Sep 012014
 

Scouring the planet for breeding solutions

Bindiganavile Vivek

Bindiganavile Vivek

Bindiganavile Vivek (pictured) is a maize breeder working at the International Maize and Wheat Improvement Center (CIMMYT), based in Hyderabad, India. For the past five years, Vivek and his team have been developing drought-tolerant germplasm for Asia using relatively new molecular-breeding approaches – marker-assisted recurrent selection (MARS), applied in a genomewide selection (GWS) mode. Their work in the Asian Maize Drought-Tolerance (AMDROUT) project is implemented through GCP’s Maize Research Initiative, with Vivek as the AMDROUT Principal Investigator.

Driven by consumer demand for drought-tolerant maize varieties in Asia, the AMDROUT research team has focussed on finding suitable drought-tolerant donors from Africa and Mexico. Most of these donors are white-seeded, yet in Asia, market and consumer preferences predominantly favour yellow-seeded maize. Moreover, maize varieties are very site-specific and this poses yet another challenge. Clearly, breeding is needed for any new target environments, all the while also with an eye on pronounced market and consumer preferences.

(1) Amazing maize and its maze of colour. Maize comes in many colours, hues and shapes. (2) Steeped in saffron: from this marvellous maize mix and mosaic, the Asian market favours yellow maize.

(1) Amazing maize and its maze of colour. Maize comes in many colours and hues. (2) Steeped in saffron: from this marvellous maize mix and mosaic, the flavour in Asia favours yellow maize.

Stalked by drought, tough to catch, but still the next big thing

Around 80 per cent of the 19 million hectares of maize in South and Southeast Asia is grown under rainfed conditions, and is therefore susceptible to drought, when rains fail. Tackling drought can therefore provide excellent returns to rainfed maize research and development investments. As we shall see later, Vivek and his team have already made significant progress in developing drought-tolerant maize.

Drough in Asia_Vivek slide_GRM 2013_w

The stark reality of drought is illustrated in this warning sign on a desiccated drought-scorched landscape, showing the severity of drought in Asia

But they are after a tough target: drought tolerance is dodgy since it is a highly polygenic trait, making it difficult for plant scientists to pinpoint genes for the trait (see this video with an example from rice in Africa). In other words, to make a plant drought-tolerant, many genes have to be incorporated into a new variety. As one would expect, the degree of difficulty is directly proportional to the number of genes involved. In the private-sector seed industry, MARS  (PDF) has been successfully used in achieving rapid progress towards high grain yield under optimal growth conditions. Therefore, a similar approach could be used to speed up the process of introducing drought tolerance into Asian crops – the reason why the technique is now being used by this project.

AMDROUT Meeting Penang Dec2010_w

More than India: the AMDROUT project also comprises research teams in China, Indonesia, Thailand, The Philippines and Vietnam. In this photo taken during the December 2010 annual project meeting in Penang, Malaysia, the AMDROUT team assessed the progress made by each country team, and  team members were trained in data management and drought phenotyping. They also realised that there was a need for more training in genomic selection, and did something about it, as we shall see in the next photo. Pictured here, left to right: Luo Liming, Tan jing Li, Villamor Ladia, V Vengadessan, Muhammad Adnan, Le Quy Kha, Pichet Grudloyma, Vivek, IS Singh, Dan Jeffers (back), Eureka Ocampo (front), Amara Traisiri and Van Vuong.

The rise of maize: clear chicken-and-egg sequence…

Vivek says that the area used for growing maize in India has expanded rapidly in recent years. In some areas, maize is in fact displacing sorghum and rice. And the maize juggernaut rolls beyond India to South and Southeast Asia. In Vietnam, for example, the government is actively promoting the expansion of  maize acreage, again displacing rice. Other countries involved in the push for maize include China, Indonesia and The Philippines.

So what’s driving this shift in cropping to modern drought-tolerant maize? The curious answer to this question lies in food-chain dynamics. According to Vivek, the dramatic increase in demand for meat – particularly poultry – is the driver, with 70 percent of maize produced going to animal feed, and 70 percent of that going into the poultry sector alone.

