Jan 072015
 

Beyond chickpeas to embrace beans, chickpeas, groundnuts and pigeonpeas

Paul_w2As a scientist who comes from the dessicated drylands of the unforgiving Kerio Valley, where severe drought can mean loss of life through loss of food and animals, what comes first is food security… I could start to give something back to the community… It’s been a dream finally coming true.” – Paul Kimurto, Senior Lecturer and Professor in Crop Physiology and Breeding, Egerton University, Kenya

As a son of peasant farmers growing up in a humble home in the Rift Valley of Kenya, agriculture was, for Paul Kimurto (pictured above), not merely a vocation but a way of life: “Coming from a pastoral community, I used to take care of the cattle and other animals for my father. In my community livestock is key, as is farming of food crops such as maize, beans and finger millet.”

Covering some six kilometres each day by foot to bolster this invaluable home education with rural school, an affiliation and ever-blossoming passion for agriculture soon led him to Kenya’s Egerton University.

There, Paul excelled throughout his undergraduate course in Agricultural Sciences, and was thus hand-picked by his professors to proceed to a Master’s degree in Crop Sciences at the self-same university, before going on to obtain a German Academic Exchange Service (DAAD) scholarship to undertake a ‘sandwich’ PhD in Plant Physiology and Crop Breeding at Egerton University and the Leibniz Institute for AgriculturalEngineering (ATB) in Berlin, Germany.

… what comes first is food security… offering alternative drought-tolerant crops… is a dream finally coming true!…  GCP turned out to be one of the best and biggest relationships and collaborations we’ve had.”

Local action, global interaction
With his freshly minted PhD, Paul returned to Egerton’s faculty staff and steadily climbed the ranks to his current position as Professor and Senior Lecturer in Crop Physiology and Breeding at Egerton’s Crop Sciences Department. Yet for Paul, motivating this professional ascent throughout has been one fundamental factor:  “As a scientist who comes from a dryland area of Kerio valley, where severe drought can mean loss of food and animals, what comes first is food security,” Paul explains. “Throughout the course of my time at Egerton, as I began to understand how to develop and evaluate core crop varieties, I could start to give something back to the community, by offering alternative drought-tolerant crops like chickpeas, pigeonpeas, groundnuts and finger millet that provide farmers and their families with food security. It’s been a dream finally coming true.”

And thus one of academia’s true young-guns was forged: with an insatiable thirst for moving his discipline forward by seeking out innovative solutions to real problems on the ground, Paul focused on casting his net wide and enhancing manpower through effective collaborations, having already established fruitful working relationships with the International Maize and Wheat Improvement Center (CIMMYT), the (then) Kenya Agricultural Research Institute (KARI) and the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in earlier collaborative projects on dryland crops in Kenya. It was this strategy that paved the way towards teaming up with GCP, when, in 2008, Paul and his team were commissioned to lead the chickpea work in Kenya for the GCP Tropical Legumes I project (TLI), with local efforts being supported by colleagues at ICRISAT, and friends down the road at KARI undertaking the bean work of the project. Climbing aboard the GCP ship, Paul reveals, was a move worth making: “Our initial engagement with GCP started out as a small idea, but in fact, GCP turned out to be one of the best and biggest relationships and collaborations we’ve had.”

…GCP is people-oriented, and people-driven” 

Power to the people!
The success behind this happy marriage, Paul believes, is really quite simple: “The big difference with GCP is that it is people-oriented, and people-driven,” Paul observes, continuing: “GCP is building individuals: people with ideas become equipped to develop professionally.” Paul elaborates further: “I wasn’t very good at molecular breeding before, but now, my colleagues and I have been trained in molecular tools, genotyping, data management, and in the application of molecular tools in the improvement of chickpeas through GCP’s Integrated Breeding Multiyear Course. This has opened up opportunities for our local chickpea research community and beyond, which, without GCP’s support, would not have been possible for us as a developing-country institution.”

Inspecting maturity, Koibatek FTC, Bomet_R Mulwa_Sep'12_w

Inspecting pod maturity with farmers at Koibatek Farmers Training Centre in Eldama Ravine Division, Baringo County, Kenya, in September 2012. Paul is on the extreme right.

