Jan 022015
 

Friendship and trust at the heart of sorghum research

…benefits to humanity are the real driver of the work.”

Andy1_wAndrew Borrell (pictured) is a man who loves his work – a search for a holy grail of sorts for the grain of his choice  sorghum.

Based at the University of Queensland, Australia, Andrew is co-Principal Investigator with David Jordan for a GCP-funded project developing drought-adapted sorghum for Africa and Australia. And Andrew is passionate not just about the potential of sorghum, but also about the cross-continental relationships that underpin his research team. These friendships, says Andrew, are the glue that hold his team together and make it work better.

The year 2013 was particularly exciting. After almost five years working with African plant breeders to improve genetic material, field trials were up and running at 12 sites across East and West Africa.  Fastforward to 2015 and  glad tidings for the New Year! Andrew and his team now have preliminary evidence that the drought-tolerant ‘stay-green’ trait enhances grain size and yield  in some of the target countries in  Africa for which data have already been analysed.

What Andrew hopes to see is more genetic diversity, not just for diversity’s sake but put to use in farmers’ fields  to enhance yield during drought. This means more food, fodder and other sorghum by-products such as stems for construction. These benefits to humanity are, he says, the real driver of the work his team does.

So what are the wonders of ‘stay-green’? Waxing lyrical…

The sought-after  ‘stay-green’ trait that Andrew and his team are so interested in describes the phenotype – what the plant looks like. It simply means that when drought strikes, sorghum plants with this trait remain leafy and green during the grain-filling period – a critical time when the plant’s water is channelled to developing healthy panicles of grain.

So, what makes these plants remain healthy when others are losing their leaves? Why do they wax while others wane? The answer, says Andrew, is twofold, and is all to do with water supply and demand, and more and less. Firstly, there is some evidence that the roots of the stay-green plants penetrate deeper into the soil, tapping into more water supply. Secondly, plants with the stay-green trait have a smaller leaf canopy which means less water demand by the plant before flowering, leaving more water for grain-filling after flowering.

Staying power and stover are also part of the story. According to Andrew, “Plants with the stay-green trait produce more grain in dry conditions, have stronger stems so they don’t fall over, and often have larger grains. And it’s not just about grain alone: stay-green also improves the quality of the stover left in the field after harvest, which serves as animal feed.”

Another key feature of the stay-green trait in sorghum is that it is not just a fair-weather friend: it works well in wet as well as dry conditions. “All the evidence we’ve got suggests that you get a benefit under tough conditions but very little penalty under good conditions,” says Andrew.

…the process is synergistic and we do something that’s better than any of us could do alone.”

Safari from Down Under to Africa: East and West, and home are all best

For Andrew and his co-Principal Investigator, David Jordan, the GCP project is the first time they have been involved in improving sorghum in Africa. The two scientists work with sorghum improvement teams in six African countries: Mali, Burkina Faso and Niger in the west, and, Ethiopia, Kenya and Sudan in the east. By crossing African and Australian sorghum, the teams have developed the lines now being field-tested  in all the six countries.

A sampling of some of stay-green sorghum partnerships in Africa. (1)  Asfaw Adugna assessing the genetic diversity of  sorghum panicles produced from the GCP collaboration at Melkassa, Ethiopia. (2)  Clarisse Barro-Kondombo (Burkina Faso) and Andrew Borrell (Australia) visiting a lysimeter facility in Hyderabad, India, as part of GCP training. (3) Clement Kamau (Kenya, left) and  Andrew Borrell (Australia, right) visiting the seed store at the Kenya Agricultural Research Institute (KARI) in Katumani, Kenya.

A sampling of some of stay-green sorghum partnerships in Africa. (1) Asfaw Adugna (Ethiopian Agricultural Research Institute) assessing the genetic diversity of sorghum panicles produced from the GCP collaboration at Melkassa, Ethiopia. (2) Clarisse Barro-Kondombo (Institut de l’environnement et de recherches agricoles, Burkina Faso) and Andrew Borrell (Australia) visiting a lysimeter facility at ICRISAT in Hyderabad, India, as part of GCP training. (3) Clement Kamau (Kenya, left) and Andrew Borrell (Australia, right) visiting the seed store at the Kenya Agricultural Research Institute (KARI) in Katumani, Kenya.

According to Andrew, the collaboration with African scientists is “a bit like a group of friends using science to combat hunger. That’s probably been the biggest advantage of GCP,” adds Andrew. “Bringing people together for something we are all passionate about.”

There’s another collaborative element to the project too. As well as improving and testing plant material, the Australian contingent hosts African scientists on three-week training sessions. “We span a whole range of research topics and techniques,” explains Andrew. “We learn a lot from them too – their local expertise on soil, crops and climate. Hopefully the process is synergistic and we do something that’s better than any of us could do alone.”

Andrew says that working personally with plant breeders from Africa has made all the difference to the project. “Once colleagues from overseas come into your country, you develop real friendships. They know your families, they know what you do, and that’s very important in building relationships and trust that make the whole thing work.”

It wasn't all work and there was clearly also time to play, as we can see her., Sidi Coulibaly and Niaba Teme visiting with the Borrell family in Queensland, Australia.

It wasn’t all work and there was clearly also time to play, as we can see here, Sidi Coulibaly and Niaba Teme from Mali visit the Borrell family in Queensland, Australia.

Golden sunsets, iridescent rainbows and perpetual evergreen partnerships

As Andrew and his team wait to see how their field experiments in Africa turn out, they know that this is not the end of the story. In fact, it is only the beginning. Once tested, the germplasm will provide genetic diversity for future breeding programmes in Africa.