GCP gave us a good start… the AMDROUT project laid the foundation for other CIMMYT projects”

 Show and tell: posting and sharing dividends

As GCP approaches its sunset in December 2014, Vivek reports that all the AMDROUT milestones have been achieved. Good progress has been made in developing early-generation yellow drought-tolerant inbred lines. The use of MARS by the team – something of a first in the public sector – has proved to be useful. In addition, regional scientists have benefitted from broad training from experts on breeding trial evaluation and genomic selection (photo-story on continuous capacity-building). “GCP gave us a good start. We now need to expand and build on this,” says Vivek.

AMDROUT trainees at Cambridge_w

AMDROUT calls in on Cambridge for capacity building. AMDROUT country partners were at Cambridge University, UK, in March 2013, for training in quantitative genetics, genomic selection and association mapping. This was a second training session for the team, the first having been September 2012 in India.
Pictured here, left to right – front row: Sri Sunarti, Neni Iriany, Hongmei Chen;
middle row: Ian Mackay (Cambridge), Muhammad Azrai, Le Quy Kha, Artemio Salazar;
back row: Roy Efendy, Alison Bentley (who helped organise, run and teach on the course, alongside Ian) and Suriphat Thaitad.AMDROUT country partners are from China’s Yunnan Academy of Agricultural Sciences (YAAS); the Indonesian Cereals Research Institute (ICERI); the Institute of Plant Breeding at the Unversity of Philppines at Los Baños (UPLB); Thailand’s Nakhon Sawan Field Crops Research Center (NSFCRC); Vietnam’s National Maize Research Institute (NMRI); and private-sector seed companies in India, such as Krishidhan Seeds.Curious on who proposed to whom for this AMDROUT–Cambridge get-together? We have the answer: a Cambridge callout announced the training, and AMDROUT answered by calling in, since course topics were directly relevant to AMDROUT’s research approach. 

 

 

According to Vivek, the AMDROUT project laid the foundation for other CIMMYT projects  such as the Affordable, Accessible, Asian (AAA) Drought-Tolerant Maize (popularly known as the ‘Triple-A project’) funded by the Syngenta Foundation for Sustainable Agriculture. This Triple-A project is building on the success of AMDROUT, developing yet more germplasm for drought tolerance, and going further down the road to develop hybrids.

 

Outputs from the AMDROUT project will be further refined, tested and deployed through other projects”

Increasing connections, and further into the future

Partly through GCP’s Integrated Breeding Platform (IBP), another area of success has been in informatics. Several systems such as the Integrated Breeding FieldBook, the database Maize Finder and the International Maize Information System (IMIS) now complement each other, and allow for an integrated data system.

There is now also an International Maize Consortium for Asia (IMIC–Asia), coordinated by CIMMYT, comprising a group of 30 commercial companies (ranging from small to large; local to transnational). Through this consortium, CIMMYT is developing maize hybrids for specific environmental conditions, including drought. IMIC–Asia will channel and deploy the germplasms produced by AMDROUT and other projects, with a view to assuring impact in farmers’ fields.

Overall, Vivek’s experience with GCP has been very positive, with the funding allowing him to focus on the agreed milestones, but with adaptations along the way when need arose: Vivek says that GCP was open and flexible regarding necessary mid-course corrections that the team needed to make in their research.

But what next with GCP coming to a close? Outputs from the AMDROUT project will be further refined, tested and deployed through other projects such as Triple A, thus assuring product  sustainability and delivery after GCP winds up.

Links

As our Maize Research Initiative does not have a Product Delivery Coordinator, Vivek graciously stepped in to coordinate the maize research group at our General Research Meeting in 2013, for which we thank him yet again. Below are slides summing up the products from this research, and the status of the projects then.

Mar 072014
 
Women in science

“Women can do advanced agricultural science, and do it well!” Elizabeth Parkes, cassava researcher, Ghana

Being a woman scientist in today’s world (or at any time in history!) is no mean feat, science traditionally having been the domain of men. We are therefore drawn to this sub-theme: Inspiring change, in addition to the global theme Equality for women is progress for all, To mark International Women’s Day tomorrow, UNESCO has developed an interactive tool which collates facts and figures from across the world on women in science. The cold scientific truth displayed in the attractive petri dish design shows that only 30 percent of researchers worldwide are women.