Passionate about his teaching and research work, it’s a journey of discovery Paul is excited to have shares with others: “My co-workers and PhD students have all benefitted. Technicians have been trained abroad. All my colleagues have a story to tell,” he says. And whilst these stories may range from examples of access to training, infrastructure or genomic resources, the common thread throughout is one of self-empowerment and the new-found ability to move forward as a team: “Thanks to our involvement with the GCP’s Genotyping Support Service, we now know how to send plant DNA to the some of the world’s best labs and to analyse the results, as well as to plan for the costs. With training in how to prepare the fields, and infrastructure such as irrigation systems and resources such as tablets, which help us to take data in the field more precisely, we are now generating accurate research results leading to high-quality data.”

The links we’ve established have been tremendous, and we think many of them should be long-lasting too: even without GCP

Teamwork, international connections and science with a strong sense of mission
Teaming up with other like-minded colleagues from crème de la crème institutions worldwide has also been vital, he explains: “The links we’ve established have been tremendous, and we think many of them should be long-lasting too: even without GCP, we should be able to sustain collaboration with KBioscience [now LGC Genomics] or ICRISAT for example, for genotyping or analysing our data.” He holds similar views towards GCP’s Integrated Breeding Platform (IBP): “IBP is one of the ideas which we think, even after GCP’s exit in December 2014, will continue to support our breeding programmes. My colleagues and I consult IBP regularly for a range of aspects, from markers to protocols to germplasm and the helpdesk, as well as for contacts and content available via the IBP Communities of Practice.” Paul’s colleagues are Richard Mulwa, Alice Kosgei, Serah Songok, Moses Oyier, Paul Korir, Bernard Towett, Nancy Njogu and Lilian Samoei. Paul continues: “We’ve also been encouraging our regional partners to register on IBP – I believe colleagues across Eastern and Central Africa could benefit from this one-stop shop.”

Yet whilst talking animatedly about the greater sophistication and accuracy in his work granted as a result of new infrastructure and the wealth of molecular tools and techniques now available to him and his team, at no point do Paul’s attentions stray from the all-important bigger picture of food security and sustainable livelihoods for his local community: “When we started in 2008, chickpeas were known as a minor crop, with little economic value, and in the unfavoured cluster termed ‘orphan crops’ in research. Since intensifying our work on the crop through TLI, we have gradually seen chickpeas become, thanks to their relative resilience against drought, an important rotational crop after maize and wheat during the short rains in dry highlands of Rift valley and also in the harsh environments of the Kerio Valley and swathes of Eastern Kenya.”

This GCP-funded weather station is at Koibatek Farmers Training Centre, Longisa Division, Bomet County.

This GCP-funded weather station is at Koibatek Farmers Training Centre.

Having such a back-up in place can prove a vital lifeline to farmers, Paul explains, particularly during moments of crisis, citing the 2011–2012 outbreak of the maize lethal necrosis (MLN) disease which wiped out all the maize throughout Kenya’s  Bomet County, where Paul, Richard, Bernard and their team had been working on the chickpea reference set. Those farmers who had planted chickpeas – Paul recalls Toroto and Absalom as two such fortunate souls – were food-secure. Moreover, GCP support for infrastructure such as a weather station have helped farmers in Koibatek County to predict weather patterns and anticipate rainfall, whilst an irrigation system in the area is being used by the Kenyan Ministry of Agriculture to develop improved seed varieties and pasture for farmers.

The science behind the scenes and the resultant products are of course not to be underestimated: in collaboration with ICRISAT, Paul and his team released four drought-resistant chickpea varieties in Kenya in 2012, with the self-same collaboration leading to the integration of at least four varieties of the crop using marker-assisted backcrossing, one of which is in the final stages and soon to be released for field testing. With GCP having contributed to the recent sequencing of the chickpea genome, Paul and his colleagues are now looking to up their game by possibly moving into work on biotic stresses in the crop such as diseases, an ambitious step which Paul feels confident can be realised through effective collaboration, with potential contenders for the mission including ICRISAT (for molecular markers), Ethiopia and Spain (for germplasm) and researchers at the International Center for Agricultural Research in the Dry Areas (ICARDA) for germplasm. Paul first established contact with all of these partners during GCP meetings.

By coming together, pooling skills from biotechnology, agronomy, breeding, statistics and other disciplines, we are stronger as a unit and better equipped to offer solutions to African agriculture and to the current challenges we face.”

