and intensive, but it set a firm foundation for the work in GCP Phase II, which seeks to use what we have learnt in the laboratory and apply it to breed crops that are tolerant to biotic or abiotic stress such as aluminium toxicity and phosphorus deficiency.”

Until August 2013, Rajeev had oversight on GCP’s comparative genomics research projects on aluminium tolerance and phosphorus deficiency is sorghum, maize and rice, as part of his GCP role as Leader of the Comparative and Applied Genomics Theme.

“Phosphorus deficiency and aluminium toxicity are soil problems that typically coincide in acidic soils,” says Rajeev. “They are two of the most critical constraints responsible for low crop productivity on acid soils worldwide. These projects are combining the aluminium tolerance work done by EMBRAPA and Cornell University with the phosphorus efficiency work done by IRRI [International Rice Research Institute] and JIRCAS [Japan International Research Centre for Agricultural Sciences] to first identify and validate similar aluminium-tolerance and phosphorus-efficient genes in sorghum, maize and rice, and then, secondly, breed crops with these combined improvements.”

These collaborations are really exciting! They make it possible to answer questions that we could not answer ourselves, or that we would have overlooked, were it not for the partnerships.”

When AltSB met Pup1
Having spent more than a decade identifying and cloning AltSB, Jura and Leon have recently turned their attention to identifying and cloning the genes responsible for phosphorus efficiency in sorghum. Luckily, they weren’t starting from scratch this time, as another GCP project on the other side of the world was well on the way to identifying a phosphorus-efficiency gene in rice.

Led by Matthias Wissuwa at JIRCAS and Sigrid Heuer at IRRI, the Asian base GCP project had identified a gene locus, which encoded a particular protein kinase that allowed varieties with this gene to grow successfully in low-phosphorous conditions. They termed the region of the rice genome where this gene resides as ‘phosphorus uptake 1’ or Pup1 as it is commonly referred to in short.

“In phosphorus-poor soils, this protein kinase instructs the plant to grow larger, longer roots, which are able to forage through more soil to absorb and store more nutrients,” explains Sigrid. “By having a larger root surface area, plants can explore a greater area in the soil and find more phosphorus than usual. It’s like having a larger sponge to absorb more water!”

Read more about the mechanics of Pup-1 and the evolution of the project.

Jura and Leon are working on the same theory as IRRI and JIRCAS, that larger and longer roots enhance phosphorus efficiency. They are identifying sorghum with these traits, using comparative genomics to identify a locus similar to Pup1 in these low-phosphorus-tolerant varieties, and then verify whether the genes at this locus are responsible for the trait.

“So far, the results are promising and we have evidence that Pup1 homologues may underlie a major QTL for phosphorous uptake in sorghum,” says Jura who is leading the project to identify and validate Pup1 and other phosphorus-efficiency QTLs in sorghum.  QTL stands for ‘quantitative trait locus’ which refers to stretches of DNA containing ‒ or linked to ‒ the genes responsible for a quantitative trait  “What we have to do now is to see if this carries over in the field, leading to enhanced phosphorus uptake and grain yield in low-phosphorus soils,” he adds.

Jura and Leon are also returning the favour to IRRI and JIRCAS and are collaborating with both institutes to identify and clone in rice similar genes to the AltSB gene in sorghum.

“These collaborations are really exciting! They make it possible to answer questions that we could not answer ourselves, or that we would have overlooked, were it not for the partnerships,” says Sigrid.

To make a difference in rural development, to truly contribute to improved food security through crop improvement and incomes for poor farmers, we knew that capacity development had to be a continuing cornerstone in our strategy.”

Building capacity in Africa
In GCP Phase II which is more application oriented, projects must have objectives that deliver products and build capacity in developing-world breeding programmes.

Jean-Marcel Ribaut

Jean-Marcel Ribaut

“The thought behind the latter requirement is that GCP is not going to be around after 2014 so we need to facilitate these country breeding programmes to take ownership of the science and products so they can continue it locally,” says Jean-Marcel Ribaut, GCP Director (pictured). “To make a difference in rural development, to truly contribute to improved food security through crop improvement and incomes for poor farmers, we knew that capacity development had to be a continuing cornerstone in our strategy.”

