Jan 312014
 
Arllet Portugal

Arllet Portugal

Today, we chit-chat with Arllet Portugal (pictured) on crop research data management. Arllet’s greatest daily challenge is convincing crop breeders and other crop researchers that their research data are just as important as their core research work. She also educates us on what she means by ‘SHARP’ data management. But first, a little background on Arllet…

Transitions, travels and tools
Plant breeding is in Arllet Portugal’s blood. Her father (now retired), one of the original field staff of the International Rice Research Institute (IRRI) at Los Baños in The Philippines, nurtured it in her from a tender age. It’s easy to picture him sharing fascinating tales daily with his family upon coming home, after a day of hard work in sun-splashed paddies where he nurtured mysterious and exotic new lines of rice which he was told may hold the solution to world hunger.

“He loved what IRRI stood for and admired the research they did,” reminisces Arllet. “I think he hoped one day he would have a son or daughter working alongside the researchers, so I guess I fulfilled that wish!” She adds “His IRRI stories still continue to this day, and I have learnt much from him which continues to give me deeper insights in my work and interactions with crop scientists.”

Having lived most of her life under the canopy of IRRI, including 12 years working as a database administrator at the Institute, she decided it was time for a change, and she spread her wings – an adventure that would take her across the oceans, pose new challenges, and plunge her deeper into agricultural research beyond IRRI’s mandate crop, rice. So, in 2009, she packed her bags and headed to Mexico, having accepted a position as a crop informatician for wheat at the International Maize and Wheat Improvement Center (CIMMYT), and then moving over to GCP the following year as Informatics Coordinator, and later on Data Management Leader of GCP’s Integrated Breeding Platform (IBP).

The Platform is a one-stop shop for crop information, informatics tools and services designed to propagate and support the application of modern approaches to crop breeding, particularly targeting developing countries.

We are trying to show breeders that their ‘system’ can be enhanced and streamlined if they enter data straight into a computer when they’re in the field and then upload them into an online database.” 

Gunning for a digital data revolution: The challenge of changing mindsets
Arllet’s greatest daily challenge is convincing crop breeders and other crop researchers that their research data are just as important as their core research work, and they should therefore dedicate as much time, energy and resources to managing data.

“Like everyone else, most plant breeders tend to be generally comfortable with the ‘systems’ that they and their predecessors have always used,” says Arllet. “For plant scientists, this often consists of recording results using pen and paper when they are out in the field, then coming back to their office and either filing those paper records as is, or re-entering the data into a basic Excel spreadsheet that is for their eyes only. They will then pull these data out when they want to compare them with their previous data.”

Arllet explains that this age-old system is not necessarily wrong, but it wastes valuable time, is insecure and limits the capacity of breeders to efficaciously reuse and also share their data with colleagues – a practice by which they would help each others’ work. “We are trying to show breeders that their ‘system’ can be enhanced and streamlined if they enter data straight into a computer when they’re in the field and then upload them into an online database,” she says.

Walking with giants…” 

Dealing with data: maximising efficiency, security, value and sharing
“These data can then be better secured and managed for their benefit and that of other researchers doing similar or related work, in essence increasing their working capacity. They would also have access to the most current analytical tools to verify their results and do their research more efficiently.”

Arllet explains that such improved systems have been in place for decades in the developed world, particularly within the private sector but not as prevalent in the developing world or public sector. This is largely attributable to the high cost of the equipment and informatics tools, and a lack of personnel with the appropriate skills to make use of the tools.

Through a collaborative effort bringing together a wide array of partners, with funding primarily from the Bill & Melinda Gates Foundation, supplemented by the European Commission and the United Kingdom’s Department for International Development, IBP is working to overcome some of these barriers. With the release of the Integrated Breeding (IB) FieldBook, the foundational informatics tool for the proposed system, Arllet believes a giant step has been made towards achieving this objective.

Breeders will be able to use it to plan their trials from start to finish”

What is the IB FieldBook?
The IB FieldBook is a user-friendly computer program that facilitates the design of field trials and produces electronic field-books, field plans and labels. It collects together – in a single application – all the basic tools that a plant breeder requires for these diverse but intertwined functions.

“Breeders will be able to use it to plan their trials from start to finish,” says Arllet. “This is important as it will, for example, keep track of all the identities of plant crosses, minimising the chance that the breeder, or assisting technician, will record the data incorrectly, while emphasising the importance of accurate data for correct crop-breeding decisions.”