Links that flower, a roving eye, and the heat is on!
In the meantime, the fruits of other links established since joining the GCP family are already starting to blossom. For example, TLI products such as certified seeds of chickpea varieties being released in Kenya – and in particular the yet-to-be-released marker-assisted breeding chickpea lines which are currently under evaluation – caught the eye of George Birigwa, Senior Programme Officer at the Program for Africa’s Seed Systems (PASS) initiative of the Alliance for a Green Revolution in Africa (AGRA), which is now supporting the work being undertaken by Paul and his team through the Egerton Seed Unit and Variety Development Centre (of which Paul is currently Director) at the Agro-Based Science Park.

Yet whilst Paul’s love affair with chickpeas has evidently been going from strength to strength, he has also enjoyed a healthy courtship with research in other legumes: by engaging in a Pan-African Bean Research Alliance (PABRA) bean project coordinated by the International Center for Tropical Agriculture (CIAT), Paul and his team were able to release and commercialise three bean varieties which are currently in farmers’ fields in Kenya.

20140124_150637

Paul (left) in the field. The crop is chickpeas of course!

With so many pots on the boil, the heat is certainly on in Paul’s research kitchen, yet he continues to navigate such daily challenges with characteristic aplomb. As a proven leader of change in his community and a ‘ can-do, make-it-happen’ kind of guy, he is driving research forward to ensure that both his school and discipline remain fresh and relevant – and he’s taking his colleagues, students and local community along with him every step of  the way.

Indeed, rallying the troops for the greater good is an achievement he values dearly: “By coming together, pooling skills from biotechnology, agronomy, breeding, statistics and other disciplines, we are stronger as a unit and better equipped to offer solutions to African agriculture and to the current challenges we face,” he affirms. This is a crusade he has no plans to abandon any time soon, as revealed when quizzed on his future aspirations and career plans: “My aim is to continue nurturing my current achievements, and to work harder to improve my abilities and provide opportunities for my institution, colleagues, students, friends and people within the region.”

With the chickpea research community thriving, resulting in concrete food-security alternatives, we raise a toast to Paul Kimurto and his chickpea champions!

Links

 

Aug 292014
 

“…I wanted to contribute in a similar way” – Eva Weltzien

 

Eva Weltzien

Eva Weltzien

Learning about the work of Nobel laureate, Norman Borlaug, in high school inspired Eva Weltzien to become a plant breeder so she too could contribute to improving the living conditions in the developing world. Today, Eva is a Principal Scientist in sorghum breeding and genetic resources at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in Mali.

“Not only did Norman Borlaug revolutionise agriculture by breeding high-yielding wheat varieties, he then selflessly distributed these to the countries in the world that most needed them, saving hundreds of millions from starvation,” Eva recollects passionately, as she speaks about her scientific hero. “I remember being inspired when he won his Nobel Prize in 1970, mainly for the fact that agricultural research was actually being seen as contributing to world peace,” says Eva. “I knew then that I wanted to contribute in a similar way.”

I…wanted to take a break from… theory and instead gain an appreciation for plant breeding by working in the field”

The path to plant breeding, and pearls along the way
Eva was raised in her native Germany, as well as in Beirut, Lebanon, where she spent six years when her parents were stationed at the local university there. She credits her parents; both plant pathologists, for instilling in her a scientific mind-set from a tender age.

“They taught me to think outside the box and apply my knowledge and understanding to how I made sense of the world,” Eva recalls. “Being plant pathologists, they also encouraged me to observe the environment carefully and treat the earth with respect.”

Upon graduating from high school, Eva deferred going to university and instead worked as a seed technician for a private company in Germany. “I just wanted to take a break from studying theory and instead gain an appreciation for plant breeding by working in the field,” says Eva.

After one year with the company, Eva was ready to start university. During the decade that followed, she completed a Diploma in Agricultural Biology (University of Hohenheim, 1981) and a PhD in Agriculture (Munich University, 1986).

A year after completing her PhD, Eva accepted a postdoc position at Iowa State University, USA, where she met her future husband Fred Rattunde. After a few years, both Eva and Fred moved to India to work with ICRISAT. “I’ve been working for ICRISAT for almost 27 years now,” says Eva. “When I first started, I was working in pearl millet breeding.”

The key challenges have been improving the infrastructure of the national research facilities… as well as increasing the technical training for local researchers…this has slowly improved, particularly in the last four years with the funding and help through the GCP Sorghum Research Initiative.…we can see our work making an impact on people’s lives…”

Off to Africa, and bearing fruit
In 1998, ICRISAT offered Eva and Fred positions in Mali where they would take responsibility for the Institute’s sorghum-breeding programme in West Africa.