Back to Brazil: Jura says this requirement is not uncommon for EMBRAPA projects as the Brazilian government seeks to become a world leader in science and agriculture. “Before GCP started, we had been working with African partners for five to six years through the McKnight Project. It was great when GCP came along as we were able to continue these collaborations.”

Samuel Gudu

Samuel Gudu

One collaboration Jura was most pleased to continue was with his colleague and friend, Sam Gudu (pictured), from Moi University, Kenya. Sam has been collaborating with Jura and Leon on several GCP projects and is the only African Principal Investigator in the Comparative Genomics Research Initiative.

“Our relationship with EMBRAPA and Cornell University has been very fruitful,” says Sam. “We wouldn’t have been able to do as much as we have done without these collaborations or without our other international collaborators at IRRI, JIRCAS, ICRISAT or Niger’s National Institute of Agricultural Research [INRAN].”

Sam is currently working on several projects with these partners looking at validating the genes underlying major aluminium-tolerance and phosphorus-efficiency traits in local sorghum and maize varieties in Kenya, as well as establishing a molecular breeding programme.

“The molecular-marker work has been very interesting. We have selected the best phosphorus-efficient lines from Brazil and Kenya, and have crossed them with local varieties to produce several really good hybrids which we are currently field-testing in Kenya,” explains Sam. “Learning and using these new breeding techniques will enable us to select for and breed new varieties faster.”

Sam is also grateful to both EMBRAPA and Cornell University for hosting several PhD students as part of the project. “This has been a significant outcome as these PhD students are returning to Kenya with a far greater understanding of molecular breeding which they are sharing with us to advance our national breeding programme.”

We’ve used the knowledge that Jura’s and Leon’s AltSB projects have produced to discover and validate similar genes in maize…We identified Kenyan lines carrying the superior allele of ZmMATE …This work will also improve our understanding of what other mechanisms may be working in the Brazilian lines too.” 

‘Everyone’ benefits! Applying the AltSB gene to maize
Claudia Guimarães (pictured) is a maize geneticist at EMBRAPA. But unlike Jura, her interest lies in maize.

Claudia

Claudia Guimarães

Working on the same comparative genomics principle used to identify Pup1 in sorghum, Claudia has been leading a GCP project replicating the sorghum aluminium tolerance work in maize.

“We’ve used the knowledge that Jura’s and Leon’s AltSBprojects have produced to discover and validate similar genes in maize,” explains Claudia. “From our mapping work we identified ZmMATE as the gene underlying a major aluminium tolerance QTL in maize. It has a similar sequence as the gene found in sorghum and it encodes a similar protein membrane transporter that is responsible for citrate extradition.”

A maize field at EMBRAPA. Maize on the left is aluminum-tolerant while the maize on the right is not.

A maize field at EMBRAPA. Maize on the left is aluminium-tolerant while the maize on the right is not.

Using molecular markers, Claudia and her team of researchers from EMBRAPA, Cornell University and Moi University have developed near-isogenic lines from Brazilian and Kenyan maize varieties that show aluminium tolerance, with ZmMATE present. From preliminary field tests, the Brazilian lines have had improved yields in acidic soils.

“We identified a few Kenyan lines carrying the superior allele of ZmMATE that can be used as donors to develop maize varieties with improved aluminium tolerance,” says Claudia.  “This work will also improve our understanding of what other mechanisms may be working in the Brazilian lines too.”

What has pleased Jura and other Principal Investigators the most is the leadership that African partners have taken in GCP projects.

Cherry on the cereal cake
With GCP coming to an end in December 2014, Jura is hopeful that his and other offshoot projects dealing with aluminium tolerance and phosphorus efficiency will deliver on what they set out to do.

“For me, the cherry on the cake for the aluminium-tolerance projects would be if we show that AltSB improves tolerance in acidic soils in Africa. If everything goes well, I think this will be possible as we have already developed molecular markers for AltSB.”

