Mar 052014
 
Two peas in a pod, hand in hand, 

Elizabeth Parkes

In the past, the assumption was always that ‘Africa can’t do this.’ Now, people see that when given a chance to get round circumstances – as GCP has done for us through the provision of resources, motivation, encouragement and training – Africa can achieve so much!…GCP has made us visible and attractive to others; we are now setting the pace and doing science in a more refined and effective manner…Building human capacity is my greatest joy….I’ve pushed to make people recognise that women can do advanced agricultural science, and do it well. To see a talented woman researcher firmly established in her career and with her kids around her is thrilling….Rural families are held together by women, so if you are able to change their lot, you can make a real mark…” –  Elizabeth Parkes, cassava researcher, Ghana

Elizabeth’s PhD is on cassava genetic diversity, combining ability, stability and farmer preference in Ghana. But for Elizabeth, it is not the academic laurels and limelight but rather, a broader vision of social justice which really drives her: “I see African communities where poverty and hunger are seemingly huge problems with no way out; I’m fortunate to be working on a crop whereby, if I put in enough effort, I can bring some solutions. My primary target group in my research is the less privileged, and women in particular have been my friends throughout. Rural families are held together by women, so if you are able to change their lot, you can make a real mark.”

 

…agricultural research was a man’s job!”

A perennial passion for cassava, and walking with giants: Elizabeth with the pick of the crop for the 2014 cassava harvest season at  IITA, Ibadan, Nigeria.

A perennial passion for cassava, and walking with giants: Elizabeth with the pick of the crop for the 2014 cassava harvest season at IITA, Ibadan, Nigeria.

Prowess and prejudice: Breaking the mould and pioneering into pastures new
On first tentatively dipping her toe into the professional waters of crop science when growing up in her native Ghana, initial reactions from her nearest and dearest suggested that carving out a name for herself in her career of choice was never going to be a walk in the park: “As an only girl among eight  boys of whom three were half-siblings, and the youngest child, my father was not very amused; he thought agricultural research was a man’s job!” she recalls. Undeterred and ever more determined to turn this commonly held canard on its head, Elizabeth went on to bag a Bachelor’s degree in Agriculture, a diploma in Education, and an MPhil degree in Crop Science. During a stint of national service between academic degrees, she approached a scientist engaged in root and tuber projects at Ghana’s Council for Scientific and Industrial Research (CSIR) Crops Research Institute (CRI), offering to carry out some research on cassava, and soon establishing the institute’s first trials in Techiman, in the Brong Ahafo Region,where she was doing her national service. Recognising all the hallmarks of a great scientist, nurturer and leader, her CRI colleagues were quick to welcome this fresh talent into the fold as an Assistant Research Officer, with the full treasure trove of root tuber crops – from cassava to sweet potato to yam and cocoyam, among others – all falling under her remit. Not a bad start for the first woman to be assigned to the project!

Quickly proving herself as a fiercely cerebral researcher with a natural knack for the plant sciences, Elizabeth was encouraged by seasoned (then) GCP scientist, Martin Fregene (their paths had crossed during Elizabeth’s master’s degree thanks to research collaboration with the International Institute of Tropical Agriculture – IITA), to embark on a PhD degree with a focus on cassava. Coinciding with an era when links between Martin’s then home institute, the International Center for Tropical Agriculture (CIAT) and GCP were beginning to really take off the ground, it was a move that proved timely, and a path which Elizabeth pursued with her characteristic vigour and aplomb, climbing the GCP research ranks from multiple travel-grant recipient to a research fellow, and, more recently, to Lead Researcher for GCP’s cassava work in Ghana. Now a well established cassava connoisseur who regularly rubs shoulders with the crème de la crème of the global crop science community, Elizabeth specialises in drought tolerance and disease resistance in the GCP-related aspects of her work, whilst also turning her hand to biofortification research for GCP sister CGIAR Challenge Programme, HarvestPlus.

… it [biotechnology] was a breakthrough which Elizabeth spearheaded…”

Up, up and away! How a helping hand has led Elizabeth & Co to new professional and research heights
Life aboard the GCP ship, Elizabeth reveals, has offered a wealth of professional opportunities, both on personal and institutional levels. GCP-funded infrastructure, such as weather stations and irrigation systems, has helped to boost yields and enhance the efficiency of CRI trials, she observes. Professional development for herself and her team, she says, has been multifold: “Through our GCP work, we were able to build a lab and kick-start marker-assisted breeding – that ignited the beginning of biotechnology activities in CRI,” Elizabeth asserts.  It was a breakthrough which Elizabeth spearheaded, and which, happily, has since become run-of-the mill practice for the institute: “Now CRI scientists are regularly using molecular tools to do their work and are making cassava crosses on their own.” The positive domino effect of this change in tide cannot be underestimated: “Our once small biotechnology laboratory has evolved into a Centre of Excellence under the West Africa Agricultural Productivity Programme. Its first-class facilities, training courses and guiding hand in finding solutions have attracted countless visiting scientists, both from Ghana and internationally – this means that the subregion is also benefitting enormously.” The GCP’s Genotyping Support Service (GSS), Elizabeth affirms, has also proved an invaluable sidekick to these developments: “Through the GSS, our team learnt how to extract DNA as a first step, and later to re-enact all the activities that were initially done for us externally – data sequencing, interpretation and analysis for example – on a smaller scale in our own lab.” The collection and crunching of data has also become a breeze: “Thanks to GCP’s support, we have become a pace-setter for electronic data gathering using tablets, field notebooks and hand-held devices,” she adds.

….GCP gives you the keys to solving your own problems, and puts structures in place so that knowledge learnt abroad can be transferred and applied at home – it’s been an amazing journey!”

Ruth Prempeh, one of Elizabeth's charges, collecting data for her GCP-funded PhD on cassava post-harvest physiological deterioration. Ruth is one of those whose work–family balance Elizabeth celebrates. Ruth has since submitted her thesis awaiting results. As you'll hear in the accompanying podcast, both of Ruth's young children have each, er, sort of 'attended' two big  GCP events!

Ruth Prempeh, one of Elizabeth’s charges, collecting data for her GCP-funded PhD on cassava post-harvest physiological deterioration. Ruth is one of those whose work–family balance Elizabeth celebrates. Ruth has since submitted her thesis awaiting results. As you’ll hear in the podcast below, both of Ruth’s young children have each, er, sort of ‘attended’ two big GCP events!

People power: capacity building and work–life balance
Elizabeth lights up most when waxing lyrical about the leaps and bounds made by her many students and charges through the years, who – in reaping some of the benefits offered by GCP, such as access to improved genetic materials; forging links with like-minded colleagues near and far, and, critically, capacity building – have gone on to become established and often internationally recognised breeders or researchers, with the impacts of their work posting visible scores in the fight against global food insecurity. On the primordial role of capacity building, she says: “GCP gives you the keys to solving your own problems, and puts structures in place so that knowledge learnt abroad can be transferred and applied at home – it’s been an amazing journey!” Of her female students who’ve surmounted the work–family pendulum challenge, she says: “I’ve pushed to make people recognise that women can do advanced agricultural science, and do it well. To see a talented woman researcher firmly established in her career and with her kids around her is thrilling.”

At IITA, Elizabeth continues to be an inspiration on work–life balance for women working on their PhDs, and more so for young women whose work is on cassava. In a male-dominated environment (global statistics report that women researchers are a meagre 30 percent), this inspiration is critical. .

No ‘I’ in team: tight-knit community a must for kick-starting real and sustainable solutions
As Elizabeth well knows, one swallow does not a summer make: as demonstrated by the GCP’s Communities of Practice (CoPs), she says, strength really does come in numbers: “The GCP Cassava CoP has brought unity amongst cassava breeders worldwide; it’s about really understanding and tackling cassava challenges together, and bringing solutions home.” Bolstering this unified spirit, Elizabeth continues, is the GCP’s Integrated Breeding Platform (IBP): “With the initial teething problems mainly behind us, IBP is now creating a global community and is an excellent way of managing limited resources, reducing duplication of efforts and allowing people to be more focused.” On helping scientists inundated with information to spot the wood from the trees, she says: “Over the years, lots of data have been generated, but you couldn’t find them! Now, thanks to IBP, you have sequencing information that you can tap into and utilise as and where you need to. It’s very laudable achievement!”

In the past, the assumption was always that ‘Africa can’t do this.’…GCP has made us visible and attractive to others; we are now setting the pace and doing science in a more refined and effective manner.” 

Clearly, keeping the company of giants is not new for Elizabeth (right). This giant cassava tuber is from a 2010 CRI trial crossing improved CIAT material with CRI landraces (traditional farmer varieties. The trial was part of Bright Boakye Peprah’s postgraduate work. Bright has since completed his GCP-funded masters on cassava breeding, and now a full time cassava breeder with CSIR–CRI. He is currently on study leave  pursuing a PhD on cassava biofortification in South Africa. On the left is Joseph Adjebeng-Danquah, a GCP-funded PhD student whose work centres on cassava drought tolerance. Our best quote from Joseph: “It is important to move away from the all too common notion that cassava is an ‘anywhere, anyhow’ crop.”