Live demonstration: Taking the tablet through the paces at a training workshop for research technicians in January 2012. The regional workshop for West Africa (in French and English) was hosted by L’Institut d’économie rurale (IER) at Sotuba, Mali. A similar workshop was held in Ethiopia in English for the Eastern and Southern Africa region.

She and her team have been conducting training workshops on data management for breeders at which they demonstrate the IB FieldBook and the use of handheld electronic devices (such as tablets) for data collection, which breeders can conveniently take to the field with them and directly enter the phenotyping data they would normally capture in paper field-books.

Tablets and feedback
“The training has been challenging but fun,” says Arllet. “When we present the breeders with a tablet at the start of the exercise, they get really excited. It takes a while for them to learn how to use it, but once they do, they see how this technology could save them time and reduce the risk of mistakes. It’s a little sad for them and for us though when we have to take the tablets back at the end of the exercise, as demand always outstrips supply. We have however distributed around 200 tablets to breeders, university academic staff, researchers and postgraduate students of plant breeding. Majority of the recipients are from Africa and Asia. And the good news is that,  as a result, some of the institutes and programmes the recipients come from have gone ahead to purchase more units for themselves.”

Arllet observes that the workshops have not only allowed her team to educate breeders and build awareness, but also to receive valuable feedback on how the IB FieldBook could be improved to make it even better, and learn what other tools breeders need. “Based on this feedback, we worked on the IB FieldBook version 4, which was released in June 2013, as well as on a number phenotypic and genotypic data management tools to incorporate into both the FieldBook and the primary crop databases.”

‘SHARP’ data – shareable, available, reusable and preservable. 

Left to right: Diarah Guindo (IER), Ardaly Abdou Ousseini (L’Institut national de la recherche agronomique du Niger, INRAN) and Aoua Maiga (IER) at the January 2012 training at IER Sotuba, Mali.

SHARP and secure data management
Plant breeders are collaborating more often than they used to, and also drawing much more on specialised experts for each stage of the crop variety development chain. These experts are able to verify the data to make sure they are correct, do their job quickly and pass the data onto the next expert, an economical resource- and time-efficient process. However, as Arllet explains, consistent and secure data management is key to the success of these collaborations.

For Arllet, data that are properly managed are ‘SHARP’shareable, available, reusable and preservable. “By collecting data in a consistent format, uploading them to a secure database with easily identifiable tags, and making them available to other researchers, the data will be more accessible to partners, enable reliable analysis and conclusions, be more likely to be reused, and most importantly, save time and money. For example, breeders who share their data on the IBP database will receive support from researchers outside of their own breeding programme and enlist the help of experts and specialists  they require for particular tasks,” says Arllet. “This includes access to, say, a molecular biologist in Europe or Asia for the breeder in Africa or America who may need that kind of specialist help, for example.”

Arllet and her team of four consultants are currently helping breeders from all around the world upload their historical research data into the central crop databases of the Integrated Breeding Platform, a massive task given the issues of trust, language barriers, slow internet connections, inadequate computer skills and the sheer volumes of the data. However, these are challenges that are becoming easier to handle with greater awareness and the enthusiasm that comes with that.

What next, and what difference will it make?
Adoption and broad use of the FieldBook will of course also make the process easier in the future, enabling a single step uploading of phenotypic data – hence setting breeders free to get on with their work without the wastefulness of having to enter and re-check the data multiple times.

“What it all means is that we will facilitate the more rapid and efficient development of higher-yielding  more stress-tolerant crops that can benefit the farmers and the people they feed,” says Arllet, “and that is the ultimate goal of a plant breeder’s work.”

Links

See videos below: ‘ Masses of crop breeding information: How can it be handled?’ and “Why use IBP’s breeding and data management tools?“, which, in the view of one of our Australian partners, explains why IBP is particularly important for developing countries, and why they have a comparative advantage compared to the developed world.

Next video below:

PRIZE AND FUN! If you’ve survived this far, you deserve a prize, in the form of seeing Ms Portugal in party mode. To see what Arllet gets up to when she’s not crunching data, flip through this fun album

Jul 082012
 

SDC and GCP

Today, we catch up with SDC’s Carmen Thönnissen (pictured). She walks us through the whys of Switzerland’s continued funding to GCP that has spanned nearly the Programme’s entire lifetime.