What has pleased Jura and other Principal Investigators the most is the leadership that African partners have taken in GCP projects.

“This has been a credit to them and all those involved to help build their capacity and encourage them to take the lead. I feel this will help sustain the projects into the future and one day help these developing countries produce varieties of sorghum and maize for their farmers that are able to yield just as well in acidic soils as they do in non-acidic soils.”

In the foreground, left to right, Leon, Jura and Sam in a maize field in Kenya.

In the foreground, left to right, Leon, Jura and Sam in a maize field at the Kenya Agricultural Research Institute (KARI), Kitale, in May 2010. They are examining crosses between Kenyan and Brazilian maize germplasm.

Links

 

 

Mar 072014
 
Women in science

“Women can do advanced agricultural science, and do it well!” Elizabeth Parkes, cassava researcher, Ghana

Being a woman scientist in today’s world (or at any time in history!) is no mean feat, science traditionally having been the domain of men. We are therefore drawn to this sub-theme: Inspiring change, in addition to the global theme Equality for women is progress for all, To mark International Women’s Day tomorrow, UNESCO has developed an interactive tool which collates facts and figures from across the world on women in science. The cold scientific truth displayed in the attractive petri dish design shows that only 30 percent of researchers worldwide are women.

At GCP, we have been fortunate enough to have a cross-generational spectrum of, not only women scientists, but that even rarer species, women science leaders – who head a project or suite of projects and activities, and who actively nurture and mentor future science leaders – to ultimately contribute to the fulfilment of our mission: Using genetic diversity and advanced plant science to improve crops for greater food security in the developing world. The United Nations has designated 2014 as the Year of Family Farming. GCP’s women researchers have contributed to improving the lives of their farming counterparts the world over, especially in the developing world where on average, 43 percent of the agricultural labour force are women, rising to 60 percent and 70 percent in some regions. (FAO)

Please mind the gap…to leap to that all-important initiation into science

UNESCO's Women in Science interactive tool

UNESCO’s Women in Science interactive tool

The UNESCO tool mentioned above and embedded to the left allows users to “explore and visualise gender gaps in the pipeline leading to a research career, from the decision to get a doctorate degree to the fields of science that women pursue and the sectors in which they work” with this affirmation: “Perhaps most importantly, the data tool shows just how important it is to encourage girls to pursue mathematics and science at a young age.”

In our International Women’s Day multimedia expo, we profile the life and work of a selection of our smart scientific sisters through words, pictures and sound, to explain just how they overcame obstacles, from taking that first hurdle to study science at an early age, to mobility up the research rungs to reach the very top of their game, all the while balancing work, life and family.

A blogpost fest to introduce our first special guests

Masdiar Bustamam

Masdiar Bustamam

We begin our show with a blogpost fest, and first up is GCP’s original Mother Nature, renowned scientist and constant gardener of the molecular breeding plot, Masdiar Bustamam. After a virtual world-tour of research institutes early on in her career, Masdiar took the knowledge of molecular breeding back home, to the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD), where she personally took up the challenge to work with the fledgling world of biotechnology, set up a lab, and helped establish molecular breeding in her country. In an amazing 37-years-odd research career, Masdiar tended not only tender rice shoots, but also budding blossoms in the form of her many students, whom she nurtured and mentored throughout their studies, and who have now seamlessly inherited her mantle to carry on the mission with the same ever-bright spirit. More

Rebecca Nelson

Rebecca Nelson

We now skip continents and oceans  to meet the feisty, continent- and crop-hopping scientist, Rebecca Nelson (Cornell University, USA). “I wanted to get out into the world and try and have a practical impact instead of doing research for the sake of research,” Rebecca says – and that she did, first leaving her native USA to work in the International Rice Research Institute (IRRI) in the Philippines. There she teamed up with friend and colleague, Masdiar Bustamam, to establish Masdiar’s laboratory at ICABIOGRAD, Indonesia. The American continent then called her back, where she moved countries and institutes, and switched from rice to maize research, marking the launch of her GCP experience – which simultaneously introduced her to her a whole new network of international crop researchers. This rich research tapestry was  woven together by a poignant pain deep in her heart, as a mother herself, of “so many mothers not being able to feed their families.” Rebecca wanted to combat this problem,  and crop science is her weapon. More