And the research collaboration between Australia and Africa won’t end when GCP funding runs out and GCP sunsets. For example, in addition to the GCP project, David Jordan has secured significant funding from the Bill & Melinda Gates Foundation for another four years’ sorghum research in Ethiopia. Plus, Andrew and Kassahun Banttea, a colleague from Jimma University, have also just been awarded a PEARL grant from the Foundation to assess the sorghum germplasm collection in Ethiopia for drought-adaptation traits.

We wish this ‘stay-evergreen’ team well in their current and future ventures. More sorghum ‘stickability’ and staying power to them! May they find the proverbial pot of gold at the end of the rainbow.

This enchanted rainbow-rings-and-sorghum photo is from Andy Borrell, and, contrary to the magical song, please continue under the rainbow for links to more information.

Sorghum rainbow_A Borrello

Links

 

 

 

Sep 012014
 

Scouring the planet for breeding solutions

Bindiganavile Vivek

Bindiganavile Vivek

Bindiganavile Vivek (pictured) is a maize breeder working at the International Maize and Wheat Improvement Center (CIMMYT), based in Hyderabad, India. For the past five years, Vivek and his team have been developing drought-tolerant germplasm for Asia using relatively new molecular-breeding approaches – marker-assisted recurrent selection (MARS), applied in a genomewide selection (GWS) mode. Their work in the Asian Maize Drought-Tolerance (AMDROUT) project is implemented through GCP’s Maize Research Initiative, with Vivek as the AMDROUT Principal Investigator.

Driven by consumer demand for drought-tolerant maize varieties in Asia, the AMDROUT research team has focussed on finding suitable drought-tolerant donors from Africa and Mexico. Most of these donors are white-seeded, yet in Asia, market and consumer preferences predominantly favour yellow-seeded maize. Moreover, maize varieties are very site-specific and this poses yet another challenge. Clearly, breeding is needed for any new target environments, all the while also with an eye on pronounced market and consumer preferences.

(1) Amazing maize and its maze of colour. Maize comes in many colours, hues and shapes. (2) Steeped in saffron: from this marvellous maize mix and mosaic, the Asian market favours yellow maize.

(1) Amazing maize and its maze of colour. Maize comes in many colours and hues. (2) Steeped in saffron: from this marvellous maize mix and mosaic, the flavour in Asia favours yellow maize.

Stalked by drought, tough to catch, but still the next big thing

Around 80 per cent of the 19 million hectares of maize in South and Southeast Asia is grown under rainfed conditions, and is therefore susceptible to drought, when rains fail. Tackling drought can therefore provide excellent returns to rainfed maize research and development investments. As we shall see later, Vivek and his team have already made significant progress in developing drought-tolerant maize.

Drough in Asia_Vivek slide_GRM 2013_w

The stark reality of drought is illustrated in this warning sign on a desiccated drought-scorched landscape, showing the severity of drought in Asia

But they are after a tough target: drought tolerance is dodgy since it is a highly polygenic trait, making it difficult for plant scientists to pinpoint genes for the trait (see this video with an example from rice in Africa). In other words, to make a plant drought-tolerant, many genes have to be incorporated into a new variety. As one would expect, the degree of difficulty is directly proportional to the number of genes involved. In the private-sector seed industry, MARS  (PDF) has been successfully used in achieving rapid progress towards high grain yield under optimal growth conditions. Therefore, a similar approach could be used to speed up the process of introducing drought tolerance into Asian crops – the reason why the technique is now being used by this project.

AMDROUT Meeting Penang Dec2010_w

More than India: the AMDROUT project also comprises research teams in China, Indonesia, Thailand, The Philippines and Vietnam. In this photo taken during the December 2010 annual project meeting in Penang, Malaysia, the AMDROUT team assessed the progress made by each country team, and  team members were trained in data management and drought phenotyping. They also realised that there was a need for more training in genomic selection, and did something about it, as we shall see in the next photo. Pictured here, left to right: Luo Liming, Tan jing Li, Villamor Ladia, V Vengadessan, Muhammad Adnan, Le Quy Kha, Pichet Grudloyma, Vivek, IS Singh, Dan Jeffers (back), Eureka Ocampo (front), Amara Traisiri and Van Vuong.

The rise of maize: clear chicken-and-egg sequence…

Vivek says that the area used for growing maize in India has expanded rapidly in recent years. In some areas, maize is in fact displacing sorghum and rice. And the maize juggernaut rolls beyond India to South and Southeast Asia. In Vietnam, for example, the government is actively promoting the expansion of  maize acreage, again displacing rice. Other countries involved in the push for maize include China, Indonesia and The Philippines.

So what’s driving this shift in cropping to modern drought-tolerant maize? The curious answer to this question lies in food-chain dynamics. According to Vivek, the dramatic increase in demand for meat – particularly poultry – is the driver, with 70 percent of maize produced going to animal feed, and 70 percent of that going into the poultry sector alone.

GCP gave us a good start… the AMDROUT project laid the foundation for other CIMMYT projects”

 Show and tell: posting and sharing dividends

As GCP approaches its sunset in December 2014, Vivek reports that all the AMDROUT milestones have been achieved. Good progress has been made in developing early-generation yellow drought-tolerant inbred lines. The use of MARS by the team – something of a first in the public sector – has proved to be useful. In addition, regional scientists have benefitted from broad training from experts on breeding trial evaluation and genomic selection (photo-story on continuous capacity-building). “GCP gave us a good start. We now need to expand and build on this,” says Vivek.