We were …drawn to GCP’s upstream–downstream connections, and its pre-conceived product delivery path. GCP produces global public goods, with a clear focus on strategic research for development, while also addressing important upstream research elements in crop science such as gene discovery and marker validation. In addition, GCP already had a Product Delivery Strategy to guarantee downstream application.

The way GCP uses and ‘bundles’ resources within and beyond CGIAR, then as now, is attractive to us as a meaningful approach, promising good value for money.”

GCP’s work is very results-oriented and pragmatic, forging partnerships followed by concrete actions to address bottlenecks in research for development in molecular crop breeding, without ruling out conventional breeding.

Carmen Thönnissen is Senior Advisor, Federal Department of Foreign Affairs, Swiss Agency for Development and Cooperation (SDC), Corporate Domain Global Cooperation of the Global Programme for Food Security. Through the years, SDC has been a consistent GCP funder. Today, Carmen gives us some insights into this longstanding relationship.

Tell us briefly about SDC and its funding to GCP
SDC is the Swiss Agency for Development and Cooperation, affiliated to the Ministry of Foreign Affairs of the Swiss Government.

We’ve funded GCP since 2006 with an annual contribution of 450,000 Swiss francs – a total of 1.9 million so far.

SDC provides GCP core unrestricted funds at Programme level, meaning that SDC does not tie its funding to specific GCP projects, giving GCP discretion over these funds.

Why does SDC support GCP?
We share a long history with GCP, going as far back as the Programme’s ‘pre-birth’.

Starting in 2001, CGIAR adopted a more programmatic systemwide approach and endorsed the concept of Challenge Programmes. Between 2002 and 2005, SDC actively supported this process and the emerging Challenge Programmes.

In 2005, SDC reviewed its support to CGIAR and identified SDC priority regions, research priorities, and guiding principles for its unrestricted funding to the CGIAR system.

From this review, SDC decided to invest 30 percent of its core unrestricted funds to several CGIAR Systemwide and Challenge Programmes, one being GCP.

The Challenge Programmes were perceived as results-oriented, poverty-relevant and responsive to the CGIAR reform process of that time. They were also partnership-oriented, with transparent communication strategies.

Several points convinced SDC to invest in GCP, and I’ll mention just some of these. One was GCP’s focus on crops in marginal areas and on drought tolerance in sub-Saharan Africa, and South and Southeast Asia. These overlap with SDC’s own thematic and geographical priorities.

We were also drawn to GCP’s upstream–downstream connections, and its pre-conceived product delivery path. GCP produces global public goods, with a clear focus on strategic research for development, while also addressing important upstream research elements in crop science such as gene discovery and marker validation. In addition, GCP already had a Product Delivery Strategy to guarantee downstream application.

The way GCP uses and ‘bundles’ resources within and beyond CGIAR, then as now, is attractive to us as a meaningful approach, promising good value for money. Back then, SDC was interested in the exploration of plant diversity and the application of advanced genomics and comparative biology to advance breeding of the main staple crops grown by resource-poor farmers, which was the very objective of GCP.

Our funds were intended to be used to increase the exploratory implementation of new research tools in applied breeding programmes to produce improved drought-tolerant crop varieties.

We liked GCP’s structured approach of a Global Access Policy backed by guidelines on public–private sector partnerships and addressing intellectual property.

We also found the ‘suite approach’ proposed by GCP attractive, since at that time, very little was being done in these fields by CGIAR. We were drawn to the mix of a research component – on the impact of modern and integrated breeding approaches on productivity in developing countries, plus a service component aiming to disseminate knowledge, resources and technology, alongside lab services and capacity building.

GCP’s work is very results-oriented and pragmatic, forging partnerships followed by concrete actions to address bottlenecks in research for development in molecular crop breeding, without ruling out conventional breeding.

You mentioned common SDC–GCP thematic and geographic scope. Are there other areas where the missions of SDC and GCP overlap?
SDC has a focus on genetic resource improvement, and also supported the CGIAR Systemwide Programme on Genetic Resources, as well as the Global Crop Diversity Trust.

Supporting GCP is in line with SDC’s internal guidelines on Green Biotechnology. Among other things, we avoid single-donor initiatives, instead working within larger programmes that not only have a clear focus but also aim to strengthen developing-country capacity.