Zeba Seraj

Zeba Seraj

Next, we meet another true mother of molecular plant breeding, Zeba Seraj (University of Dhaka, Bangladesh). Zeba, whose mind is perpetually on call in the pursuit of science, has been around the world, and from plants to animals and back again in the course of her multifaceted science career. During her PhD and postdoc experience in the UK, still with fauna, she cultivated her expertise in molecular biology and recombinant DNA technology, but a lack of opportunities in that field back in Bangladesh saw her enter the world of crop science, where she has remained ever since. Back at her alma mater, the University of Dhaka, she founded a molecular biology lab, and has nurtured and inspired generations of young biochemists. Her GCP project, using molecular markers to develop salt-tolerant rice, was a real eye-opener for her, and allowed her to truly ‘see’ how applied science and such a practical project would have a direct impact on her country’s food security, now and in the future. More

Sigrid Heuer

Sigrid Heuer

Our next scientist is also truly motivated by putting theory into practice through the application of upstream research all the way down the river, and directly into farmers’ fields. Sigrid Heuer (now with the Australian Centre for Plant Functional Genomics), a German national, has pursued her scientific ventures in Europe, Africa, Asia, and now Oceania, with many challenges along the way. Enter the Generation Challenge Programme, and the chance for Sigrid (then at IRRI)  to lead a major project, the Pup1 rice phosphorus uptake project, which taught Sigrid the A–Z of project management, and gave her ample scope for professional growth. Her team made a major scientific breakthrough, which was not only documented in international journals, but was also widely covered by global media.  From this pinnacle, Sigrid  passed on the baton to other scientists and moved on to new conquests. More

Arllet Portugal

Arllet Portugal

Now, all this research we’ve been celebrating generates a massive amount of data, as you can well imagine. What exactly can our scientists do with all that data, and how can they organise them? GCP’s Arllet Portugal, hailing from The Philippines, gives us the lowdown on smart and SHARP data management whilst also giving us some insights into how she started out on the long and winding road to leading data management for GCP’s Integrated Breeding Platform. In particular, Arllet describes the considerable challenge of changing researchers’ mindsets regarding the importance of effective data management in the context of their research, and enthuses over the excitement with which developing-country researchers welcome the GCP-funded electronic tablets they now use to collect and record data directly in the field. More

Armin Bhuiya

Armin Bhuiya

If there were a muse for young women scientists, it might very well be the subject of our next blogpost profile, Armin Bhuiya (Bangladesh Rice Research Institute). After completing her master’s degree on hybrid rice in her native Bangladesh, Armin was already thinking like a true change-catalyst scientist, trying to discover what line of research would be the most useful for her country and the world. After much deliberation, she embarked on a PhD focusing on developing salt- and submergence-tolerant rice. This wise choice would take her to study under the expert eye of Abdelbagi Ismail at IRRI, in The Philippines, with the helping hand of a GCP–DuPont postgraduate fellowship. There, she learnt much in the way of precise and meticulous research, while also taking advantage to self-train in modern molecular plant breeding methods. Our bright resourceful student has now advanced to the patient erudite teacher – as she takes home her knowledge of high-tech research methods to share with her colleagues and students in Bangladesh. More

Elizabeth Parkes

Elizabeth Parkes

Hello Africa! Switching continents and media, we now we move from the written medium to tune in to the melodic tones of Elizabeth Parkes (Crops Research Institute [CRI] of Ghana’s Council for Scientific and Industrial Research [CSIR], currently on leave of absence at the International Institute of Tropical Agriculture [ IITA]). We’re now at profile number seven in GCP’s gallery of women in science. Elizabeth, who is GCP’s Lead Cassava Researcher in Ghana, narrates an all-inclusive engaging story on the importance to agriculture of women scientists, women farmers, and cassava the wonder crop – all captured on memorable sound waves in this podcast.