AMDROUT trainees at Cambridge_w

AMDROUT calls in on Cambridge for capacity building. AMDROUT country partners were at Cambridge University, UK, in March 2013, for training in quantitative genetics, genomic selection and association mapping. This was a second training session for the team, the first having been September 2012 in India.
Pictured here, left to right – front row: Sri Sunarti, Neni Iriany, Hongmei Chen;
middle row: Ian Mackay (Cambridge), Muhammad Azrai, Le Quy Kha, Artemio Salazar;
back row: Roy Efendy, Alison Bentley (who helped organise, run and teach on the course, alongside Ian) and Suriphat Thaitad.AMDROUT country partners are from China’s Yunnan Academy of Agricultural Sciences (YAAS); the Indonesian Cereals Research Institute (ICERI); the Institute of Plant Breeding at the Unversity of Philppines at Los Baños (UPLB); Thailand’s Nakhon Sawan Field Crops Research Center (NSFCRC); Vietnam’s National Maize Research Institute (NMRI); and private-sector seed companies in India, such as Krishidhan Seeds.Curious on who proposed to whom for this AMDROUT–Cambridge get-together? We have the answer: a Cambridge callout announced the training, and AMDROUT answered by calling in, since course topics were directly relevant to AMDROUT’s research approach. 

 

 

According to Vivek, the AMDROUT project laid the foundation for other CIMMYT projects  such as the Affordable, Accessible, Asian (AAA) Drought-Tolerant Maize (popularly known as the ‘Triple-A project’) funded by the Syngenta Foundation for Sustainable Agriculture. This Triple-A project is building on the success of AMDROUT, developing yet more germplasm for drought tolerance, and going further down the road to develop hybrids.

 

Outputs from the AMDROUT project will be further refined, tested and deployed through other projects”

Increasing connections, and further into the future

Partly through GCP’s Integrated Breeding Platform (IBP), another area of success has been in informatics. Several systems such as the Integrated Breeding FieldBook, the database Maize Finder and the International Maize Information System (IMIS) now complement each other, and allow for an integrated data system.

There is now also an International Maize Consortium for Asia (IMIC–Asia), coordinated by CIMMYT, comprising a group of 30 commercial companies (ranging from small to large; local to transnational). Through this consortium, CIMMYT is developing maize hybrids for specific environmental conditions, including drought. IMIC–Asia will channel and deploy the germplasms produced by AMDROUT and other projects, with a view to assuring impact in farmers’ fields.

Overall, Vivek’s experience with GCP has been very positive, with the funding allowing him to focus on the agreed milestones, but with adaptations along the way when need arose: Vivek says that GCP was open and flexible regarding necessary mid-course corrections that the team needed to make in their research.

But what next with GCP coming to a close? Outputs from the AMDROUT project will be further refined, tested and deployed through other projects such as Triple A, thus assuring product  sustainability and delivery after GCP winds up.

Links

As our Maize Research Initiative does not have a Product Delivery Coordinator, Vivek graciously stepped in to coordinate the maize research group at our General Research Meeting in 2013, for which we thank him yet again. Below are slides summing up the products from this research, and the status of the projects then.

Aug 292014
 
One of the greatest challenges of our time is growing more crops to feed more people, but using less water

Sorghum is one of the most ‘efficient’ crops in terms of needing less water and nutrients to grow. And although it is naturally well-adapted to sun-scorched drylands, there is still a need to improve its yield and broad adaptability in these harsh environments. In West Africa, for example, while sorghum production has doubled in the last 20 years, its yield has remained stagnant – and low.

The GCP Sorghum Research Initiative comprises several projects, which are exploring ways to use molecular-breeding techniques to improve sorghum yields, particularly in drylands. All projects are interdisciplinary international collaborations with an original focus on Mali, where sorghum-growing areas are large and rainfall is getting more erratic and variable. Through the stay-green project, the research has since broadened to also cover Burkina Faso, Ethiopia, Kenya, Niger and Sudan.

Using molecular markers is new and exciting for us as it will speed up the breeding process. With molecular markers, you can easily see if the plant you’ve bred has the desired characteristics without having to grow the plant and or risk missing the trait through visual inspection.”

What’s MARS got to do with it?

Niaba Témé is a local plant breeder and researcher at Mali’s L’Institut d’économie rurale (IER). He grew up in a farming community on the southern edge of the Sahara Desert, where crops would constantly fail during drier-than-normal seasons.

Niaba Teme

Niaba Témé

Niaba says these crop failures were in part his inspiration for a career where he could help farmers like his parents and siblings protect themselves from the risks of drought and extreme temperatures.

For the past four years, Niaba and his team at IER have been collaborating with Jean-François Rami and his team at France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), to improve sorghum grain yield and quality for West African farmers. The work is funded by the Syngenta Foundation for Sustainable Agriculture.

“With the help of CIRAD and Syngenta, we have been learning how to use molecular markers to improve breeding efficiency of sorghum varieties more adapted to the variable environment of Mali and surrounding areas which receive less than 600 millimetres of rainfall per year,” he says.

Jean-François Rami

Jean-François Rami

“Using molecular markers is new and exciting for us as it will speed up the breeding process. With molecular markers, you can easily see if the plant you’ve bred has the desired characteristics without having to grow the plant and or risk missing the trait through visual inspection.”

Jean-François Rami, who is the project’s Principal Investigator, has been impressed by the progress made so far. Jean-François is also GCP’s Product Delivery Coordinator for sorghum.

“Since its inception, the project has progressed very well,” says Jean-François. “With the help of the IER team, we’ve been able to develop two bi-parental populations from elite local varieties, targeting two different environments of sorghum cropping areas in Mali. We’ve then been able to use molecular markers through a process called marker-assisted recurrent selection [MARS] to identify and monitor key regions of the genome in consecutive breeding generations.”

The collaboration with Syngenta came from a common perspective and understanding of what approach could be effectively deployed to rapidly deliver varieties with the desired characteristics.

“Syngenta came with their long experience in implementing MARS in maize. They advised on how to execute the programme and avoid critical pitfalls. They offered to us the software they have developed for the analysis of data which allowed the project team to start the programme immediately,” says Jean-François.