Clearly, keeping the company of giants is not new for Elizabeth (right). This giant cassava tuber is from a 2010 CRI trial crossing improved CIAT material with CRI landraces (traditional farmer varieties. The trial was part of Bright Boakye Peprah’s postgraduate work. Bright has since completed his GCP-funded master’s  degree on cassava breeding, and now a full time cassava breeder with CSIR–CRI. He is currently on study leave pursuing a PhD on cassava biofortification in South Africa. On the left is Joseph Adjebeng-Danquah, a GCP-funded PhD student whose work centres on cassava drought tolerance. Our best quote from Joseph: “It is important to move away from the all too common notion that cassava is an ‘anywhere, anyhow’ crop.”

Empowered and engaged: African cassava researchers reclaim the driving seat
The bedrock of GCP’s approach, Elizabeth suggests, is the facilitation of that magical much sought-after Holy Grail: self-empowerment. “When I first joined GCP,” she recalls, “I saw myself as somebody from a country programme being given a place at the table; my inputs were recognised and what I said would carry weight in decision-making.” It’s a switch she has seen gain traction at national and indeed regional levels: “In the past, the assumption was always that ‘Africa can’t do this.’ Now, people see that when given a chance to get round circumstances – as GCP has done for us through the provision of resources, motivation, encouragement and training – Africa can achieve so much!” Reflecting on the knock-on effect for African cassava researchers particularly, she concludes: “GCP has made us visible and attractive to others; we are now setting the pace and doing science in a more refined and effective manner.”

Paying it forward and sharing: Helping women, and thereby, communities
Armed with bundles of knowledge as she is, Elizabeth is a firm believer in paying it forward and sharing: “Building human capacity is my greatest joy,” she affirms, citing farmers, breeders, and a Ghanaian private-sector company as just a few of the fortunate beneficiaries of her expertise over recent years. And on sources of motivation, it is not the academic laurels or limelight but rather a broader vision of social justice which really drives her: “I see African communities where poverty and hunger are seemingly huge problems with no way out; I’m fortunate to be working on a crop whereby, if I put in enough effort, I can bring some solutions.” They are solutions which she hopes will be of lasting service to those closest to her heart: “My primary target group in my research is the less privileged, and women in particular have been my friends throughout. Rural families are held together by women, so if you are able to change their lot, you can make a real mark.”

We’re in a blessed and privileged era where cassava, an ancient and once orphan crop, is now receiving lots of attention… I encourage young scientists to come on board!”

Inspired, and inspiring: nurturing budding cassava converts, and seizing opportunities for impact
In terms of future horizons, Elizabeth – who after more than two decades of service at CRI is currently on leave of absence at IITA where she’s working on biofortification of cassava – hopes to thereby further advance her work on cassava biofortification, and perhaps later move into a management role, focusing on decision-making and leading agricultural research leaders with monitoring and evaluation specifically to “ensure that the right people are being equipped with skills and knowledge, and that those people are in turn teaching others.” She is also confident that any young, gifted researcher with an eye on the prize would be foolhardy to overlook what Elizabeth views as a golden opportunity for creating meaningful and lasting impacts: “We’re in a blessed and privileged era where cassava, an ancient and once orphan crop, is now receiving lots of attention. Every agricultural research lead we have in Africa is there to be seized – I encourage young scientists to come on board!” A clear and convincing clarion call to budding breeders or potential cassava converts if ever there was one…. who wants in, in this love-match where cassava and capacity building are truly two peas in a pod?

Like meets like in a fair match: Our cassava champion in a male-dominated environment, Elizabeth, meets her match in Farmer Beatrice who refused to take no for an answer, and beat Elizabeth hands down. Listen to this! 

 

Links

Feb 262014
 
Something old, something new; Plenty borrowed, and just a bit of  blue…

Why did the Integrated Breeding Platform (IBP) come to be, and what’s the latest offer from the five-year-old Platform? The answers are in this tell-all post on the bright and the bleak in IBP – beauty spots, blues, warts and all! Having heard on data management, breeding, and putting IBP tools, tips and services into use, let’s now take a couple of steps back and appraise the big picture: the IBP concept itself, candidly retold by an IBP old hand, in a captivating chronicle capturing the highs and lows, the drama and the humdrum, and befittingly capping our current season of IBP stories. Do read on…

We want to put informatics tools in the hands of breeders, be they in the public or private sector including small- and medium-scale enterprises, because we know they can make a huge difference”

Graham McLaren

Graham McLaren

Curtain up on BMS version 2, and back to basics on why IBP
January 2014 was a momentous month for our Integrated Breeding Platform, marking the release of version 2 of the Breeding Management System (BMS). After the flurry and fanfare of this special event, we caught up with Graham McLaren (pictured), GCP’s Bioinformatics and Crop Information Leader, Chair of the IBP Workbench Implementation Team and a member of the IBP Development Team. Graham has been intimately involved in taking IBP from an idea in 2008‒2009 to its initial launch in late 2009.

But what’s the background to all this, and why the need for IBP? Graham fills us in, explaining that in the 1980s and 1990s, informatics was the major contributor to successful plant breeding in large companies like Pioneer and Monsanto. After that, molecular technologies became the main contributors. “But to advance with molecular technologies, you need to have the informatics systems in place,” he says. “One of the biggest constraints to the successful deployment of molecular technologies in public plant breeding, especially in the developing world, is a lack of access to informatics tools to track samples, manage breeding logistics and data, and analyse and support breeding decisions.”

This is why IBP was set up. “We want to put informatics tools in the hands of breeders, be they in the public or private sector including small- and medium-scale enterprises, because we know they can make a huge difference.”

…breeders will not only find… information, but also the tools, services and support to put this information into use, in the context of their local crop-breeding projects…  [the information breeders] have accumulated over the years is mostly held in their heads, in institutional repositories, or in books and published papers. There are few common places for them to share these riches and tap into those of others… IBP  provides one such place.”

Breeding rice with optimised phosphorus uptake in The Philippines. See post: http://bit.ly/NgIH9C

The script: common sense, and working wonders
Plant breeders throughout the developing world have a wealth of information on adapting crops to the challenges of their particular environments. They work wonders in their experimental fields to develop crops that help local farmers deal with pests, diseases and less-than-ideal conditions such as drought, floods and poor soils. But this valuable information they have accumulated over the years is mostly held in their heads, in institutional repositories, or in books and published papers. There are few common places for them to share these riches and tap into those of others. The Integrated Breeding Platform (IBP) provides one such place, where breeders will not only find this information, but also the tools, services and support to put this information into use, in the context of their local crop-breeding projects.

Action! Setting the stage for a forward spring, and taking a leap of faith
IBP tackles the information management issues that are at the heart of many breeding processes, goals, pursuits and problems. “Informatics problems are not crop-specific” Graham says. “What GCP is doing is to put in place a generic system for plant breeders to manage and share information. This means they can collaborate and make better decisions about strains of the crops they are breeding and that they use in their programmes. It’s setting the stage for a big leap forward in plant breeding in developing countries.”

The proposal for a crop information system applicable to a wide range of crops attracted the attention of the Bill & Melinda Gates Foundation, which provided core funding for IBP.

According to Graham, the initial five-year USD 12 million grant from the Foundation was “the biggest single investment in an informatics project in CGIAR. It was half of what was needed, and other funders joined in with the other half.” These are the European Commission and the UK’s Department for International Development.

It’s been harder than we imagined… we really needed to employ the strategies used to build aeroplanes! … some of our partners are good at solving research problems but not at developing informatics tools… Our partnership with the software company was pretty unusual…Usually, you draw up the specifications for what you want and the company comes back with the product, like giving a builder an architect’s plans and getting the keys when the building is completed. But it wasn’t like that at all…”

Collaborative construction and conundrum – going off the script, winging it and winning it
Graham describes the hurdles that the team had to overcome along the way. “It’s been harder than we imagined because of the number of partners to coordinate. It’s like building a complicated machine with many parts. The parts built by different people in different places all need to fit when they are put together. It’s so complex, we really needed to employ the strategies used to build aeroplanes!”

It’s been a matter of encouraging all those involved to do what they do best. “I’ve learnt that some of our partners are good at solving research problems but not at developing informatics tools. We were fortunate to find a private company partner to do the software engineering and to have the backing of the Gates Foundation to change our strategy along the way.”