If the gravity of words inscribed holds more weight, you can also read in depth about Elizabeth in a blogpost on this outstanding sister of science. Witness the full radiance of Elizabeth’s work in the life-changing world in which she operates; as she characteristically says, “I’ve pushed to make people recognise that women can do advanced agricultural science, and do it well.” And she is no exception to her own rule, as she grew professionally, apparently keeping pace with some of the giant cassava she has helped to develop through the years. But it is her role as nurturer, mentor and teacher that really raises her head-and-shoulders above the rest, from setting up a pioneering biotech lab at CRI–CSIR to conscientiously mentoring her many students and charges in work as in life, because, for Elizabeth, capacity building and cassava are inextricably coupled! More

Marie-Noëlle Ndjiondjop

Marie-Noëlle Ndjiondjop

In the wake of some recent high-profile screen awards, we close our multimedia expo with impressions of our science sisterhood through the medium of the seventh art: the magic visual world of the movies!  A good fit for a Friday!

The following tasteful and tasty (you’ll see why!) blogpost takes our film fans right onto the red carpet to rub shoulders with our scientific screen stars!

The first screen star you’ll meet is Marie-Noëlle Ndjiondjop (Africa Rice Center), Principal Investigator (PI) of GCP’s Rice Research Initiative, who opens the video-viewing session with seven succulent slices of rice research delight. Her movies are set in the rice-growing lands of Africa, where this savoury cereal is fast becoming a staple, and tackles the tricky topics of rice-growing constraints, capacity building, molecular breeding methods, and the colossal capacity of community in collaborative research projects.

Jonaliza Lanceras-Siangliw

Jonaliza Lanceras-Siangliw

The following feature introduces the talented GCP PI Jonaliza Lanceras-Siangliw (BIOTEC, Thailand), whose community-minded project, set in the Mekong region, focused on strengthening rice breeding programmes by using a genotyping building strategy and improving phenotyping capacity for biotic and abiotic stresses. Though this title is something of a spoiler alert, we hope you tune in to this comprehensive reel to see the reality of molecular rice breeding in the Mekong. More

Soraya Leal-Bertioli

Soraya Leal-Bertioli

Last, and by no means least, is a captivating collage of clips featuring GCP researcher, Soraya Leal-Bertioli (EMBRAPA, Brazil) waxing lyrical about that hard genetic nut to crack: the groundnut, and how GCP’s Tropical Legumes I (TLI) project was crucial in getting the crop breeding community to share genetic resources, molecular markers, knowledge, and tools on a cross-continental initiative breaking boundaries in multiple ways. Video collage

Links

Mar 062014
 
Restless Rebecca
Rebecca Nelson

Rebecca Nelson

I’m a mother and a wife. The idea of so many mothers not being able to feed their families, and so many children not getting the nutrients they need to reach their potential, has always pained me.” – Rebecca Nelson (pictured), Professor, Plant Pathology and Plant-Microbe Biology, Cornell University, USA

In this dispatch from the ‘frontline’, fired up and leading the charge against crop disease is ‘frontier’ scientist, restless Rebecca Nelson. Where does Rebecca’s restlessness and consequent fire come from? She says it has always bothered her that a billion people go hungry every single day

Wrestling Rebecca: feeding families one disease-resistant crop at a time
Wanting to remedy this billion-strong calamity, Rebecca has spent the last quarter century working with national and international institutes in Asia, Africa and the Americas. During this time, she has focused on understanding the ways in which plants defend themselves against diseases.

“An amazing percentage of crops are lost to pests and diseases in the developing world each year, which in turn leads to lack of food and impoverishes local economies,” she says. “These farmers can’t afford the herbicides and pesticides that developed-world farmers use to protect their crops, and those are not great solutions to the problems anyway. So it’s important to find ways to help these crops defend themselves.”

This means identifying crops with disease-resistant traits and using them to breed disease-resistant crops with long-lasting protection from a multitude of diseases.