Like all GCP projects, capacity building is a large part of the MARS project. Jean-François says GCP has invested a lot to strengthen IER’s infrastructure and train field technicians, researchers and young scientists. But GCP is not the only player in this: “CIRAD has had a long collaboration in sorghum research in Mali and training young scientists has always been part of our mission. We’ve hosted several IER students here in France and we are interacting with our colleagues in Mali either over the phone or travelling to Mali to give technical workshops in molecular breeding. The Integrated Breeding Platform [IBP] has also been a breakthrough for the project, providing to the project team breeding services, data management tools, and a training programme – the Integrated Breeding Multiyear Course [IB–MYC].”

We don’t have these types of molecular-breeding resources available in Mali, so it’s really exciting to be a part of this project… the approach has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to drought… one of the great successes of the project has been to bring together sorghum research groups in Mali in a common effort to develop new genetic resources for sorghum breeding.”

Back-to-back: more for Mali’s national breeding programme

On the back of the MARS project, Niaba successfully obtained GCP funding in 2010 to carry out similar research with CIRAD and collaborators in Africa at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).

“In this project, we are trying to enhance sorghum grain yield and quality for the Sudano-Sahelian zone of West Africa using the backcross nested association mapping (BCNAM) approach,” explains Niaba, who is the Principal Investigator of the BCNAM project. “This involves using an elite recurrent parent that is already adapted to local drought conditions. The benefit of this approach is that it can lead to detecting elite varieties much faster.”

Kirsten Vom Brocke (CIRAD) Michel Vaksmann (CIRAD) Mamoutou Kouressy (IER) Eva Weltzien (ICRISAT) Jean-Francois Rami (CIRAD) Denis Lespinasse (Syngenta) Niaba Teme (IER) Ndeye Ndack Diop (GCP) Ibrahima Sissoko (Icrisat) Fred Rattunde (Icrisat)

A ‘sample’ of the rich mix of international partners in sorghum research: Left to right – Kirsten Vom Brocke (CIRAD), Michel Vaksmann (CIRAD), Mamoutou Kouressy (IER), Eva Weltzien (ICRISAT), Jean-François Rami (CIRAD), Denis Lespinasse (Syngenta), Niaba Teme (IER), Ndeye Ndack Diop (GCP Capacity Building Leader), Ibrahima Sissoko and Fred Rattunde (both from ICRISAT).

Eva Weltzien has been the Principal Scientist for ICRISAT’s sorghum breeding programme in Mali since 1998. She says the project aligned with much of the work her team had been doing, so it made sense to collaborate considering the new range of sorghum genetic diversity that this approach aims to use.

“We’ve been working with Niaba’s team to develop 100 lines for 50 populations from backcrosses carried out with 30 recurrent parents,” explains Eva. “These lines are being genotyped by CIRAD. We will then be able to use molecular markers to determine if any of these lines have the traits we want. We don’t have these types of molecular-breeding resources available in Mali, so it’s really exciting to be a part of this project.”

Eva Weltzien (holding sheet of paper) presenting to Mali's Minister of Agriculture (in white cap) a graph on the superiority of new guinea race hybrids. Also on display are panicles and seed of the huybrids and released varieties of sorghum in Mali. The occasion was an annual field day at ICRISAT's research station at Samanko, Mali.

An annual field day at ICRISAT’s research station at Samanko, Mali. Eva Weltzien (holding sheet of paper) showing Mali’s Minister of Agriculture, Tiemoko Sangare, (in white cap) a graph on the superiority of new guinea race hybrids. Also on display are panicles and seed of the hybrids and released varieties of sorghum in Mali.

Eva says that the approach has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to drought.

For Jean-François, one of the great successes of the project has been to bring together sorghum research groups in Mali in a common effort to develop new genetic resources for sorghum breeding.

“This project has strengthened the IER and ICRISAT partnerships around a common resource. The large multiparent population that has been developed is analysed collectively to decipher the genetic control of important traits for sorghum breeding in Mali,” says Jean-François.

 Plants with this ‘stay-green’ trait keep their leaves and stems green during the grain-filling period. Typically, these plants have stronger stems, higher grain yield and larger grain.”

Sorghum staying green and strong, with less water

In February 2012, Niaba and his colleague, Sidi B Coulibaly, were invited to Australia as part of another Sorghum Research Initiative project they had been collaborating on with CIRAD, Australia’s University of Queensland and the Queensland Department of Agriculture, Fisheries and Forestry (QDAFF).

“We were invited to Australia for training by Andrew Borrell and David Jordan, who are co-Principal Investigators of the GCP stay-green sorghum project,” says Niaba.

Left to right: Niaba Teme (Mali), David Jordan (Australia), Sidi Coulibaly (Mali) and Andrew Borrell (Australia) visiting an experiment at Hermitage Research Facility in Queensland, Australia.

Left to right: Niaba Témé (Mali), David Jordan (Australia), Sidi Coulibaly (Mali) and Andrew Borrell (Australia) visiting an experiment at Hermitage Research Facility in Queensland, Australia.

“We learnt about association mapping, population genetics and diversity, molecular breeding, crop modelling using climate forecasts, and sorghum physiology, plus a lot more. It was intense but rewarding – more so the fact that we understood the mechanics of these new stay-green crops we were evaluating back in Mali.”

It wasn't all work and there was clearly also time to play, as we can see her., Sidi Coulibaly and Niaba Teme visiting with the Borrell family in Queensland, Australia.

It wasn’t all work and there was clearly also time to play, as we can see here., where Sidi Coulibaly and Niaba Témé are visiting the Borrell family in Queensland, Australia.

Stay-green is a post-flowering drought adaptation trait that has contributed significantly to sorghum yield stability in northeastern Australia and southern USA over the last two decades.