Working with a private-sector company was a first on both sides. “Our partnership with the software company was pretty unusual,” Graham recalls. “Usually, you draw up the specifications for what you want and the company comes back with the product, like giving a builder an architect’s plans and getting the keys when the building is completed. But it wasn’t like that at all. We didn’t know exactly what we wanted in terms of the final system, learning and adapting as we went along. Fortunately, the company was flexible and worked with us step by step. We would describe to them what we wanted, they would go off and work something up, then they would come back and we would dissect it and then they would go away again and rework. This way, they produced the system we wanted. Involving a private company brought us very handsome returns for money: it meant the project could deliver on time, and on budget.”

Breeders in developing countries and small- and medium-sized companies are looking at it… a revenue stream could be secured in a win–win relationship with companies also working to develop agriculture in the developing world”

Act II: going global, and continuous improvement
Now that the alpha version of BMS has been launched, the Bill & Melinda Gates Foundation is encouraging GCP to deploy the Platform more broadly. Graham explains, “Breeders in developing countries and small- and medium-sized companies are looking at it and, of course, they are coming up with ideas of their own. We’ve taken these on board in developing BMS version 2. In anticipation of yet more user feedback on version 2, we anticipate the third version will be released in June 2014.”

Electronic data collection for cassava breeding at Nigeria's National Root Crops Research Institute. GCP is promoting the use of digital tablets for data collection. See story: http://bit.ly/1fpeJON

Electronic data collection at Nigeria’s National Root Crops Research Institute. GCP is promoting the use of digital tablets for data collection. See story: http://bit.ly/1fpeJON

He continues: “Deployment will involve training people to use IBP, maintaining the system and developing new tools. We’re talking to the Gates Foundation, and others, about funding for IBP Phase II. While our primary objective is to make the Platform affordable – even free – for public-sector plant breeders in developing countries, we recognise that the system needs to be maintained, supported and upgraded over the years. The question is, will small- and medium-sized plant-breeding enterprises be willing to pay for the system so that some of this maintenance and support can be recovered and the system can become sustainable in the long run? In our GoToMarket Plan, the Marketing Director is canvassing a range of companies asking what services they need and how much they would pay for them. There is a strong need for such a system in this sector and it is clear that a revenue stream could be secured in a win–win relationship with companies also working to develop agriculture in the developing world.”

Graham is convinced that rolling out IBP will have a significant impact on plant breeding in developing countries. “Because IBP has a very wide application, it will speed up crop improvement in many parts of the world and in many different environments. What this means is that new crop varieties will be developed in a more rapid and therefore more efficient manner.”

Links

Feb 212014
 

 

Steaming rice bowl

Steaming rice bowl

What’s the latest from ‘GCP TV’? Plenty! With a world-favourite – rice – featuring high and hot on the menu.

Now serving our latest news, to tease your taste-buds with a tantalising and tingling potpourri of memorable cross-continental rice flavours, all captured on camera for our viewers…

Our brand-new series on YouTube serves up a healthy seven-course video feast inviting our viewers to sink their teeth into rice research at GCP.

First, we settle down for a tête-a-tête in the rice research kitchen with chef extraordinaire, Marie-Noëlle Ndjiondjop, Principal Investigator (PI) of GCP’s Rice Research Initiative in Africa, and Senior Molecular Scientist at Africa Rice Center. Target countries are Burkina Faso, Mali and Nigeria.

Photo: A Okono/GCP

Marie-Noëlle Ndjiondjop

Starters, palate and pocket
Marie-Noëlle opens the feast with a short but succulent starter, as she explains succinctly in 30 seconds just how rice is becoming a staple in Africa. In the second course, Marie-Noëlle chews over the questions concerning combatting constraints and boosting capacity in rice research in Africa.

The third course is pleasing to the eye, the palate and the pocket! Marie-Noëlle truly sells us the benefits of molecular breeding, as she extolls the virtues of the “beauty of the marker”. Why should you use molecular tools? They’ll save you time and money!

Rice as beautiful as the markers Marie-Noëlle uses in molecular breeding

Wherefore art thou, capacity building in rice research in Africa?
The Shakespearean language alludes to the why of capacity building in Africa, as does video episode number four, which also tackles the what of this fourth dish in our banquet. Course number five offers the viewer a light look at how capacity building in Africa is carried out.

In the 6th course, Marie-Noëlle takes us out of this world and into MARS: she teaches us that ‘two are better than three’, as she explains how the novel bi-parental marker-assisted recurrent selection (MARS) method is proving effective when it comes to duelling with drought, the tricky three-headed monster comprising physiological, genetic and environmental components.

Blooming rice in the field

Of stars and scoundrels
The 7th and final course offers us a riveting tale of heroes and villains, that is, many heroes and a single villain! Our rice raconteuse, Marie-Noëlle, praises the power of the team, as a crew from cross-continental countries come together, carefully characterise their combatant (drought), before striking with environment-specific drought-tolerant varieties! AfricaRice’s project partners are Burkina Faso’s Institut de l’environnement et de recherches agricoles (INERA); Mali’s Institut d’économie rurale (IER); and Nigeria’s National Cereals Research Institute (NCRI). Collaborators are France’s Centre de coopération internationale en recherche agronomique (CIRAD); the International Center for Tropical Agriculture (CIAT); and the International Rice Research Institute (IRRI).

We hope these tasty teasers are enough to whet your appetite – you can savour each of the courses individually à la carte, or, for those with a daring desire to try the ‘all you can eat’ buffet for true rice gourmets, all seven courses are presented as a single serving on our YouTube channel.

Jonaliza Lanceras-Siangliw

Jonaliza Lanceras-Siangliw

Tastes from Asia
To further please your palate with our rice bowl of delights, our next stop is Asia. We are  pleased to offer you the Asian flavour through a peek into the world of molecular rice breeding in the Mekong region. Our connection to this project is through a GCP-funded capacity-building project entitled A Community of Practice for strengthening rice breeding programmes by using genotyping building strategy and improving phenotyping capacity for biotic and abiotic stresses in the Mekong region led by PI Jonaliza Lanceras-Siangliw, of the National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand (see project poster, and slides on a related drought-tolerance project led by Boonrat Jongdee). BIOTEC’s partners in the Mekong rice breeding CoP are the Cambodian Agricultural Research and Development Institute (CARDI); LAO PDR’s National Agricultural and Forestry Research Institute (NAFRI);  Myanmar’s Department of Agricultural Research (DAR); and Thailand’s Kasetsart University and Ubon Ratchathani University). The video also features former GCP PI, Theerayut Toojinda (BIOTEC) whose project was similarly entitled The ‘Community of Practices’ concept applied to rice production in the Mekong region: Quick conversion of popular rice varieties with emphasis on drought, salinity and grain quality improvement.

BIOTEC

Boonrat Jongdee

Shifting gears: golden oldie
If all of this talk of eating has been a little overwhelming, we also offer you the perfect digestif: a ‘golden oldie’ in terms of GCP video history showing a 2012 BBC interview with former GCP PI, Sigrid Heuer, then at the International Rice Research Institute (IRRI), who explains how her project isolated the rice root-enhancing gene PSTOL1. Bon appétit!

 

Might you still have a corner of your mind yearning for more material on rice research? If so, check out the following:

  • Our lip-smacking selection of rice-related blogposts
  • A gorgeous gallery of PowerPoint presentations on rice research (SlideShare)
  • Check out our one-stop Rice InfoCentre for all things rice and nice, that we have online!

 

Nov 202013
 
Chiedozie Egesi

Chiedozie Egesi

Despite the social injustice around me, I always thought there was opportunity to improve people’s lives…GCP helped us to build an image for ourselves in Nigeria and in Africa, and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.”
 
– Chiedozie Egesi, a would-have-been surgeon who switched sides to biology and crop genetics, and who got acquainted with GCP through the Internet.

Backdrop: A booming economy and a wealth of natural resources may be among some of the common preconceptions of the average Jane and Joe regarding Africa’s most populous nation. Lamentably, however, Nigeria, like numerous robust economies worldwide, is still finding its feet in addressing severe inequality and ensuring that the nation’s wealth also flows to the poorest and most marginalised communities.

It’s a problem Chiedozie Egesi (pictured above), a molecular plant breeder at Nigeria’s National Root Crops Research Institute (NRCRI), understands well: “Nigeria is an oil-producing country, but you still see grinding poverty in some cases. Coming from a small town in the Southeast of the country, I grew up in an environment where you see people who are struggling, weak from disease, poor, and with no opportunities to send their children to school,” he reveals. The poverty challenge, he explains, hits smallholder farmers particularly hard: “Urban ‘development’ caught up with them in the end: some of them don’t even have access to the land that they inherited, so they’re forced to farm along the street.”

Maturing cassava fruits.