We were really grateful that the GCP funded us so we could continue to understand and build resistance to rice blast and bacterial blight, and to connect the work on rice and maize”

Travels and travails to make a difference
After completing a PhD in zoology at the University of Washington, USA, in 1988, Rebecca spent eight years in The Philippines at the International Rice Research Institute (IRRI) and then five years at the International Potato Center in Peru. “I wanted to get out into the world and try and have a practical impact instead of doing research for the sake of research,” she says.

During her time in The Philippines, Rebecca worked on several rice disease-resistance projects. She was to continue many of these projects nine years later, as part of her GCP project – Targeted discovery of superior disease QTL alleles in the maize and rice. “We were really grateful that GCP funded us so we could continue to understand and build resistance to rice blast and bacterial blight, and to connect the work on rice and maize,” she says.

Rebecca was also delighted to involve her IRRI mentor, Hei Leung (then a GCP Subprogramme Leader for genomics), and friend, Masdiar Bustamam, of the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD). During her time at IRRI, Rebecca and her IRRI team had worked with Masdiar to establish her laboratory. “It was really pleasing to have Masdiar participate in the project and to see how far she and her lab had come since our earlier collaboration. The difference is that they now made a markedly significant contribution to the project in advancing the understanding of inheritance of rice blast and sheath blast resistance, and they developed germplasm that has really good resistance to these diseases.”

I’ve always been grateful to GCP for supporting me at that transitional stage in my career…. [I] was a relative newbie when it came to working with maize. However, I was lucky to have some really great collaborators…James helped me a lot at the start of the project and throughout. Even though our project is finished, we have teamed up on a number of other projects to continue what we started.

Tentative transition from rice to maize; shunting between class and grant-giving
Despite winning a merit-based competitive grant, Rebecca confesses she wasn’t sure GCP would accept her proposal, owing to her  then limited experience in maize research. “I’ve always been grateful to GCP for supporting me at that transitional stage in my career. I’d just returned from Peru and taken up a position at Cornell and was at that time a relative newbie when it came to working with maize. However, I was lucky to have some really great collaborators.”

Rebecca (left) on a field visit to Kenya in September 2006. On the left is John Okalembo of Moi University, with James Gethi behind the camera.

Rebecca (left) on a field visit to Kenya in September 2006. On the left is John Okalembo of Moi University, with James Gethi behind the camera.

One such collaborator, who Rebecca is thankful to have had on her project, was James Gethi, of the Kenya Agricultural Research Institute (KARI), and a leading researcher in Kenya. At the time, James was a recent Cornell graduate who was returning home to help bolster his nation’s crop-research capabilities. “James helped me a lot at the start of the project and throughout. Even though our project is finished, we have teamed up on a number of other projects to continue what we started.”

At Cornell, Rebecca oversees her own laboratory and still finds time to teach a class on international agriculture and rural development. She also serves as scientific director for the McKnight Foundation’s Collaborative Crop Research Program (CCRP), a grants programme funding agricultural research in developing countries.

Growing up with science…and a moderate Rebecca rebellion!
As our conversation draws to a close, Rebecca reveals she is currently skyping from the bedroom she grew up in, in Bethesda, Maryland, half an hour from downtown Washington DC, USA. “I’m down visiting my parents before I jet off to West Africa tomorrow,” she says where she is carrying out her CCRP commitments.

Rebecca credits her parents for encouraging her scientific inquisitiveness and determination to aid those in need. “Both of my parents are physicians, as is my younger brother. I thought I was a rebel with my interest in agriculture, but my younger sister is a farmer and agroecologist, so I guess we’re both straddling agriculture and science,” Rebecca says with a laugh.

“In all honesty though, my parents encouraged all of us to follow what we were fascinated by and passionate about, and for me and my sister, that was agriculture. We reared goats in our suburban backyard, dissected animal road-kills on the kitchen table and even turned the  family swimming pool into a fish-pond because we wanted to learn about fish farming!” Rebecca recollects with great fondness.