At GCP, we have been fortunate enough to have a cross-generational spectrum of, not only women scientists, but that even rarer species, women science leaders – who head a project or suite of projects and activities, and who actively nurture and mentor future science leaders – to ultimately contribute to the fulfilment of our mission: Using genetic diversity and advanced plant science to improve crops for greater food security in the developing world. The United Nations has designated 2014 as the Year of Family Farming. GCP’s women researchers have contributed to improving the lives of their farming counterparts the world over, especially in the developing world where on average, 43 percent of the agricultural labour force are women, rising to 60 percent and 70 percent in some regions. (FAO)

Please mind the gap…to leap to that all-important initiation into science

UNESCO's Women in Science interactive tool

UNESCO’s Women in Science interactive tool

The UNESCO tool mentioned above and embedded to the left allows users to “explore and visualise gender gaps in the pipeline leading to a research career, from the decision to get a doctorate degree to the fields of science that women pursue and the sectors in which they work” with this affirmation: “Perhaps most importantly, the data tool shows just how important it is to encourage girls to pursue mathematics and science at a young age.”

In our International Women’s Day multimedia expo, we profile the life and work of a selection of our smart scientific sisters through words, pictures and sound, to explain just how they overcame obstacles, from taking that first hurdle to study science at an early age, to mobility up the research rungs to reach the very top of their game, all the while balancing work, life and family.

A blogpost fest to introduce our first special guests

Masdiar Bustamam

Masdiar Bustamam

We begin our show with a blogpost fest, and first up is GCP’s original Mother Nature, renowned scientist and constant gardener of the molecular breeding plot, Masdiar Bustamam. After a virtual world-tour of research institutes early on in her career, Masdiar took the knowledge of molecular breeding back home, to the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD), where she personally took up the challenge to work with the fledgling world of biotechnology, set up a lab, and helped establish molecular breeding in her country. In an amazing 37-years-odd research career, Masdiar tended not only tender rice shoots, but also budding blossoms in the form of her many students, whom she nurtured and mentored throughout their studies, and who have now seamlessly inherited her mantle to carry on the mission with the same ever-bright spirit. More

Rebecca Nelson

Rebecca Nelson

We now skip continents and oceans  to meet the feisty, continent- and crop-hopping scientist, Rebecca Nelson (Cornell University, USA). “I wanted to get out into the world and try and have a practical impact instead of doing research for the sake of research,” Rebecca says – and that she did, first leaving her native USA to work in the International Rice Research Institute (IRRI) in the Philippines. There she teamed up with friend and colleague, Masdiar Bustamam, to establish Masdiar’s laboratory at ICABIOGRAD, Indonesia. The American continent then called her back, where she moved countries and institutes, and switched from rice to maize research, marking the launch of her GCP experience – which simultaneously introduced her to her a whole new network of international crop researchers. This rich research tapestry was  woven together by a poignant pain deep in her heart, as a mother herself, of “so many mothers not being able to feed their families.” Rebecca wanted to combat this problem,  and crop science is her weapon. More

Zeba Seraj

Zeba Seraj

Next, we meet another true mother of molecular plant breeding, Zeba Seraj (University of Dhaka, Bangladesh). Zeba, whose mind is perpetually on call in the pursuit of science, has been around the world, and from plants to animals and back again in the course of her multifaceted science career. During her PhD and postdoc experience in the UK, still with fauna, she cultivated her expertise in molecular biology and recombinant DNA technology, but a lack of opportunities in that field back in Bangladesh saw her enter the world of crop science, where she has remained ever since. Back at her alma mater, the University of Dhaka, she founded a molecular biology lab, and has nurtured and inspired generations of young biochemists. Her GCP project, using molecular markers to develop salt-tolerant rice, was a real eye-opener for her, and allowed her to truly ‘see’ how applied science and such a practical project would have a direct impact on her country’s food security, now and in the future. More

Sigrid Heuer

Sigrid Heuer

Our next scientist is also truly motivated by putting theory into practice through the application of upstream research all the way down the river, and directly into farmers’ fields. Sigrid Heuer (now with the Australian Centre for Plant Functional Genomics), a German national, has pursued her scientific ventures in Europe, Africa, Asia, and now Oceania, with many challenges along the way. Enter the Generation Challenge Programme, and the chance for Sigrid (then at IRRI)  to lead a major project, the Pup1 rice phosphorus uptake project, which taught Sigrid the A–Z of project management, and gave her ample scope for professional growth. Her team made a major scientific breakthrough, which was not only documented in international journals, but was also widely covered by global media.  From this pinnacle, Sigrid  passed on the baton to other scientists and moved on to new conquests. More