Food first! A man with a mission and fire in his belly, determined to make a difference
For this gifted and socially conscious young man, however, the seemingly bleak picture only served to ignite a fierce determination and motivation to act: “Despite the social injustice around me, I always thought there was opportunity to improve people’s lives.” And thus, galvanised by the plight of the Nigerian smallholder, plans for a career in medical surgery were promptly shelved, and traded for biological sciences and a PhD in crop genetics, a course he interspersed with training stints at USA’s Cornell University and the University of Washington, Seattle, along the way, before returning to the motherland to accept a job as head of the cassava breeding team, and – following a promotion in 2010 – Assistant Director of the Biotechnology Department, at NRCRI.

As evident from the burgeoning treasure chest of research gems to his name, it was a professional detour which paid off, and which continues to bear fruit today.

Making a marked difference, cultivating new partnerships, and looking beyond subsistence
In 2010, work by Chiedozie and his NRCRI team resulted in the official release of Africa’s first molecular-bred cassava variety which was both disease-resistant and highly nutritious – an act they followed in 2012 with the release of a high-starch molecular-bred variety. The team’s astute navigation of molecular markers resulted in breeding Latin American cassava varieties resistant to cassava mosaic disease (CMD), leading to the release of CMD-resistant cassava varieties in the African continent for the first time. Genetic maps intended to enhance breeding accuracy for cassava – the first of their kind for the crop in Africa – have been produced, and quantitative trait loci (QTLs) for cassava breeding are in the making. In 2011, the team, together with their partners at the International Institute of Tropical Agriculture (IITA) and HarvestPlus (a CGIAR Challenge Programme), released three pro-vitamin A-rich varieties of cassava, which hold the potential to provide children under five and women of reproductive age with up to 25 percent of their daily vitamin A allowance – a figure Chiedozie and his team are now ambitiously striving to increase to 50 percent.

These new and improved varieties – all generated as a direct or indirect result of his engagement in GCP projects – are, Chiedozie says, worth their weight in gold: “Through these materials, people’s livelihoods can be improved. The food people grow should be nutritious, resistant and high-yielding enough to allow them sell some of it and make money for other things in life, such as building a house, getting a motorbike, or sending their kids to school.”

Prior to my GCP work, I was more or less a plant breeder, and a conventional one at that. Whilst I’d been exposed to molecular tools during my early work on yam and other crops, I was not applying them in my work back then…GCP was not only there to provide technology but also to guide you in how to operate that technology… Now all our staff understand what is meant by good breeding, data analysis or applying genotypic data. My whole team benefitted.”

A chance ‘meeting’, with momentous manifold connections
Having first stumbled across the GCP website by chance when casually surfing the internet one day in a cyber café back in 2004, Chiedozie’s attention was caught by an announcement for a plant breeders’ training course in South Africa, an opportunity which he applied for on the off chance…and for which, hey presto!, he was accepted! Thus, his GCP ‘adventure’ began!

Chiedozie Egesi (left) and Emmanuel Okogbenin (right) in a cassava field.

Chiedozie Egesi (left) and Emmanuel Okogbenin (right) in a cassava field.

Promptly revealing an exceptional craftsmanship for all things cassava, Chiedozie soon became engaged in subsequent opportunities, including a one-year GCP fellowship at the International Centre for Tropical Agriculture (CIAT) in Colombia, a number of GCP Capacity building à la carte-facilitated projects, and, more recently, a major role as a Principal Investigator in the GCP Cassava Research Initiative (RI), teaming up with NRCRI colleague and Cassava RI Product Delivery Coordinator, Emmanuel Okogbenin. The Cassava RI is where Chiedozie’s energies are primarily invested at present, with improving and deploying markers for biotic stresses in cassava being the name of the game.

The significance of his GCP engagements was, Chiedozie affirms, momentous: “Prior to my GCP work, I was more or less a plant breeder, and a conventional one at that. Whilst I’d been exposed to molecular tools during my early work on yam and other crops, I was not applying them in my work back then.”

Collaboration in a GCP-funded project with CIAT led to the development of a new laboratory space for NRCRI, bolstered by support for basic materials as well as training. “GCP was not only there to provide technology but also to guide you in how to operate that technology,” Chiedozie comments. (For more on how it all began, see At home and to go and Molecular bonds in pp 26–29 in this e-book)

GCP’s Integrated Breeding Platform (IBP), he says, has played a vital role in this regard: “By opening the door to training, generation of data, analysis of data, and by giving support in making decisions, GCP’s IBP serves as a one-stop shop for cassava breeding.” It’s a sentiment shared by his NRCRI colleagues, he says: “GCP is providing a comprehensive full-package deal. Besides myself, several colleagues have been trained at NRCRI. Now all our staff understand what is meant by good breeding, data analysis or applying genotypic data. My whole team benefitted.”

A real deal-breaker is the facilitation of self-empowerment amongst national programmes, and the new avenues unfolding for enhanced collaboration at the local, national and regional level…What we’re seeing is a paradigm shift. In the past there was a general belief that this kind of advanced molecular science was only feasible in the hands of CGIAR Centres or developed-country research institutes – the developing-country programmes were never taken seriously. When the GCP opportunity to change this came up we seized it, and now the developing-country programmes have the boldness and capacity to do molecular breeding and accurate phenotyping for themselves.”

Growth in numbers, capital, capacity, collaboration, reach and impact
Strength in numbers, Chiedozie says, is a vital lifeline for cassava, a crop which has suffered years of financial neglect. As such, a real deal-breaker in Chiedozie’s eyes is the facilitation of self-empowerment amongst national programmes, and the new avenues unfolding, thanks to his involvement in the GCP cassava breeding Community of Practice (CoP), for enhanced collaboration at the local, national and regional level: “We now have a network of cassava breeders that you can count on and relate with in different countries. This has really widened our horizons and also made work more visible,” he offers, citing effective links formed with Ghana, Sierra Leone, Liberia, Mozambique, Malawi and Côte d’Ivoire, amongst several other cassava-breeding neighbours near and far.

Cassava leaf

Cassava leaf

The achievements amongst this mushrooming community are, he stresses, unprecedented: “Participation in the CoP means many countries can now create their own hybrids and carry out their own selection, which they could not do before,” he affirms.

And it’s a milestone Chiedozie and colleagues are justifiably proud of: “What we’re seeing is a paradigm shift. In the past there was a general belief that this kind of advanced molecular science was only feasible in the hands of CGIAR Centres or developed-country research institutes – the developing-country programmes were never taken seriously. When the GCP opportunity to change this came up we seized it, and now the developing-country programmes have the boldness and capacity to do molecular breeding and accurate phenotyping for themselves,” Chiedozie confirms.

GCP helped us to build an image for ourselves in Nigeria and in Africa, and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.” 

Building on success, going from strength to strength as the sands shift

With internal capacity now blossoming of its own accord – in no small measure due to the leading role played by NRCRI in the sensitisation of cassava plant breeders throughout Nigeria and beyond – the sands are certainly shifting: “GCP helped us to build an image for ourselves in Nigeria and in Africa, and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.”

Anthony Pariyo (left) of NaCRRI, Uganda

Visitors with working clothes on: NaCRRI Uganda’s Anthony Pariyo (left) and Williams Esuma (right) visiting NRCRI Umudike on a breeder-to-breeder visit in July 2012. Williams’ postgraduate studies were funded by GCP through the cassava CoP.

And the beauty of it, Chiedozie continues, is that the cassava crew is going from strength to strength: “Nigeria is seen as a really strong cassava-breeding team, not only within Africa but also globally. And we have not yet realised all the benefits and potential – these are still unfolding,” he enthuses.

Also yet to unfold are Chiedozie’s upcoming professional plans, which, he reveals, will soon see him engaging with the USA’s Cornell University, the Bill & Melinda Gates Foundation, the International Institute of Tropical Agriculture (IITA) and Uganda’s National Crop Resources Research Institute (NaCRRI) in an initiative which, through its focus on genomic selection in cassava breeding, promises to be, Chiedozie reveals, “at the frontier of cutting-edge technology.” Genomic selection for this initiative is already underway.

Readers intrigued by this tantalising taster of what to expect in Chiedozie’s next professional chapter are encouraged to watch this space over the coming years…Judging by his remarkable research record to date, we feel confident that future installments will not disappoint!

Meantime, here’s Chiedozie’s presentation at the GCP General Research Meeting in September 2013. We are also working on videos of Chiedozie and his work. Yet more reason to watch this space!

Links
  • For a picture of Chiedozie’s work near the beginning in 2006, see pp 26–29 here (At home and to go and Molecular bonds)
  • More recent updates are on the Cassava InfoCentre

 

Nov 292012
 

By Gillian Summers

The TLI project lets us know about molecular breeding, so it’s exposed us to new developments in science, especially in the application of molecular techniques and plant breeding.”  Asrat Asfaw Amele, Southern Agricultural Research Institute, Ethiopia

Many a tale about Ethiopia will regale the reader with details of its contrasting landscape, numerous rivers, searing regional temperatures, the multicultural makeup of its society, its world-famous, unbeatable long-distance and high-altitude runners, its rich history and culture; a sweet producer of honey, the home of coffee, and origin of all mankind…

Seeing red… but no blood
…I found a land of incurably hospitable and kind people, proud of their country and culture; infectiously good music, incredibly strong coffee, where they love both bloody raw meat and protein-rich red beans, dubbed ‘bloodless meat’ in this part of the world.