I still get a kick out of trying to understand the biology of disease resistance and to try to help develop disease-resistant crops, which will help alleviate the fallout from crop failure and subsequent food shortages in developing nations”

Wife and mum, manager and mentor, and what gives Rebecca a kick
Rebecca says she and her journalist husband, Jonathan Miller, try to encourage their two sons, William and Benjamin, in the same manner. She also says she uses a similar theory as a mentor. “I love interacting with the young talent and I like to think I’ve grown as a person the more that I’ve evolved as a manager and mentor.”

Although she spends most of her time at her desk or on a plane or in a meeting room, Rebecca is always keen to jump back into the field and familiarise herself with the science she is overseeing. “I still get a kick out of trying to understand the biology of disease resistance and to try to help develop disease-resistant crops, which will help alleviate the fallout from crop failure and subsequent food shortages in developing nations.”

Links

 

Dec 122013
 

Down memory lane with Masdiar Bustamam, from generation to generation

Masdiar Bustamam

In some circles, Masdiar Bustamam (pictured right) is a mother figure of molecular breeding in Indonesia. In a marathon career spanning 37 years as a horticulturist and agricultural researcher, she helped develop and nurture the practice at the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD).  Staying with the marathon metaphor, this quote from a celebrated middle- and long-distance Kenyan champion runner, Kipchoge Keino, is very apt: “This life we have is short, so let us leave a mark for people to remember.”

Back to Masdiar: having retired in early 2012, we were recently lucky enough to gain a rare insight into Masdiar’s life, and to witness the mark she has already made, by simply tagging along when she checked in on two of her ICABIOGRAD charges and mentees whose PhD studies were supported by GCP – Wening Enggarin and Joko Prasetiyono. At ICABIOGRAD, Wening and Joko have both taken the torch from Masdiar for GCP projects, as well as for other projects.

She was the best teacher for me … instilled in me a spirit to never lose hope in the research I’m doing – Joko

She was a great role model… Her persistence and positive can-do nature was exactly what I needed as a young researcher … to not just offer me assistance in my work but also in life and religion. For me, she has become a second mother  – Wening

… That project really helped us out a lot and we are grateful to GCP  for recognising the potential in us and supporting it – Masdiar

Here’s more of what Masdiar (and her charges) had to say as we tagged along, and chatted her up…

Tell us about your early life
I grew up and lived in West Java for most of my life. My father was a farmer and my mother a housewife. I was their first of five children.

I went to Andalas University in Padang and graduated with a Bachelor in Biology in 1974. After graduating, I worked as a staff researcher at a local horticulture research institute focusing on pests and diseases, particularly fungi in tomato soils. I was lucky early in my career to have opportunities to visit research institutes in The Netherlands, Japan and USA, all of which enhanced my skills. While in USA, I completed my Masters in rice blast disease – a fungus-related disease, which severely hampers rice yields in Indonesia, and all around the world.

After my time in USA, I accepted a position at the International Rice Research Institute (IRRI) in The Philippines. This was the start of the second phase of my career, in which I began to focus on molecular biology. When I returned from The Philippines, I realised that we needed to improve our capacity to use molecular markers for breeding, which led me to take a job at ICABIOGRAD.

Setting up a lab – GCP lends a hand
When I first started at ICABIOGRAD we had empty benches. It took a lot of time and money to fill them with the equipment we have today. Rebecca Nelson from Cornell University in USA provided us with a lot of support in getting us started. We were involved in one of her GCP projects for two years working on blast resistance in rice.

We were also working on another GCP project led by Abdelbagi Ismail studying phosphorus-deficiency tolerance in rice too, dubbed the Pup1 project. Joko was actually my PhD student for that project and did a lot of the work.

Selecting Pup1 lines in farmers' fields in Sukabumi, West Java, in 2010. L–R: Masdiar Bustamam, Tintin Suhartini and Ida Hanarida Sumantri.

Selecting Pup1 lines in farmers’ fields in Sukabumi, West Java, in 2010. L–R: Masdiar Bustamam, Tintin Suhartini and Ida Hanarida Sumantri.