OLYMPUS DIGITAL CAMERA

Evaluating Eva: In Dioila district, Mali, evaluating the panicles of a new sorghum line after harvest.

“It was a great challenge that we both wanted to explore,” says Eva. “The key challenges have been improving the infrastructure of the national research facilities to do the research as well as increasing the technical training for local agronomists and researchers. Over the past 15 years, this has slowly improved, particularly in the last four years, with the funding and facilitation through the GCP Sorghum Research Initiative. Now we can see our work making an impact on people’s lives in West Africa.” (see GCP’s work on infrastructure improvement)

…we are closer to delivering more robust sorghum varieties which will help farmers and feed the ever-growing population in West Africa.”

Improving drought tolerance in sorghum for Africa
The second phase of GCP’s Sorghum Research Initiative focuses on Mali, where sorghum-growing areas are large, and distributed over a wide range of rainfall regimes.

Eva and her team are currently collaborating with local researchers at L’Institut d’économie rurale (IER), Mali and France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD) on a project to test a novel molecular-breeding approach – backcross nested association mapping (BCNAM). Eva says the approach has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to poor soil fertility conditions.

“We don’t have these type of molecular-breeding resources available in Mali, so it’s really exciting to be a part of this project.”  Still, Eva and her colleagues continue to press forwards in this new frontier in plant science, making good advances in another parallel but closely related project that Eva leads in the GCP Comparative Genomics Research Initiative.

Eva continues, “We’ve had good results in terms of field trials, despite the political situation. Overall, we feel the experience is enhancing our capacity here in Mali, and that we are closer to delivering more robust sorghum varieties which will help farmers and feed the ever-growing population in West Africa.”

Slides (with more links after the slides)

Links

Nov 302012
 
Photo: IRRI

Sigrid Heuer

Meet Sigrid Heuer (pictured), a Molecular Biologist and Senior Scientist at the International Rice Research Institute (IRRI). Her lively and riveting story will take us from Africa through her native Europe and on to Asia, and finally Down Under to Australia.

Origins – the African chapter
Africa holds a special and soft spot in Sigrid’s love affair with science: it was while on this continent that she realised her calling in life as a scientist – linking people doing pure research on plant genes to help plants survive and even thrive in harsh environments, with people who want to apply that knowledge to breed crops that can change the lives of millions of farmers who constantly compromise with nature to make a living.

Photo: IRRI

Fieldwork: Sigrid at a field trial for rice phosphorus uptake.

“Working as a postdoc at the Africa Rice Center in Senegal was a real life-changing experience,” Sigrid recollects with great fondness. “It’s where I found my niche, using my background in theoretical science and applying it to developing crops that could overcome abiotic stresses, and in doing so, make a real impact on people’s lives.”

Rowing further down the river: from upstream to downstream science
Sigrid was born and raised in Hamburg, Germany. She remembers wanting to be a psychologist and didn’t consider science until a few years after finishing school. After completing a biology undergraduate at Phillips University, Marburg, Germany, she returned to her home city of Hamburg to complete a Masters and PhD in plant physiology and molecular biology respectively.

“Back then, I was really involved in upstream science, fascinated in the fine details without much consideration of how such research could benefit society,” says Sigrid. “I still enjoy this form of science and really do value its purpose, but putting it into practice and focusing on the impact that it can have is what really motivates me now.”

Moving to IRRI, and meeting Pup1 and GCP
After three years in Senegal, Sigrid moved to the Philippines to join IRRI in 2003, first as a consultant then as a part-time scientist. In these early years, she was working on several projects, one of which was the GCP-funded Pup1 (rice phosphorus uptake) project.

“The project sought to identify the genes associated with phosphorus uptake in rice lines that could tolerate phosphorus-deficient soils,” says Sigrid. “It was an interesting project in which I was able to use my background in molecular biology. Little by little, I got more and more involved in the Pup1 project and after a year I was asked by Matthias Wissuwa, who was leading the project at the time, if I wanted to take it over. It was a great opportunity which I jumped at, not knowing then how challenging it would prove.”

Pup1 was the first major project I had managed. It was a playground of sorts that allowed me to learn what I needed to know about managing a project – writing proposals and reports, managing budgets and people’s time, and everything else that comes with leading a team.

The ‘root’ and  ‘command post’ where it all happens: Sigrid in the office. For the benefit of our readers, we would have credited the young artist whose colourful work graces the background below the bookshelf, but we were too polite to pry and prise out the young talent’s name, having hogged too much of Sigrid’s time already!