Andrew has been researching how the drought-resistant trait functions for almost 20 years, including gene discovery. In 2010, he and his colleague, David Jordan, successfully obtained funding from GCP to collaborate with IER and CIRAD to develop and evaluate drought-adapted stay-green sorghum germplasm for Africa and Australia.

“Stay-green sorghum grows a canopy that is about 10 per cent smaller than other lines. So it uses less water before flowering,” explains Andrew. “More water is then available during the grain-filling period. Plants with this ‘stay-green’ trait keep their leaves and stems green during the grain-filling period. Typically, these plants have stronger stems, higher grain yield and larger grain.”

Andrew says the project is not about introducing stay-green into African germplasm, but rather, enriching the pre-breeding material in Mali for this drought-adaptive trait.

The project has three objectives:

  1. To evaluate the stay-green drought-resistance mechanism in plant architecture and genetic backgrounds appropriate to Mali.
  2. To develop sorghum germplasm populations enriched for stay-green genes that also carry genes for adaptation to cropping environments in Mali.
  3. To improve the capacity of Malian researchers by carrying out training activities for African sorghum researchers in drought physiology and selection for drought adaptation in sorghum.

…we have found that the stay-green trait can improve yields by up to 30 percent in drought conditions with very little downside during a good year, so we are hoping that these new lines will display similar characteristics”

Expansion and extension:  beyond Mali to the world

Andrew explains that there are two phases to the stay-green project. The project team first focused on Mali. During this phase, the Australian team enriched Malian germplasm with stay-green, developing introgression lines, recombinant inbred lines and hybrids. Some of this material was field-tested by Sidi and his team in Mali.

“In the past, we have found that the stay-green trait can improve yields by up to 30 percent in drought conditions with very little downside during a good year, so we are hoping that these new lines will display similar characteristics,” says Andrew. “During the second phase we are also collaborating with ICRISAT in India and now expanding to five other African countries – Niger and Burkina Faso in West Africa; and Kenya, Sudan and Ethiopia in East Africa. During 2013, we grew our stay-green enriched germplasm at two sites in all these countries. We also hosted scientists from Burkina Faso, Sudan and Kenya to undertake training in Queensland in February 2014.”

 

A sampling of some of stay-green sorghum partnerships in Africa. (1)  Asfaw Adugna assessing the genetic diversity of  sorghum panicles produced from the GCP collaboration at Melkassa, Ethiopia. (2)  Clarisse Barro-Kondombo (Burkina Faso) and Andrew Borrell (Australia) visiting a lysimeter facility in Hyderabad, India, as part of GCP training. (3) Clement Kamau (Kenya, left) and  Andrew Borrell (Australia, right) visiting the seed store at the Kenya Agricultural Research Institute (KARI) in Katumani, Kenya.

A sampling of some of stay-green sorghum partnerships in Africa. (1) Asfaw Adugna of the Ethiopian Institute of Agricultural Research (EIAR)  assessing the genetic diversity of sorghum panicles produced from the GCP collaboration at Melkassa, Ethiopia. (2) Clarisse Barro-Kondombo (left, INERA – Institut de l’environnement et de recherches agricoles , Burkina Faso) and Andrew Borrell (right) visiting a lysimetre facility at ICRISAT’s headquarters in Hyderabad, India, as part of GCP training, in February 2013. (3) Clement Kamau (left, Kenya Agricultural Research Institute [KARI] ) and Andrew Borrell (right) visiting the seed store at KARI, Katumani, Kenya.

Andrew says that the collaboration with international researchers has given them a better understanding of how stay-green works in different genetic backgrounds and in different environments, and the applicability is broad. Using these trial data will help provide farmers with better information on growing sorghum, not just in Africa and Australia, but also all over the world.

“Both David and I consider it a privilege to work in this area with these international institutes. We love our science and we are really passionate to make a difference in the world with the science we are doing. GCP gives us the opportunity to expand on what we do in Australia and to have much more of a global impact.”

We’ll likely be hearing more from Andrew on the future of this work at GCP’s General Research Meeting (GRM) in October this year, so watch this space! Meantime, see slides below from GRM 2013 by the Sorghum Research Initiative team. We also invite you to visit the links below the slides for more information.

Links

Aug 292014
 

“…I wanted to contribute in a similar way” – Eva Weltzien

 

Eva Weltzien

Eva Weltzien

Learning about the work of Nobel laureate, Norman Borlaug, in high school inspired Eva Weltzien to become a plant breeder so she too could contribute to improving the living conditions in the developing world. Today, Eva is a Principal Scientist in sorghum breeding and genetic resources at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in Mali.

“Not only did Norman Borlaug revolutionise agriculture by breeding high-yielding wheat varieties, he then selflessly distributed these to the countries in the world that most needed them, saving hundreds of millions from starvation,” Eva recollects passionately, as she speaks about her scientific hero. “I remember being inspired when he won his Nobel Prize in 1970, mainly for the fact that agricultural research was actually being seen as contributing to world peace,” says Eva. “I knew then that I wanted to contribute in a similar way.”

I…wanted to take a break from… theory and instead gain an appreciation for plant breeding by working in the field”

The path to plant breeding, and pearls along the way
Eva was raised in her native Germany, as well as in Beirut, Lebanon, where she spent six years when her parents were stationed at the local university there. She credits her parents; both plant pathologists, for instilling in her a scientific mind-set from a tender age.

“They taught me to think outside the box and apply my knowledge and understanding to how I made sense of the world,” Eva recalls. “Being plant pathologists, they also encouraged me to observe the environment carefully and treat the earth with respect.”

Upon graduating from high school, Eva deferred going to university and instead worked as a seed technician for a private company in Germany. “I just wanted to take a break from studying theory and instead gain an appreciation for plant breeding by working in the field,” says Eva.