Both Rebecca and Adbdelbagi helped me draft a proposal to GCP in 2007 for a project to enhance our capacity in phenotyping and molecular analysis to develop elite rice lines suitable for Indonesia’s upland regions. We had the understanding to do the science, but needed to enhance our facilities to carry it out.

That project really helped us out a lot and we are grateful to GCP  for recognising the potential in us and supporting it.”

GCP recognised the need for such a project as many of Indonesia’s brightest researchers were leaving the country because of the lack of suitable facilities, and so funded the two-year ICABIOGRAD-defined capacity-building project. The grant covered – among other areas – intensive residential staff training at IRRI; PhD student support, which allowed Wening to complete her PhD; infrastructure such as a moist room, temperature-controlled centrifuge apparatus, computers and appropriate specialised software; and blast and inoculation rooms.

Writer’s note: The tailor-made grantee-driven capacity-building project above was a cornerstone of  GCP Phase I’s capacity-building strategy, and was dubbed ‘Capacity building à la carte’. With this historical note, we take an interlude here, to tour the facilities Masdiar has mentioned above.

Our first stop is the Rice Blast Nursery…

....Front view...

….Front view…

...side view...

…side view…

 

 

 

 

 

 

 

 

... and a close-up on the sign in the side view.

… and a close-up on the sign in the side view.

 

Next, we visit the Inoculation and Moist Rooms…

 

Inoculation and Moist Rooms

Inoculation and Moist Rooms…

 

Close-up

…and a close-up on the sign at the front.

 

 

 

 

 

 

 

After our tour of the facilities, Masdiar resumes her story: “That project really helped us out a lot and we are grateful to GCP  for recognising the potential in us and supporting it so that researchers like Wening bloom and blossom, now and into the future,” says Masdiar glowingly of one of her mentees and successors.

I’m proud of how they have matured and I’m really looking forward to when they and their teams produce new rice varieties, from the facilities I helped establish, that will help the farmers…I sacrificed what I enjoyed doing for a challenge whose benefits I recognised for my country.”

Mission-driven researcher, nurturer and mentor, all rolled into one
For Masdiar, it wasn’t work, but rather a passion and a hobby. “Throughout my career, I always enjoyed research, especially in plant pathogens,” she remembers. “Working with biotechnology was difficult because I didn’t have a background in the area. I sacrificed what I enjoyed doing for a challenge whose benefits I recognised for my country.”

Photo: ICABIOGRAD

From generation to generation: Masdiar (2L) drops in on her charges and torch-bearers at ICABIOGRAD’s Molecular Biotechnology Lab. L–R: Wening Enggarini, Masdiar Bustamam, Tasliah Zulkarnaeni, Ahmad Dadang and Reflinur Basyirin.

In the later half of her career, Masdiar recollects how she enjoyed training and mentoring younger researchers like Joko and Wening. “I’m proud of how they have matured and I’m really looking forward to when they and their teams produce new rice varieties, from the facilities I helped establish, that will help the farmers.”

Both Joko and Wening attest that Masdiar’s support and supervision were vital for their professional development and consequent career advancement. “She was the best teacher for me. She taught me how to manage a project, how to forge international collaborations, and how to write a good publication,” remembers Joko. “She also instilled in me a spirit to never lose hope in the research I’m doing.”

“She was a great role model for me!” exclaims Wening proudly. “Her persistence and positive can-do nature was exactly what I needed as a young researcher who was just starting a career. Even more so was her ability to take time out of her busy day to not just offer me assistance in my work but also in life and religion. For me, she has become a second mother  in this life. I’m blessed to be so lucky!”

Clearly, Masdiar has made her mark, leaving a cross-generational living legacy in molecular breeding embodied in these young researchers.

Links

  • Masdiar’s project report, with a picture of the blast nursery under construction (p 156 in this PDF)
  • Photo-story on Facebook
  • Rebecca Nelson’s project, Targeted discovery of superior disease QTL alleles in the maize and rice genomes (p 16 in this PDF)
  • GCP’s capacity building

 

cheap ghd australia