GCP’s work is very results-oriented and pragmatic. GCP plays a strong facilitating role in forging partnerships, which is followed by concrete actions, services, tools, methods, and so on, to address the bottlenecks identified by the research-for-development network with the aim of supporting molecular crop breeding for various crops, regions and partners, without ruling out conventional breeding.

SDC shares the view that Green Biotechnology, including genetic modification, can never fully replace conventional breeding, but it can be an important tool in improving plant-breeding programmes.

What outcomes are you expecting from this support?
To mention just a few, improved accessibility to modern breeding tools, methods and approaches for the developing world, plus enhanced capacity for developing-world partners on using these tools, as well as them knowing their rights and obligations regarding access to, and use of, plant genetic resources and related tools.

We also hope to see improved services for breeders, including learning materials and information on new resources for crop breeding. The long-term outcome we’d like to see is improved crop varieties, more resistant to abiotic and biotic stresses.

What are some of the lessons learnt from investing in GCP?
The importance of a strong programmatic orientation and the role of an honest broker in effective partnerships: GCP plays the role of enabler and facilitator, while its research partners are the actors.

Investing in GCP enables us to project a clear flow from upstream to applied research – with capacity building included – in the critical areas of food security and climate change.

Relevant links

Policies 

Blogposts

Jul 042012
 

The GCP community, its labours and joys

If tools and resources are not put to use, then we labour in vain...GCP contributes to food security by providing breeders with integrated tools, techniques and services to speed up the selection cycle, be this by conventional or molecular breeding. GCP focuses on developing new materials and new techniques and delivering these, and the appropriate breeding tools, technologies and services, to breeders. I think GCP has been one of the most successful builders of research and development partnerships.

The Board’s focus is now on auditing the Programme, and mapping a strategy to sustain its successful partnerships and systems, so that these can continue to deliver products and capacity to the developing world.”

Seatbelts on please! Time to take a tour with Andrew, for an ‘aerial’ view of GCP from the very  ‘top’.

Please meet Andrew Bennett (pictured), the Chair of GCP’s Executive Board. Among other responsibilities, he is also President of the Tropical Agricultural Association, UK, chairs the SciDev.Net Board, and previously chaired the CIFOR Board. He was formerly Executive Director of the Syngenta Foundation and Director of Rural Livelihoods and Environment at the Department for International Development (DFID, UK) where he was responsible for professional advice on policy and programmes on livelihoods, natural resources, environment, sustainable development and research. Andrew has worked on development programmes in Africa, Asia, Latin America, the Pacific and the Caribbean.

Today, Andrew shares his perspectives on GCP’s work, its impact, the challenges, the community GCP has built, and the role of the Board. Please read on…

When was the GCP Board established, and what is its profile and role?
The Board was set up in mid-2008 towards the end of the first phase of the Programme. A review recommended that there be a fully independent Board, comprising people who had no conflict of interest with the Programme to facilitate decision-making.

Board members have between them a wide variety of skills and backgrounds, ranging from expertise in molecular biology to development assistance, socioeconomics, academia, finance, governance and change management.

We are committed to the role that can be played by science in development, and to the Programme. We have offered advice and helped the Programme’s Consortium Committee and management refocus the Programme. By all accounts, they seem happy with how things have evolved.

Because GCP is hosted by CIMMYT, the Board does not have to deal with any policy issues. That is the responsibility of the Consortium Committee. Our role is more to provide advice and to help with decision-making and implementation, which is great as we’ve been able to focus on the Programme’s science and people.

How long have you been involved with GCP?
Since the Board was established in 2008.

What does the GCP tagline – ‘Partnerships in modern crop breeding for food security’ – mean for you?
It means that all our undertakings are geared towards producing crop varieties that are tolerant to a range of environments, as well as being socially acceptable and appealing to farmers and markets.

How do you upgrade the planting material farmers have by fortifying it to combat the biotic and abiotic stresses? Half the challenge is breeding and selecting good material, and the other half is ensuring delivery of tools to breeders and new planting materials to farmers.

So GCP focuses on developing new materials and new techniques and delivering these, and the appropriate breeding tools, technologies and services, to breeders.

Why is GCP’s work important, and what does it mean for food security?
People who are food-secure have access to adequate food at all times to maintain healthy active lives. There are two sides to making this happen – access and availability.