After one year with the company, Eva was ready to start university. During the decade that followed, she completed a Diploma in Agricultural Biology (University of Hohenheim, 1981) and a PhD in Agriculture (Munich University, 1986).

A year after completing her PhD, Eva accepted a postdoc position at Iowa State University, USA, where she met her future husband Fred Rattunde. After a few years, both Eva and Fred moved to India to work with ICRISAT. “I’ve been working for ICRISAT for almost 27 years now,” says Eva. “When I first started, I was working in pearl millet breeding.”

The key challenges have been improving the infrastructure of the national research facilities… as well as increasing the technical training for local researchers…this has slowly improved, particularly in the last four years with the funding and help through the GCP Sorghum Research Initiative.…we can see our work making an impact on people’s lives…”

Off to Africa, and bearing fruit
In 1998, ICRISAT offered Eva and Fred positions in Mali where they would take responsibility for the Institute’s sorghum-breeding programme in West Africa.

OLYMPUS DIGITAL CAMERA

Evaluating Eva: In Dioila district, Mali, evaluating the panicles of a new sorghum line after harvest.

“It was a great challenge that we both wanted to explore,” says Eva. “The key challenges have been improving the infrastructure of the national research facilities to do the research as well as increasing the technical training for local agronomists and researchers. Over the past 15 years, this has slowly improved, particularly in the last four years, with the funding and facilitation through the GCP Sorghum Research Initiative. Now we can see our work making an impact on people’s lives in West Africa.” (see GCP’s work on infrastructure improvement)

…we are closer to delivering more robust sorghum varieties which will help farmers and feed the ever-growing population in West Africa.”

Improving drought tolerance in sorghum for Africa
The second phase of GCP’s Sorghum Research Initiative focuses on Mali, where sorghum-growing areas are large, and distributed over a wide range of rainfall regimes.

Eva and her team are currently collaborating with local researchers at L’Institut d’économie rurale (IER), Mali and France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD) on a project to test a novel molecular-breeding approach – backcross nested association mapping (BCNAM). Eva says the approach has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to poor soil fertility conditions.

“We don’t have these type of molecular-breeding resources available in Mali, so it’s really exciting to be a part of this project.”  Still, Eva and her colleagues continue to press forwards in this new frontier in plant science, making good advances in another parallel but closely related project that Eva leads in the GCP Comparative Genomics Research Initiative.

Eva continues, “We’ve had good results in terms of field trials, despite the political situation. Overall, we feel the experience is enhancing our capacity here in Mali, and that we are closer to delivering more robust sorghum varieties which will help farmers and feed the ever-growing population in West Africa.”

Slides (with more links after the slides)

Links

Jan 232013
 

Abdelbagi Ismail

 I was forever inquisitive as to how things grew, and questioning when they didn’t grow well. I think it’s what got me interested in plant science.”
– Abdelbagi Ismail, Plant Physiologist and Principal Scientist, International Rice Research Institute.

Today, we talk to Abdel. His riveting voyage in plant science starts on the bountiful banks of the Nile, before we sail on to Asia’s ricelands.  We’ll make a short stopover in USA for cowpeas and drought in between,  then proceed to to our main meal of rice, spiced and seasoned with a strong dash of salt-and-P.

It’s not just about food, but also family: you’ll  get to meet a sister Challenge Programme along the way. Intrigued? We hope so, so please do read on

‘A’ for Abdel and agriculture – an early passion for plants
From a tender age, Abdel was fascinated by agriculture.

Growing up on a small family farm backing onto the banks of the Nile in the Northern State of Sudan, he helped his parents in tilling the land, sowing and harvesting.

Abdel reminisces, “It was a relaxing paradise with all types of fruit growing around you year-round. Working and living on a farm, I was forever inquisitive as to how things grew, and questioning when they didn’t grow well. I think it’s what got me interested in plant science.”

Armed with a Bachelor’s and Master’s in Agricultural Sciences (agronomy, crop production, water relations) from the University of Khartoum, Sudan, Abdel moved to the University of California, Riverside, USA, for a PhD on drought tolerance in cowpeas.

“It was the first time I had ever left Africa, and it was a real eye-opener,” Abdel recalls. “It was a fantastic new page in my career too, as I was working with world-class professors and mentors. I chose to work on cowpeas because it is a hardy crop that can be grown in dry conditions which were – and still are – becoming more prevalent in sub-Saharan Africa.” (you can take a sidetrack here, to see our research on cowpeas)

 What interests me is how some societies have survived, and, in some cases, flourished because they invested in improving their plants and crops to adapt and adjust to weather adversities.”

Navigating away from the Nile, and discovering his niche
For this native son of the Nile, this move was a watershed. It marked the start of a dedicated – and still ongoing – career quest to understand how plants can adapt to better tolerate extreme environmental stresses such as higher and lower temperatures, too much or too little water, salinity, and nutrient imbalances.

“Abiotic stresses have had, and continue to have, a major impact on human life, with some societies disappearing altogether because of changes in soils or climate,” says Abdel. “What interests me is how some societies have survived, and, in some cases, flourished because they invested in improving their plants and crops to adapt and adjust to weather adversities.”

From time immemorial, the communities around the Nile where Abdel spent his childhood are a prime example of this flourishing against adversity.

IRRI beckons, and nurtures
In 2000, Abdel accepted a position at the International Rice Research Institute (IRRI) in The Philippines.

Abdel inspects cyclone-damaged rice in Isladi Village, southern Bangladesh.

“I saw it as an opportunity to convert knowledge and scientific discoveries into resources that could help needy farmers,” explains Abdel.

Abdel confesses that when he joined IRRI, his intention was to stay for a short stint and then move on. But as he became more involved in his work, he felt IRRI offered him the best opportunity to build his career, and to contribute to global food-security issues.