Cool early morning departure

Cool early morning departure

Out & about
My first real taste of Ethiopia was out in the countryside where I visited the work of GCP’s Tropical Legumes I (TLI) project in the field, on a trip to the bean fields at the Southern Agricultural Research Institute’s (SARI) research stations at Areka and Hawassa, which took us on a 600-km round tour, out of the capital Addis Ababa and into the Great Rift Valley beyond.

We set off early that cool morning, and as we headed into the countryside, I glimpsed many a local taking their first breath of morning air as they stepped outside from their decoratively-painted, round, thatched-roof homes, and shook the night’s sleep from their shoulders.

Traditional thatched living rooms

Traditional thatched living rooms

So their day began – already there was smoke coming from the chimneys, and I imagined the lady of the house beginning to prepare for the first coffee ceremony of the day. Coffee is often accompanied by a dish of boiled red beans. Or maybe she was warming the pan for the morning injera – a kind of ‘teff tortilla’: a sour-dough thin pancake made of the local cereal, teff. Injera is an iconic ubiquitous component of Ethiopian cuisine, with which diners take all manner of wat, or stew made from a rich variety of ingredients – from legumes to raw meat, carefully rolling the spongy crepe around the filling twice, making sure no food falls onto the fingers, for dining etiquette strictly dictates against the licking of fingers.

Ensete plantations

Ensete plantations

Living landscape

We pass score upon score of the gently-smoking thatched round huts – the traditional ‘living rooms’ in these parts; most dwellings are accompanied by modest smallholdings, with maybe a grazing goat or two, and many more with plantations of ensete – a banana-like plant, which, in spite of its inedible fruit, has long been a staple in Ethiopia. It is used for its root, which is mashed to make a tasty, stodgy, bread-like food called kocho, used to accompany meals, a denser cousin of the favourite injera. These smallholdings would also be the perfect size for cultivating beans, as they are not an acre-hungry crop, but grow happily on small plots of land, and in some areas are intercropped with ensete to maximise the space.

Dromedaries, drought and beans

Our common legume: the bean, Phaseolus vulgaris L

Our common legume: the bean, Phaseolus vulgaris L

Into this landscape we pass the incongruous addition of a herd or two of camels with their owners…significantly peculiar as these aren’t desert lands, but the edge of the Ethiopian highlands, gradually and graciously giving way to the majestic Great Rift Valley below. I ask my guide about the addition of camel hands to this highland scenery: he explains their strange presence is due to a growing food shortage which has forced these nomadic peoples further afield to find their fare. The appearance of these dromedaries and their human partners brings harshly to mind Ethiopia’s most notorious claim to fame – especially for anyone who recalls the mid-1980s – for whom Ethiopia will always be indelibly synonymous with famine. It also throws the work of GCP, and specifically TLI, sharply into the spotlight, for the over-arching objective of this project is to improve legume productivity in environments considered marginal for agriculture, due to heat and other stresses. Somehow, it seems that more of the world’s environment is becoming ‘stressed’ by the day, though luckily the giant beanstalk of our story is a hardy crop which can be grown on the poor soils and fragmented plots of these challenged lands.

L–R: Asrat Asfaw Amele (SARI), Bodo Raatz (CIAT), Daniel A Demissie

L–R: Asrat Asfaw Amele (SARI), Bodo Raatz (CIAT) and Daniel A Demissie (Areka Research Station) discuss the A–Z of beans at Areka Research Station.

So the legume of choice for this most uncommon road trip is the common bean, Phaseolus vulgaris L, and our Ethiopian bean breeding expert is Asrat Asfaw Amele of the Southern Agricultural Research Institute (SARI), who is the Lead Scientist of the TLI beans component in Ethiopia. Asrat is our friendly guide and fount of knowledge of all things Ethiopian throughout this impassioned passage into the ‘bean valley’, and we are accompanied by Bodo Raatz of the Centro Internacional de Agricultura Tropical (CIAT), recently appointed Principal Investigator of TLI’s bean research. At Areka research station we are joined on our journey by Daniel A Demissie, who, along the way, shares his many insights on beans, diseases such as bean stem maggot (BSM), and on drought . We are chaperoned throughout by our courageous driver, Mr Abebe, who at times resembles a pilot as we seem to fly over the bumpy terrain in the plucky pick-up that is our steed for the day.

Courageous steeds

Courageous steeds: our driver, Mr Abebe (foreground and far right) and the intrepid pickup are joined by workers from Areka station

Impact

Asrat Afaw Amele

Asrat Afaw Amele

Against the scenic backdrop of the Ethiopian landscape racing by, with background music courtesy of Teddy Afro (whose politically charged songs, sweet voice and infectious rhythm have made him nothing short of a legend in his homeland), I take advantage of this long and winding road trip to interview Asrat, where his answers echo the whirlwind tour rushing by outside – from a description of the landscape he knows so well, and toils in every day – to the impact that this project has had on national scientists, the impacts on farmers’ lives, as well as impacts that are likely to come in the not-too-distant future.

We consider farmers our partners. We try to understand what farmers are looking for, what they like, and we try to include their interests in our breeding materials so that the breeding materials released by our institution start to get wider adoption.” – Asrat Asfaw Amele (pictured).

The rich Ethiopian landscape

The rich Ethiopian landscape

Revolution, alliances & partnerships

Ethiopia’s rich history, as varied as its topographical landscape, has known its fair share of extreme rulers. Now it seems the new ‘regime’ calling the shots is climate change, whose ravaging effects are seen worldwide, and no less in the bean fields of Ethiopia. Asrat even pinpoints climate change as the greatest challenge for the next generation of bean researchers, saying, “The farmers’ growing environment may be modified or a new environment may be created. That could also be a challenge – a new pest population or new disease may come; so the challenge in the future may be to breed or develop varieties which adapt to the changing environment.”

Beans line up

Beans line up at Awassa Research Station

The revolutionaries needed to overthrow this ‘tyrant’, it seems, are those of the ‘triple alliance’ partnership, comprising: Ethiopia’s national scientists, researchers from the international science community including CGIAR Centres, and farmers. Firstly, with this approach, the science sector can understand farmers’ needs, which also has a reciprocal effect, as Asrat explains, “We consider farmers our partners. We try to understand what farmers are looking for, what they like, and we try to include their interests in our breeding materials so that the breeding materials released by our institution start are widely adopted.” Secondly, national and international science systems come together to work for a common goal – in Asrat’s words: “Now we’ve got the knowledge and we can speak a common language with people from advanced laboratories. It’s also brought us closer to international institutes like CIAT and other CG Centres – we work together, so they understand our system better and we understand how they function.” He adds, “We are getting technical backstopping from CGIAR Centres, so as a national partner we are doing work, and they are supplying germplasm. That’s the partnership that will continue in the future.”

The weapon used by this ‘revolutionary army’ is GCP’s double-barrelled approach which combines both traditional and molecular breeding practices and is proving to be effective in developing new, more productive bean varieties to combat drought and disease. Specifically of the TLI project, Asrat says, “It lets us know about molecular breeding, so it’s exposed us to new developments in science, especially in the application of molecular techniques and plant breeding.”

Daniel A Demissie

Daniel A Demissie contemplates looming rain clouds across the parched terrain

The ‘monster’, climate change, rears its ugly head only to be shot down expertly by Asrat and the mighty beans as he reveals, “A lot of farmers are growing our varieties, and, because of changing weather or instability, many people are starting to grow beans; beans are now becoming a major crop, especially in our mandate area.”

Capacity building …
At this stage, the major impact of the TLI beans component in Ethiopia has been on capacity building – both in terms of human resources and physical infrastructure, as Asrat illustrates, “In our breeding programme, capacity building has been an important aspect: scientists in our national system are being exposed to new technology, information, and training; we also have a full irrigation system in about 10 hectares of land, which will revolutionise our work.”

Photo: N Palmer/CIAT

Magical bean diversity

… and on to farmers
By building on lessons learnt throughout this project, current impacts for the national science system will be translated into ‘real impacts’ in farmers’ fields in the near future. Indeed, Asrat hopes his future work will involve “getting the material into the hands of farmers, to see some impact or change, and to modernise and speed up breeding processes using markers developed by this project.”

Beanstalks. Photo: N Palmer/CIAT

Beanstalks: giant potential in Ethiopia

So the ‘magic beans’ of our story tell of a rich brew brimming with such potent ingredients as molecular breeding, capacity building, partnerships spanning continents and research systems, true teamwork with the farmers in the fields, and the drive to conquer the new challenge of a changing climate.