GCP is increasing the number of varieties and lines tolerant to the conditions farmers are facing. What we cannot do is put money in the hands of poor people. If we supply people with the means to produce sustainable and healthy crops, they will have the means to produce food for themselves, and a means of making an income.

GCP contributes to food security by providing breeders with integrated tools, techniques and services to speed up the selection cycle, be this by conventional or molecular breeding.

For you, what have been the major outcomes of GCP so far?
GCP has shown that it is possible to form very productive partnerships across CGIAR institutes and advanced research establishments and those countries that have less scientific capacity. I think it has been one of the most successful builders of research and development partnerships. GCP has also shown public researchers can work very well with the private sector. The public sector has the means to build a lot of capacity.

I think GCP has demonstrated that it is possible to establish molecular breeding programmes in those parts of the world that do not have well-developed scientific infrastructure.

Just a little bit of money – relatively speaking of course – clear vision, and good leadership, can go very far, and produce tremendous benefits and progress.

GCP has also identified the constraints that we have to work within – the challenge of phenotyping and restrictions on the movement of genetic material to other parts of the world. GCP has paid particular attention to intellectual property [IP] because the information and materials GCP produces must remain in the public domain. IP in the international arena within which the Programme operates must span potentially conflicting national legislation regimes. It is a very complex area.

‘Challenge’ is in GCP’s name. What are the major challenges that the Programme has so far overcome?
Quite a number and more could be on the horizon. GCP has overcome some of these challenges. They include the problem of poor-quality phenotyping. This has been addressed through a comprehensive capacity-building programme, including laboratory and field infrastructure, and the training of research support staff in the developing-country field sites where GCP projects are being implemented.

Another challenge was focusing the Programme. At the start, the Programme was spread too thin, spanning too many crops and partners, but these have been progressively narrowed down in Phase II.

This narrowing is no mean feat in the public sector. In the private sector, you start with, say, a hundred projects, then after six months you halve them. After a year, you are down to 10 projects and you put all your resources into making those 10 ‘winners’ work. In the public sector, you keep the entire hundred going for three years, then you look for funding to keep them all running for another cycle. It’s a different culture: the private sector is product-oriented, while some aspects of the public sector emphasise contributing to the growth of knowledge and information, and to building or maintaining relationships, without necessarily asking about their usefulness and benefits to society.

The Board’s focus is now on auditing the Programme and mapping a strategy to sustain its successful partnerships and systems, so that these can continue to deliver products and capacity to the developing world.”

What are the future challenges that the Programme must overcome to remain sustainable?
There are many GCP activities that can be integrated into the new CGIAR Research Programmes. However, there may be other activities such as capacity building and IP management which – at this point in time – appear somewhat less easy to integrate into the new CGIAR Research Programmes.

There is also a danger – not unique to GCP but with all aid-assisted programmes – that when the money ends, everything will disappear into the archives. We have to make sure that doesn’t happen in this instance.

The Board’s focus is now on auditing the Programme and mapping a strategy to sustain its successful partnerships and systems, so that these can continue to deliver products and capacity to the developing world.

What are some of the lessons learnt so far?
GCP was born at a time when we thought molecular biology could solve all our problems quickly and efficiently. What I think we are finding is that molecular tools –while extremely useful – cannot entirely replace understanding the agronomy and phenotypic activities. Molecular biology alone is not a panacea or silver bullet for crop breeding; but it is a valuable tool.

Then there is capacity building: molecular breeding is a tool that you can only use if you have the capacity. Many parts of the world will require a lot of capacity building and support to be able to use the tools. GCP and its Integrated Breeding Platform can make a modest contribution to meeting this need through the proof-of-concept GCP Research Initiatives for selected crops and countries and establishing communities of practice.

If tools and resources are not put to use, then we labour in vain.

What has been the most enjoyable aspect of your position with GCP?
Without a doubt, attending the General Research Meetings has been the most enjoyable, meeting scientists from a wide range of institutes, backgrounds and countries.

These scientists come together because they share the same interests and a common goal. There’s a lively buzz of conversation. It is good to hear about what they are doing, what their aspirations are, and to learn from the knowledge and posters they bring to the meeting.

You don’t have to be a cutting-edge scientist to listen to these people whose enthusiasm is palpable. They are passionate, have a strong sense of community, enjoy what they are doing, and are just as keen to share this knowledge and enthusiasm. It’s all highly infectious!

Relevant links

cheap ghd australia