Learning to lead – both work and play

Over the last seven years, Sigrid has been a Principal Investigator and joint leader of the project, which has given her latitude to mature professionally, and not just in science alone. “It’s been tough but personally fulfilling,” Sigrid says, with just a touch of exhaustion.

Pup1 was the first major project I had managed. It was a playground of sorts that allowed me to learn what I needed to know about managing a project – writing proposals and reports, managing budgets and people’s time, and everything else that comes with leading a team. I was really lucky to have Matthias’ help as well as the other experienced collaborators and networks. However, the main factor that made my job a lot less stressful, was the benefit of long-term funding and support from GCP. GCP was always there, supporting us and giving us confidence even when we weren’t sure we were going to succeed.”

Persistence pays: tangible products, plus publication in Nature
In August 2012, Sigrid and her team achieved what they had set out to do seven years ago, through what Sigrid puts down to sheer persistence: their discovery of the Pup1 gene was recognised by their scientific peers and published in the highly renowned journal,  Nature.

Sigrid (3rd left) at the lab with other colleagues in the phosphorus uptake team.

“Having our paper published is really something special and personally my greatest achievement to date,” says Sigrid, but she is also quick to add that it was a team achievement, and that the achievement was in itself humbling.

“It was a double reward for persisting with the research, and with getting it into Nature. We wanted it in Nature for several reasons. To raise awareness on phosphorus deficiency and phosphorus being a limited resource, especially in poorer countries; and to draw attention to how we do molecular breeding these days, which is a speedier, easier and cost-effective approach to developing crops that have the potential to alleviate such problems.”

Sigrid hopes the article will have a lasting impression on readers, and encourage funders to continue to support projects that have such impact on the lives of end-users.

What next? Technology transfer, transitions and torch smoothly passing on…
With the Pup1 gene now found, IRRI researchers are working with breeders from country-based breeding programmes around the world to help them understand the techniques to breed local varieties of rice that can grow in phosphorus-deficient soils. They are also collaborating with other projects that wish to use the Pup1 project as a case study for phosphorous deficiency tolerance in other crops like maize, sorghum, and wheat (see an example here, that includes partners from Africa and Latin America).

Sigrid sees this next stage as a perfect time to step down from the project: she plans to move to Adelaide, Australia at the end of 2012 to lead a new project that is looking at drought and nitrogen deficiency tolerance in wheat.

“Matthias passed the baton on to me, and now I get to pass the baton on to someone else, so it’s nice. And I’ll be sure to always be around to help them too.”

Links

Sigrid’s presentation at the GCP General Research Meeting 2011

 

 

Sep 072012
 

Preparing rice root samples (Photo: IRRI)ALL IN THE ROOTS: A plant’s roots are a marvellously multitalented organ. They act as fingers and mouths helping plants forage and absorb water and nutrients. They act like arms and legs offering a sturdy base of support so a plant doesn’t keel over. They help store food and water, like our stomach and fat cells. And in some plants, can spawn new life – we leave that to your imagination!

That is why it is of little surprise that this multitalented organ was the key to discovering why some rice lines yield better in phosphorus-poor soils, a puzzle whose answer has eluded farmers and researchers… until now.  And even better, the findings hold promise for sorghum, maize and wheat too. Please read on!

 In search of the key – The Gene Trackers
In 1999, Dr Matthias Wissuwa, now with the Japan International Research Centre for Agricultural Sciences (JIRCAS), deduced that Kasalath, a northern Indian rice variety, contained one or more genes that allowed it to grow successfully in low-phosphorus conditions.

For years, Matthias made it his mission to find these genes, only to find it was as easy as finding a needle in a genetic haystack. He teamed up with the International Rice Research Institute (IRRI), and with GCP’s support, the gene trackers were able to narrow the search down to five genes of interest.

“We had started with 68 genes and within three years, we had narrowed in on these five candidate genes. And then, one-by-one, we checked whether they were related to phosphorous uptake,” recollects Dr Sigrid Heuer, senior scientist at IRRI and leader of the team that published the discovery in Nature in August 2012.

Sigrid Heuer at a rice phosphorus uptake demonstration field in The Philippines.

“In the end we found that if a certain protein kinase gene was turned on in tolerant plants like Kasalath, then those plants would perform better in phosphorus-deficient soils.”