The impacts from the TLI project are the pot of gold at this rainbow’s end, showing that fairy tales do come true, where ‘magic beans’ put down roots and grow real shoots, and are not just ‘castles in the air’.

Links

Oct 302012
 

BREAK-TIME AND BRAKE-TIME from beans for a bit: Steve Beebe takes a pause to strike a pose in a bean field.

“These [molecular breeding] techniques, combined with conventional methods, shorten the time it takes to breed improved varieties  that simultaneoulsy combine several traits.

And this means that we also get them out to farmers more quickly compared to phenotypic selection alone.”
– Steve Beebe

THE NEAR-PERFECT FOOD: Common beans (Phaseolus vulgaris L) comprise the world’s most important food legume, feeding about 200 million people in sub-Saharan Africa alone. Their nutritional value is so high, they have been termed ‘a near-perfect food’. They are also easy to grow, adapting readily to different cropping systems and maturing quickly.

That said, this otherwise versatile, adaptable and dapper dicotyledon does have some inherent drawbacks and ailments that crop science seeks to cure….

Rains are rapidly retreating, and drought doggedly advancing
Despite the crop’s widespread cultivation in Africa, “yields are low, stagnating at between 20 and 30 percent of their potential,” remarks Steve Beebe, GCP’s Product Delivery Coordinator for beans, and a researcher at the International Center for Tropical Agriculture (CIAT, by its Spanish acronym).

“The main problem is drought, brought about by climate change,” he says. “And it’s spreading – it already affects 70 percent of Africa’s major bean-producing regions.”  Drought decimates bean harvests in most of Eastern Africa, but is particularly severe in the mid-altitudes of Ethiopia, Kenya, Tanzania, Malawi and Zimbabwe, as well as in southern Africa as a whole.

A myriad of forms and hues: bean diversity eloquently speaks for itself in this riot of colours.

Drought, doubt and duality − Diversity a double-edged sword
“Common beans can tolerate drought to some extent, using various mechanisms that differ from variety to variety,” explains Steve. But breeding for drought resistance is complicated by the thousands of bean varieties that are available. They differ considerably according to growth habit, seed colour, shape, size and cooking qualities, and cultivation characteristics.

“A variety might be fantastic in resisting drought,” says Steve, ‘but if its plant type demands extra work, the farmers won’t grow it,” he explains. “Likewise, if consumers don’t like the seed colour, or the beans take too long to cook, then they won’t buy.”

Molecular breeding deals a hand, waves a wand, and weaves a band
This is where molecular breeding techniques come in handy, deftly dealing with the complexities of breeding drought-resistant beans that also meet farmer and consumer preferences. No guesswork about it: molecular breeding rapidly and precisely gets to the heart of the matter, and helps weave all these different ‘strands’ together.

The bean research team has developed ‘genetic stocks’, or strains of beans that are crossed with the varieties favoured by farmers and consumers. The ‘crosses’ are made so that the gene or genes with the desired trait are incorporated into the preferred varieties.

The resulting new varieties are then evaluated for their performance in different environments throughout eastern and southern Africa, with particular focus on Ethiopia, Kenya, Malawi and Zimbabwe which are the target countries of the Tropical Legumes I (TLI) project.

Propping up the plant protein: a veritable tapestry of terraces of climbing beans.

GCP supported this foundation work to develop these molecular markers. This type of breeding – known in breeder parlance as marker-assisted selection (MAS) – was also successfully used to combine and aggregate resistance to drought; to pests such as bean stem maggot (BSM); and to diseases such as bean common mosaic necrosis potyvirus (BCNMV) and to bruchid or common bacterial blight (CBB). The resulting ‘combinations’ laden with all this good stuff were then bred into commercial-type bean lines.

“These techniques, combined with conventional methods, shorten the time it takes to breed improved varieties that simultaneoulsy combine several traits,” comments Steve. “This means that we also get them out to farmers more quickly compared to phenotypic selection alone.”

Informed by history and reality
Breeding new useful varieties is greatly aided by first understanding the crop’s genetic diversity, and by always staying connected with the reality on the ground: earlier foundation work facilitated by GCP surfaced the diversity in the bean varieties that farmers grow, and how that diversity could then be broadened with genes to resist drought, pests and disease.

What next?
Over the remaining two years of Phase II of the Tropical Legumes I (TLI) project, the bean team will use the genetic tools and breeding populations to incorporate drought tolerance into farmer- and market-preferred varieties. “Hence, productivity levels on smallholder farms are expected to increase significantly,” says Steve.

Partnerships
The work on beans is led by CIAT, working in partnership with Ethiopia’s South Agricultural Research Institute (SARI),  the Kenya Agricultural Research Institute (KARI),  Malawi’s Department of Agricultural Research and Technical Services (DARTS) and  Zimbabwe’s Crop Breeding Institute (CBI) of the Department of Research and Specialist Services (DR&SS).

Other close collaborators include the eastern, central and southern Africa regional bean research networks (ECABREN and SABRN, their acronyms) which are components of the Pan-African Bean Research Alliance (PABRA). Cornell University (USA) is also involved.

VIDEO: Steve talks about what has been achieved so far in bean research, and what remains to be done

Links

 

Sep 202012
 

Getting to the core of a world-favourite dessert by unravelling banana’s origin and genealogy

GCP has enabled us to lay a credible foundation, which gave us a leg-up in the intense competition that typifies the genome sequencing arena” – Angélique D’Hont, CIRAD researcher

‘A’ is also for Angélique, as you will see once you read on…

An ‘A’ to our banana team for ushering in a new era in banana genetics. But let soup precede dessert, and don’t let this worry you: stay with us because we’re still very much on the topic and focused on bananas, which offer the whole range from soup and starters, to main course and dessert, plus everything else in between, being central for the food security of more than 400 million people in the tropics: around a third each is produced in Africa, Asia-Pacific and Latin America, and the Caribbean. About 87  percent of all the bananas produced worldwide are grown by small-scale farmers.

Moving back then to soup for starters, we’re serving up our own unique blend of alphanumeric banana ‘soup’, spiced with ABCs, a pinch of 123s, plus a dash of alpha and omega. Curious about the ABCs? Look no further:‘C’ for getting to the core of ‘B’ for bananas, and an ‘A’ score for our ace genomics team that did it.

Read how GCP seeded … and succeeded, in helping open a new era in banana genetics. An achievement by itself, and an important milestone on the road to unlocking genetic diversity for the resource-poor, which is GCP’s raison d’être.

So get your travelling gear please, for time travel with a ‘midspace checkpoint’ in Malaysia.

We start in 2004, when GCP commissioned a survey of diversity with microsatellites (or SSRs, simple sequence repeats) for all mandate food crops in the CGIAR crop research Centres. The objective of that study was to make new genetic diversity from genebank accessions available to breeders.

The endpoint is opening new research avenues to incorporate genes for disease resistance, with the added bonus of an article published in Nature online on July 11 2012, entitled The banana (Musa acuminata) genome and the evolution of monocotyledonous plants.

It may not be quite as easy as the ABC and 123 that The Jacksons promise in song, but we promise you that the science is just as exciting, with practical implications for breeding hardy disease-resistant bananas. Onwards then to the first leg of this three-step journey!

(Prefer a shorter version of this story in pictures? We’ve got it! Choose your medium between Flickr and Facebook)

1) Let’s go Greek: the alpha and omega of it

Rewinding to the beginning

The proof of the pudding is in the eating: we imagine that Jean Christophe Glaszmann just has to be saying “Yummy!” as he samples this banana.

Start point, 2004: “At that time, several research groups had developed SSR markers for bananas, but there was no coordination and only sketchy germplasm studies,” recalls Jean Christophe Glaszmann (pictured), then the leader of what was GCP’s Subprogramme 1 (SP1) on Genetic Diversity on a joint appointment with CIRAD. He stepped down as SP1 Leader in March 2010, and is currently the Director of a multi-institutional research unit Genetic improvement and adaptation of Mediterranean and tropical plants (AGAP, by its French acronym) at France’s Centre de ccoopération internationale en recherche agronomique pour le développement (CIRAD) in Montpellier.

Jean Christophe continues, “The reference studies had been conducted with RFLP* markers, a very useful tool but far too cumbersome for undertaking large surveys. We mobilised Bioversity International, CIRAD and the International Institute of Tropical Agriculture for the project. The process took time, but delivered critical products.[*RFLP stands for restriction fragmented length polymorphism]

Fastforward to 2012, and gets just a little geeky…

Eight years down the road in 2012, the list of achievements is impressive, as evidenced by a suite of published papers which provide the details of the analysis of SSR diversity and describe how the data enabled the researchers to unravel the origin and genealogy of the most important dessert bananas. The origin of the predominant variety – Cavendish – suggested by the markers, involves two rounds of spontaneous hybridisation between three markedly differentiated subspecies. This scheme has been marvellously corroborated by linguistic patterns found in banana variety names as revealed in a paper published in 2011 in the proceedings of USA’s National Academy of Sciences.