“I’ve been here for 12 years now. IRRI really is a great place to grow as a person and a researcher, and to learn how to become a leader.”

Having GCP provide ongoing funding and support for public institutions to conduct a long-term project has been pivotal to the success of the project. It has given us all the security we need to focus on conducting the complex research required…”

Trailblazing for GCP : a much-needed dash of ‘salt-and-P’
In 2004, Abdel proposed a collaborative project between nine different research organisations, across seven countries, to improve salt tolerance and phosphorus uptake efficiency in rice. The work was funded by a sister CGIAR Challenge Programme on Water and Food (CPWF).

This work caught – and held – GCP’s attention, because it sought to overcome a problem that negatively affects the lives of tens of thousands of rice growers around the world. The two resultant GCP-funded IRRI-led projects involved partners from Bangladesh, India, Indonesia, Vietnam and USA’s University of California, Davis. Globally, more than 15 million hectares of ricelands are saline, and more than one-third of all ricelands are phosphorus-deficient, hitting poor communities hardest.

In the nine years since, and together with his colleagues and partners, Abdel has developed the proposal into a productive and coherent suite of interconnected projects: he has managed and overseen most of the progress made during the discovery of the genes associated with salinity tolerance (Saltol) and phosphorus uptake (Pup1), and their insertion into well-known rice varieties that farmers in Bangladesh, Indonesia and The Philippines know and trust.

It’s all about rice: salt tolerance (Saltol) ‘meets’ phosphorus uptake (Pup1) in Bangladesh. Abdel is on the extreme right. Next to him is Sigrid Heuer, Principal Investigator of the ‘Pup1’ work.

Keeping the faith, and going where no rice has gone before…
A long-term horizon helps, since, just like art, science cannot be hurried: “Having GCP provide ongoing funding and support for public institutions to conduct a long-term project has been pivotal to the success of the project,” Abdel emphasises.

“It has given us all the security we need to focus on conducting the complex research required to advance our knowledge about these genes, then breed and develop popular varieties containing then. In some cases, we have developed lines with doubled yields, and grown rice in areas where it has never been grown before because the land was too saline.”

For Abdel, such achievements are heartening as they provide farmers with greater food and income security, which in turn improves their and their community’s livelihoods.

“It brings a smile to my face whenever I think about how our work helps to produce higher-yielding crops for poverty-stricken countries whose farmers often can only afford to grow one crop per year,” says Abdel sincerely.

Abdel continues to build upon, and has even employed, partners he has met through the GCP project…”We want to improve their capacity to take up new breeding techniques, such as the use of molecular markers, which can reduce the time it takes to breed new varieties from six to 10 years to two to three years…”

Continually building on the best
So what’s in store for the future?

Having discovered the Saltol gene and developed experimental lines, his team is now training breeders from country breeding programmes on how they can successfully breed for salt tolerance and tolerance of other abiotic stresses using their own popular varieties, thereby fortifying popular varieties with these much-needed tolerance traits.

“We want to improve their capacity to take up new breeding techniques, such as the use of molecular markers, which can reduce the time it takes to breed new varieties from six to 10 years to two to three years,” reveals Abdel. “This will allow them to breed for crops quicker, in response to ever-changing and extreme climate conditions.”

As for his other projects with IRRI, Abdel continues to build upon, and has even employed, partners he has met through the GCP project to help him with his Stress tolerant rice for Africa and South Asia (STRASA) project.

GCP helped IRRI attract support from other funders…”

Going further, faster, together… five and counting, still learning, and the future looks bright
STRASA is almost five years old and has another five years left to run.

“GCP helped IRRI to attract additional support from other funders, such as the Bill & Melinda Gates Foundation, to start STRASA, which seeks to support the development and distribution of stress-tolerant varieties in Africa and South Asia,” Abdel explains.

Abdel’s parting words? “I’m still committed to understand how plants can be manipulated to adapt to, and better tolerate, extreme environmental stresses, which seems  more feasible today than it has ever been before.”

Links

Jun 272012
 

India is the world’s largest producer and consumer of chickpea, accounting for more than a third (66 percent) of world production.

The Indian Agricultural Research Institute (IARI) and the Indian Institute of Pulses Research (IIPR) are collaborating with the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) on marker-assisted backcrossing (MABC), to improve chickpeas for drought tolerance.

This complementary activity in the Tropical Legumes I project (TLI) Phase II is being funded by the Department of Biotechnology, Government of India.

Dr N Nadrajan (pictured left), IIPR Director, adds “We have been trained on the breeding tools offered by the Integrated Breeding Platform, including data management, and on electronic data collection using a handheld device.”

Shailesh Tripathi (pictured right) is a Senior Scientist working on chickpea breeding at IARI. “During Phase I of TLI, ICRISAT and its partners identified a root-trait QTL region which confers drought tolerance in chickpeas, and the markers by which to transfer this QTL region. By evaluating the chickpea reference set, ICRISAT and its partners in Africa identified about 40 lines for drought tolerance, and these lines are being used in Phase II of the project,” says Shailesh. [Editor’s note: A ‘reference set’ is a sub-sample of existing germplasm collections that facilitates and enables access to existing crop diversity for desired traits, such as drought tolerance or resistance to disease or pests]

“Through GCP, we have benefitted from training in molecular breeding. The benefits of this go beyond this project,” he adds.

The Indian scientists are using MABC as well as marker-assisted recurrent selection (MARS) in Phase II, applying genomic resources that came from Phase I of the project.

“Our goal is to obtain lines with good root traits for drought tolerance,” says Shailesh, realistically adding that “Variety release will take time, but the good news is that we already have the pre-release materials to identify donors for specific traits, like root biomass.”

Progress in chickpea research in Africa and Asia

Related links

Jun 262012
 

It’s all about water and weakness  or strength. The Greek legend has it that Achilles was dipped into River Styx by his mother, Thetis, in order to make him invulnerable. His heel wasn’t covered by the water and he later died of the wound from an arrow that struck his heel.