They named this protein kinase gene PSTOL1, which stands for Phosphorus Starvation Tolerance. “When we put this gene into intolerant rice varieties that did not have this gene, they performed better in phosphorus-deficient soils.”

The importance of phosphorus
Rice, like all plants, needs phosphorus to survive and thrive. It’s a key element in plant metabolism, root growth, maturity and yield. Plants deficient in phosphorus are often stunted.

Sigrid explains that whereas phosphorus is abundant in most soils, it is however not always easily accessible by plants. “Many soil types bond tightly to phosphorus, surrendering only a tiny amount to plant roots. This is why more than half of the world’s rice lands are phosphorus-deficient.”

Farmers can get around this by applying phosphate fertilisers. However this is a very expensive exercise and is not an option for the majority of the world’s rice growers, especially the poorer ones –the price of rock phosphate has more than doubled since 2007. The practice is also not sustainable since it is a finite resource.

By selecting for rice varieties with PSTOL1, growers will be less reliant on phosphate fertilisers.

How it works: unravelling PSTOL1 mechanics
In phosphorus-poor soils, PSTOL1 switches on during the early stage of root development. The gene tells the plant to grow larger longer roots, which are able to forage through more soil to absorb and store more nutrients.

“By having a larger root surface area, plants can explore a greater area in the soil and find more phosphorus than usual,” says Sigrid. “It’s like having a larger sponge to absorb more water.”

A rice variety — IR-74 — with Pup1 (left) and without Pup1 (right).

Although the researchers focussed on this one key nutrient, they found the extra root growth helped with other vital elements like nitrogen and potassium.

Another by-chance discovery was that phosphorus uptake 1 (Pup1), the collection of genes (locus) where PSTOL1 is found, is present within a large group of rice varieties.

“We found that in upland rice varieties – those bred for drought-prone environments – most have Pup1,” says Sigrid. “So the breeders in these regions have, without knowing it, been selecting for phosphorus tolerance.”

“When thinking about it, it makes sense as phosphorus is very immobile in dry soils, therefore these plants would have had to adapt to grow longer roots to reach water deeper in the soil and this, at the same time, helps to access more reservoirs of phosphorous .”

Breeding for phosphorus tolerance, and going beyond rice
Using conventional breeding methods, Sigrid says that her team introduced PSTOL1 into two irrigated rice varieties and three Indonesian upland varieties, and found that this increased yields by up to 20 percent.

“In our pot experiments,” she added, “when we use soil that is really low in phosphorus, we see yield increases of 60 percent and more. This will mean growers of upland rice varieties will probably benefit the most from these new lines, which is pleasing given they are among the poorest rice growers in the world.”

Read how Indonesian researchers are developing their own breeds of upland rice with the PSTOL1 gene

Sigrid also sheds light on broadening the research to other crop varieties: “The project team is currently looking at Pup1 in sorghum and maize and we are just about to start on wheat.”

Building capacity and ensuring impact
Like all GCP projects, this one invests as much time in building capacity for country breeding programmes as on research.

Sigrid and her team are currently conducting the first Pup1 workshop to train researchers from Bangladesh, India, Indonesia, Nepal, Philippines, Thailand and Vietnam. They will share molecular markers that indicate the presence of PSTOL1, techniques to select for the gene, as well as for new phosphorus-efficient varieties.

Breeding for phosphorus-efficient rice in the Philippines.

“The aim of these workshops is to take these important tools to where they are most needed and allow them to evolve according to the needs and requirements of each country,” says Dr Rajeev Varshney, GCP’s Comparative and Applied Genomics Leader. “Breeders will be able to breed new rice varieties faster and more easily, and with 100 percent certainty that their rice plants will have the gene. Within three to five years, each country will be able to breed varieties identical to those that growers know and trust except that they will now have the Pup1 gene and an improved ability to unlock and take up soil phosphorus.”

Joining hands in collaboration
This IRRI-led project was conducted in collaboration with JIRCAS and the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD) working with the Indonesian Centre for Rice Research. Other partners included: Italy’s University of Milano, Germany’s Max Planck Institute in Golm, the University of The Philippines at Los Baños, USA’s Cornell University and University of California (Davis and Riverside), Brazil’s EMBRAPA, Africa Rice Center, Iran’s Agricultural Biotechnology Research Institute, Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO) and University of Dhaka in Bangladesh.

Links

Sigrid’s presentation at the GCP General Research Meeting 2011

cheap ghd australia