But what else happened in between the start- and end-point? We now get to the really ‘sweet’ part of this bonanza for banana breeding!

It is now possible to conduct research to identify and incorporate genes for disease resistance within fertile populations that are close to the early progenitors, and then inter-cross them to re-establish sterility and obtain vigorous, disease-resistant and seedless progenies.

 2) Of bits, bananas, breeding and breadcrumbs

Threading all these bits together for breeding better bananas is akin to following a trail of breadcrumbs, in which GCP played an important facilitating role: where in the germplasm to undertake genetic recombination is one key; and then, how to expedite incorporation of disease resistance and how to control sterility – so as to first suppress it, then re-establish it – is another set of keys that are necessary for proficient breeding.

Hei Leung in the lab at IRRI.

In 2005, Hei Leung (pictured), then Leader of GCP’s Subprogramme 2 on Comparative Genomics (until June 2007) on a dual appointment with the International Rice Research Institute (IRRI), recognised that with GCP’s main focus being drought tolerance in crops, Musa (the banana and plantain botanical genus) was somewhat on the fringe. However, it was still important that GCP support the emergence of banana genomics.

Hei is currently Programme Leader of Genetic Diversity and Gene Discovery at IRRI. He remembers, “We had a highly motivated group of researchers willing to devote their efforts to Musa. Nicolas Roux at Bioversity was a passionate advocate for the partnership. The GCP community could offer a framework for novel interactions among banana-related actors and players working on other crops, such as rice. The team led by Takuji Sasaki of Japan’s National Institute of Agrobiological Science, which had vast experience in rice genome sequencing, added the scientific power. So, living up to its name as a Challenge Programme, GCP decided to take the gamble on banana genomics and help it fly.”

Angélique D’Hont, CIRAD researcher and lead author of the article published in ‘Nature’.

Through several projects, GCP helped consolidate Musa genomic resources, contributed to the establishment of medium-throughput DArT markers as well as the construction of the first saturated genetic map. Additional contributions included the first round of sequencing of large chromosome segments (BAC clones) and its comparison with the rice sequence and a detailed analysis of resistance gene analogues. All these findings have now been published in peer-reviewed journals. And while publication takes time, it still remains a high-premium benchmark for quality and validation of results, and for efficient sharing of information. It reinforces the value of collaboration, builds capacity and gives visibility to all partners, thereby providing potential new avenues for funding.

Such was the case with bananas: using a collaborative partnership framework established with the Global Musa Genomics Consortium, animated by Nicolas Roux and now chaired by Chris Town, the community developed a case for sequencing the genome. With the mentorship of Francis Quétier, contacts were made with various major players in genomics, which in the end formalised a project between France’s CIRAD and CEA–Genoscope, funded by the Agence Nationale de la Recherche and led by Angélique D’Hont (pictured) and Patrick Wincker.

GCP contributed DArT analysis for anchoring the sequence to the genetic map. But, as stressed by Angélique, CIRAD researcher and lead author of the Nature paper: “Above all, GCP has enabled us to lay a credible foundation, which gave us a leg-up in the intense competition that typifies the genome sequencing arena. We were delighted that France rolled the dice in our favour by funding this work.”

3) Musa musings on the road to and from Malaysia checkpoint

Three years down the road, the team published a description of the genome of a wild banana from Malaysia.

Jean Christophe communes with a Musa plant, perhaps musing “What’s your family history and when will you be fully grown?”

Let’s drill down to some technical facts and figures here: the Musa genome has some 520 million nucleotides distributed across 11 chromosomes, revealing traces of past duplications and bearing some 36,000 genes. While most genes derived from duplication tend to lose their function, some develop novel functions that are essential for evolution; bananas seem to have an outstanding range of transcription factors that could be involved in fruit maturity.

And while the road ahead remains long, we now have a good understanding of banana’s genetic diversity, we have genomic templates for functional studies (a whole-gene repertoire) as well as for structural studies (the chromosome arrangement in one subspecies) aimed at unraveling the genomic translocations that could control sterility in the species complex.

It is now possible to conduct research to identify and incorporate genes for disease resistance within fertile populations that are close to the early progenitors, and then inter-cross them to re-establish sterility and obtain vigorous, disease-resistant and seedless progenies.

This is undoubtedly an inspiring challenge towards unlocking the genetic diversity in this crop, which is central to food security for more than 400 million people in the tropics.

Links

 

Jul 082012
 

SDC and GCP

Today, we catch up with SDC’s Carmen Thönnissen (pictured). She walks us through the whys of Switzerland’s continued funding to GCP that has spanned nearly the Programme’s entire lifetime.

We were …drawn to GCP’s upstream–downstream connections, and its pre-conceived product delivery path. GCP produces global public goods, with a clear focus on strategic research for development, while also addressing important upstream research elements in crop science such as gene discovery and marker validation. In addition, GCP already had a Product Delivery Strategy to guarantee downstream application.

The way GCP uses and ‘bundles’ resources within and beyond CGIAR, then as now, is attractive to us as a meaningful approach, promising good value for money.”

GCP’s work is very results-oriented and pragmatic, forging partnerships followed by concrete actions to address bottlenecks in research for development in molecular crop breeding, without ruling out conventional breeding.

Carmen Thönnissen is Senior Advisor, Federal Department of Foreign Affairs, Swiss Agency for Development and Cooperation (SDC), Corporate Domain Global Cooperation of the Global Programme for Food Security. Through the years, SDC has been a consistent GCP funder. Today, Carmen gives us some insights into this longstanding relationship.

Tell us briefly about SDC and its funding to GCP
SDC is the Swiss Agency for Development and Cooperation, affiliated to the Ministry of Foreign Affairs of the Swiss Government.

We’ve funded GCP since 2006 with an annual contribution of 450,000 Swiss francs – a total of 1.9 million so far.

SDC provides GCP core unrestricted funds at Programme level, meaning that SDC does not tie its funding to specific GCP projects, giving GCP discretion over these funds.

Why does SDC support GCP?
We share a long history with GCP, going as far back as the Programme’s ‘pre-birth’.

Starting in 2001, CGIAR adopted a more programmatic systemwide approach and endorsed the concept of Challenge Programmes. Between 2002 and 2005, SDC actively supported this process and the emerging Challenge Programmes.

In 2005, SDC reviewed its support to CGIAR and identified SDC priority regions, research priorities, and guiding principles for its unrestricted funding to the CGIAR system.

From this review, SDC decided to invest 30 percent of its core unrestricted funds to several CGIAR Systemwide and Challenge Programmes, one being GCP.

The Challenge Programmes were perceived as results-oriented, poverty-relevant and responsive to the CGIAR reform process of that time. They were also partnership-oriented, with transparent communication strategies.

Several points convinced SDC to invest in GCP, and I’ll mention just some of these. One was GCP’s focus on crops in marginal areas and on drought tolerance in sub-Saharan Africa, and South and Southeast Asia. These overlap with SDC’s own thematic and geographical priorities.

We were also drawn to GCP’s upstream–downstream connections, and its pre-conceived product delivery path. GCP produces global public goods, with a clear focus on strategic research for development, while also addressing important upstream research elements in crop science such as gene discovery and marker validation. In addition, GCP already had a Product Delivery Strategy to guarantee downstream application.

The way GCP uses and ‘bundles’ resources within and beyond CGIAR, then as now, is attractive to us as a meaningful approach, promising good value for money. Back then, SDC was interested in the exploration of plant diversity and the application of advanced genomics and comparative biology to advance breeding of the main staple crops grown by resource-poor farmers, which was the very objective of GCP.

Our funds were intended to be used to increase the exploratory implementation of new research tools in applied breeding programmes to produce improved drought-tolerant crop varieties.

We liked GCP’s structured approach of a Global Access Policy backed by guidelines on public–private sector partnerships and addressing intellectual property.

We also found the ‘suite approach’ proposed by GCP attractive, since at that time, very little was being done in these fields by CGIAR. We were drawn to the mix of a research component – on the impact of modern and integrated breeding approaches on productivity in developing countries, plus a service component aiming to disseminate knowledge, resources and technology, alongside lab services and capacity building.

GCP’s work is very results-oriented and pragmatic, forging partnerships followed by concrete actions to address bottlenecks in research for development in molecular crop breeding, without ruling out conventional breeding.

You mentioned common SDC–GCP thematic and geographic scope. Are there other areas where the missions of SDC and GCP overlap?
SDC has a focus on genetic resource improvement, and also supported the CGIAR Systemwide Programme on Genetic Resources, as well as the Global Crop Diversity Trust.