In our times, this analogy can be applied to chickpeas, where this streetwise tough customer in the crop kingdom that thrives on the most rugged terrains is hamstrung if there is no rain at the critical grain-filling period – its sole Achilles’ heel, when it cannot take the searing heat in the drylands it otherwise thrives in.

But before you read on about the latter-day borrowing of this ancient legend, and science’s quest to heal the hit from heat and to cure the crop’s fatal flaw on water, first, an important aside…

Who’s now calling the shots in chickpea research?

Molecular breeding in Phase I was led by ICRISAT, with country partners in a supporting role. In Phase II, activities are being led by country partners, which also assures sustainability and continuity of the work. ICRISAT is now in a facilitating role, providing training and data, while the research work is now in the hands of country partners.” – Pooran Gaur, Principal Scientist: Chickpea Breeding,  ICRISAT.

The facts
Chickpeas are an ancient crop that was first domesticated in central and western Asia. Today, this crop is cultivated in 40 countries and is second only to common beans as the food legume most widely grown by smallholders. The two main types of chickpeas – desi and kabuli – are valuable for both subsistence and cash.

Even for the hardy, times are tough
“Chickpeas are well-known to be drought-tolerant,” says Rajeev K Varshney, Principal Investigator of the project to improve chickpeas work in the Tropical Legumes I Project (TLI). He explains, “The plants are very efficient in using water and possess roots that seek out residual moisture in deeper soil layers.” However, he points out that, with changing climatic conditions, especially in drier areas, terminal drought – when rain does not fall during grain-filling – is the crop’s Achilles’ heel, and principal production constraint.

“Chickpeas are such tough plants that, even for conditions of terminal drought, yields can be increased by improving root characteristics and water-use efficiency,” says Rajeev. The research team has identified several lines with superior traits such as drought tolerance, after screening a set of 300 diverse lines selected based on molecular diversity of large germplasm collections.

VIDEO CLIP: Recipe for chickpea success

Enhancing the genetic makeup to beat the heat
The team went on to develop genomic resources such as molecular markers. With these markers, the team developed a high-density genetic map, and identified a genomic region containing several quantitative trait loci (QTLs), conferring drought tolerance. “QTLs help pinpoint, more specifically, the location of genes that govern particular traits like root length” explains Rajeev.

Longer roots will naturally give the plants a deeper reach into the water table. Root length is the difference between survival and perishing, which is why trees will be left standing on a landscape otherwise laid bare by prolonged drought.

Q for ‘quick’: QTLs speed things along from lab to field, and running with the winners
The discovery of QTLs makes identifying tolerant plants not only easier, but also cheaper and faster. “This means that better-adapted varieties will reach farmers faster, improving food security,” says Rajeev.

Pooran Gaur, GCP’s Product Delivery Coordinator for chickpeas, Principal Scientist for Chickpea Breeding at ICRISAT, and an important collaborator on the TLI project, adds, “We began marker-assisted selection backcrossing (MABC) in Phase I. By 2011, lines were already being evaluated in Ethiopia, India and Kenya. We are now at the stage of singling out the most promising lines.”

Putting chickpeas to the test: Rajeev Varshney (left) and Pooran Gaur (right) inspecting a chickpea field trial.

What was achieved in Phase I, and what outcomes are expected?
Phase I run from mid-2007 to mid-2010, during which time 10 superior lines for improved drought tolerance and insect resistance were identified for Ethiopia, Kenya and India. As well, a total of 1,600 SSR markers and 768 SNPs on GoldenGate assays were developed, along with an expanded DArT array with more than 15,000 features. A high-density reference genetic map and two intraspecific genetic maps were developed.

“We now have materials from marker-assisted backcrossing by using the genomic resources we produced in Phase I. These materials were sent to partners last year [2011]. And because in most cases we have the same people working in TLI as in TLII, this material is being simultaneously evaluated across six to seven locations by all TLI and TLII partners,” says Pooran.

“Preliminary analysis of data is quite encouraging and it seems that we will have drought-tolerant lines soon,” adds Rajeev.

Future work, and who’s now calling the shots in the field
In Phase II, 1,500 SNPs on cost-effective KASPar assays have been developed that have been useful to develop a denser genetic map. In collaboration with University of California–Davis (USA) and the National Institute of Plant Genome Research (India), a physical map has been developed that will help to isolate the genes underlying the QTL region for drought tolerance. A novel molecular breeding approach called marker-assisted recurrent selection (MARS) has been adopted. Over the remaining two years of Phase II, the chickpea work will focus on developing chickpea populations with superior genotypes for drought tolerance through MABC and MARS.

Pooran adds, “Molecular breeding in Phase I was led by ICRISAT, with country partners in a supporting role. In Phase II, activities are being led by country partners, which also assures sustainability and continuity of the work. ICRISAT is now in a facilitating role, providing training and data, while the MABC and MARS aspects are both in the hands of country partners.”

“Another important activity in Phase II is development of multi-parents advanced generation intercross (MAGIC) population that will help generation of genetic populations with enhanced genetic diversity,” says Rajeev.

Partnerships
The chickpea work is led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), working with partners at the Ethiopian Institute of Agricultural Research, Egerton University in Kenya, and the Indian Agricultural Research Institute. Additional collaborators in Phase I included the University of California–Davis (USA), the National Center for Genome Resources (USA) and DArT P/L (Australia).

For more information on the overall work in chickpeas, please contact Rajeev K Varshney, Principal Investigator of the chickpea work.

Video: Featuring Rajeev and partners Fikre Asnake (Ethiopia) and Paul Kimurto (Kenya)

Related links

 

 

cheap ghd australia