Supporting GCP is in line with SDC’s internal guidelines on Green Biotechnology. Among other things, we avoid single-donor initiatives, instead working within larger programmes that not only have a clear focus but also aim to strengthen developing-country capacity.

GCP’s work is very results-oriented and pragmatic. GCP plays a strong facilitating role in forging partnerships, which is followed by concrete actions, services, tools, methods, and so on, to address the bottlenecks identified by the research-for-development network with the aim of supporting molecular crop breeding for various crops, regions and partners, without ruling out conventional breeding.

SDC shares the view that Green Biotechnology, including genetic modification, can never fully replace conventional breeding, but it can be an important tool in improving plant-breeding programmes.

What outcomes are you expecting from this support?
To mention just a few, improved accessibility to modern breeding tools, methods and approaches for the developing world, plus enhanced capacity for developing-world partners on using these tools, as well as them knowing their rights and obligations regarding access to, and use of, plant genetic resources and related tools.

We also hope to see improved services for breeders, including learning materials and information on new resources for crop breeding. The long-term outcome we’d like to see is improved crop varieties, more resistant to abiotic and biotic stresses.

What are some of the lessons learnt from investing in GCP?
The importance of a strong programmatic orientation and the role of an honest broker in effective partnerships: GCP plays the role of enabler and facilitator, while its research partners are the actors.

Investing in GCP enables us to project a clear flow from upstream to applied research – with capacity building included – in the critical areas of food security and climate change.

Relevant links

Policies 

Blogposts

Jul 042012
 

The GCP community, its labours and joys

If tools and resources are not put to use, then we labour in vain...GCP contributes to food security by providing breeders with integrated tools, techniques and services to speed up the selection cycle, be this by conventional or molecular breeding. GCP focuses on developing new materials and new techniques and delivering these, and the appropriate breeding tools, technologies and services, to breeders. I think GCP has been one of the most successful builders of research and development partnerships.

The Board’s focus is now on auditing the Programme, and mapping a strategy to sustain its successful partnerships and systems, so that these can continue to deliver products and capacity to the developing world.”

Seatbelts on please! Time to take a tour with Andrew, for an ‘aerial’ view of GCP from the very  ‘top’.

Please meet Andrew Bennett (pictured), the Chair of GCP’s Executive Board. Among other responsibilities, he is also President of the Tropical Agricultural Association, UK, chairs the SciDev.Net Board, and previously chaired the CIFOR Board. He was formerly Executive Director of the Syngenta Foundation and Director of Rural Livelihoods and Environment at the Department for International Development (DFID, UK) where he was responsible for professional advice on policy and programmes on livelihoods, natural resources, environment, sustainable development and research. Andrew has worked on development programmes in Africa, Asia, Latin America, the Pacific and the Caribbean.

Today, Andrew shares his perspectives on GCP’s work, its impact, the challenges, the community GCP has built, and the role of the Board. Please read on…

When was the GCP Board established, and what is its profile and role?
The Board was set up in mid-2008 towards the end of the first phase of the Programme. A review recommended that there be a fully independent Board, comprising people who had no conflict of interest with the Programme to facilitate decision-making.

Board members have between them a wide variety of skills and backgrounds, ranging from expertise in molecular biology to development assistance, socioeconomics, academia, finance, governance and change management.

We are committed to the role that can be played by science in development, and to the Programme. We have offered advice and helped the Programme’s Consortium Committee and management refocus the Programme. By all accounts, they seem happy with how things have evolved.

Because GCP is hosted by CIMMYT, the Board does not have to deal with any policy issues. That is the responsibility of the Consortium Committee. Our role is more to provide advice and to help with decision-making and implementation, which is great as we’ve been able to focus on the Programme’s science and people.

How long have you been involved with GCP?
Since the Board was established in 2008.

What does the GCP tagline – ‘Partnerships in modern crop breeding for food security’ – mean for you?
It means that all our undertakings are geared towards producing crop varieties that are tolerant to a range of environments, as well as being socially acceptable and appealing to farmers and markets.

How do you upgrade the planting material farmers have by fortifying it to combat the biotic and abiotic stresses? Half the challenge is breeding and selecting good material, and the other half is ensuring delivery of tools to breeders and new planting materials to farmers.

So GCP focuses on developing new materials and new techniques and delivering these, and the appropriate breeding tools, technologies and services, to breeders.

Why is GCP’s work important, and what does it mean for food security?
People who are food-secure have access to adequate food at all times to maintain healthy active lives. There are two sides to making this happen – access and availability.

GCP is increasing the number of varieties and lines tolerant to the conditions farmers are facing. What we cannot do is put money in the hands of poor people. If we supply people with the means to produce sustainable and healthy crops, they will have the means to produce food for themselves, and a means of making an income.

GCP contributes to food security by providing breeders with integrated tools, techniques and services to speed up the selection cycle, be this by conventional or molecular breeding.

For you, what have been the major outcomes of GCP so far?
GCP has shown that it is possible to form very productive partnerships across CGIAR institutes and advanced research establishments and those countries that have less scientific capacity. I think it has been one of the most successful builders of research and development partnerships. GCP has also shown public researchers can work very well with the private sector. The public sector has the means to build a lot of capacity.

I think GCP has demonstrated that it is possible to establish molecular breeding programmes in those parts of the world that do not have well-developed scientific infrastructure.

Just a little bit of money – relatively speaking of course – clear vision, and good leadership, can go very far, and produce tremendous benefits and progress.

GCP has also identified the constraints that we have to work within – the challenge of phenotyping and restrictions on the movement of genetic material to other parts of the world. GCP has paid particular attention to intellectual property [IP] because the information and materials GCP produces must remain in the public domain. IP in the international arena within which the Programme operates must span potentially conflicting national legislation regimes. It is a very complex area.

‘Challenge’ is in GCP’s name. What are the major challenges that the Programme has so far overcome?
Quite a number and more could be on the horizon. GCP has overcome some of these challenges. They include the problem of poor-quality phenotyping. This has been addressed through a comprehensive capacity-building programme, including laboratory and field infrastructure, and the training of research support staff in the developing-country field sites where GCP projects are being implemented.

Another challenge was focusing the Programme. At the start, the Programme was spread too thin, spanning too many crops and partners, but these have been progressively narrowed down in Phase II.

This narrowing is no mean feat in the public sector. In the private sector, you start with, say, a hundred projects, then after six months you halve them. After a year, you are down to 10 projects and you put all your resources into making those 10 ‘winners’ work. In the public sector, you keep the entire hundred going for three years, then you look for funding to keep them all running for another cycle. It’s a different culture: the private sector is product-oriented, while some aspects of the public sector emphasise contributing to the growth of knowledge and information, and to building or maintaining relationships, without necessarily asking about their usefulness and benefits to society.

The Board’s focus is now on auditing the Programme and mapping a strategy to sustain its successful partnerships and systems, so that these can continue to deliver products and capacity to the developing world.”

What are the future challenges that the Programme must overcome to remain sustainable?
There are many GCP activities that can be integrated into the new CGIAR Research Programmes. However, there may be other activities such as capacity building and IP management which – at this point in time – appear somewhat less easy to integrate into the new CGIAR Research Programmes.

There is also a danger – not unique to GCP but with all aid-assisted programmes – that when the money ends, everything will disappear into the archives. We have to make sure that doesn’t happen in this instance.

The Board’s focus is now on auditing the Programme and mapping a strategy to sustain its successful partnerships and systems, so that these can continue to deliver products and capacity to the developing world.

What are some of the lessons learnt so far?
GCP was born at a time when we thought molecular biology could solve all our problems quickly and efficiently. What I think we are finding is that molecular tools –while extremely useful – cannot entirely replace understanding the agronomy and phenotypic activities. Molecular biology alone is not a panacea or silver bullet for crop breeding; but it is a valuable tool.

Then there is capacity building: molecular breeding is a tool that you can only use if you have the capacity. Many parts of the world will require a lot of capacity building and support to be able to use the tools. GCP and its Integrated Breeding Platform can make a modest contribution to meeting this need through the proof-of-concept GCP Research Initiatives for selected crops and countries and establishing communities of practice.

If tools and resources are not put to use, then we labour in vain.

What has been the most enjoyable aspect of your position with GCP?
Without a doubt, attending the General Research Meetings has been the most enjoyable, meeting scientists from a wide range of institutes, backgrounds and countries.

These scientists come together because they share the same interests and a common goal. There’s a lively buzz of conversation. It is good to hear about what they are doing, what their aspirations are, and to learn from the knowledge and posters they bring to the meeting.

You don’t have to be a cutting-edge scientist to listen to these people whose enthusiasm is palpable. They are passionate, have a strong sense of community, enjoy what they are doing, and are just as keen to share this knowledge and enthusiasm. It’s all highly infectious!

Relevant links

cheap ghd australia