Arllet Portugal

Arllet Portugal

Now, all this research we’ve been celebrating generates a massive amount of data, as you can well imagine. What exactly can our scientists do with all that data, and how can they organise them? GCP’s Arllet Portugal, hailing from The Philippines, gives us the lowdown on smart and SHARP data management whilst also giving us some insights into how she started out on the long and winding road to leading data management for GCP’s Integrated Breeding Platform. In particular, Arllet describes the considerable challenge of changing researchers’ mindsets regarding the importance of effective data management in the context of their research, and enthuses over the excitement with which developing-country researchers welcome the GCP-funded electronic tablets they now use to collect and record data directly in the field. More

Armin Bhuiya

Armin Bhuiya

If there were a muse for young women scientists, it might very well be the subject of our next blogpost profile, Armin Bhuiya (Bangladesh Rice Research Institute). After completing her master’s degree on hybrid rice in her native Bangladesh, Armin was already thinking like a true change-catalyst scientist, trying to discover what line of research would be the most useful for her country and the world. After much deliberation, she embarked on a PhD focusing on developing salt- and submergence-tolerant rice. This wise choice would take her to study under the expert eye of Abdelbagi Ismail at IRRI, in The Philippines, with the helping hand of a GCP–DuPont postgraduate fellowship. There, she learnt much in the way of precise and meticulous research, while also taking advantage to self-train in modern molecular plant breeding methods. Our bright resourceful student has now advanced to the patient erudite teacher – as she takes home her knowledge of high-tech research methods to share with her colleagues and students in Bangladesh. More

Elizabeth Parkes

Elizabeth Parkes

Hello Africa! Switching continents and media, we now we move from the written medium to tune in to the melodic tones of Elizabeth Parkes (Crops Research Institute [CRI] of Ghana’s Council for Scientific and Industrial Research [CSIR], currently on leave of absence at the International Institute of Tropical Agriculture [ IITA]). We’re now at profile number seven in GCP’s gallery of women in science. Elizabeth, who is GCP’s Lead Cassava Researcher in Ghana, narrates an all-inclusive engaging story on the importance to agriculture of women scientists, women farmers, and cassava the wonder crop – all captured on memorable sound waves in this podcast.

If the gravity of words inscribed holds more weight, you can also read in depth about Elizabeth in a blogpost on this outstanding sister of science. Witness the full radiance of Elizabeth’s work in the life-changing world in which she operates; as she characteristically says, “I’ve pushed to make people recognise that women can do advanced agricultural science, and do it well.” And she is no exception to her own rule, as she grew professionally, apparently keeping pace with some of the giant cassava she has helped to develop through the years. But it is her role as nurturer, mentor and teacher that really raises her head-and-shoulders above the rest, from setting up a pioneering biotech lab at CRI–CSIR to conscientiously mentoring her many students and charges in work as in life, because, for Elizabeth, capacity building and cassava are inextricably coupled! More

Marie-Noëlle Ndjiondjop

Marie-Noëlle Ndjiondjop

In the wake of some recent high-profile screen awards, we close our multimedia expo with impressions of our science sisterhood through the medium of the seventh art: the magic visual world of the movies!  A good fit for a Friday!

The following tasteful and tasty (you’ll see why!) blogpost takes our film fans right onto the red carpet to rub shoulders with our scientific screen stars!

The first screen star you’ll meet is Marie-Noëlle Ndjiondjop (Africa Rice Center), Principal Investigator (PI) of GCP’s Rice Research Initiative, who opens the video-viewing session with seven succulent slices of rice research delight. Her movies are set in the rice-growing lands of Africa, where this savoury cereal is fast becoming a staple, and tackles the tricky topics of rice-growing constraints, capacity building, molecular breeding methods, and the colossal capacity of community in collaborative research projects.

Jonaliza Lanceras-Siangliw

Jonaliza Lanceras-Siangliw

The following feature introduces the talented GCP PI Jonaliza Lanceras-Siangliw (BIOTEC, Thailand), whose community-minded project, set in the Mekong region, focused on strengthening rice breeding programmes by using a genotyping building strategy and improving phenotyping capacity for biotic and abiotic stresses. Though this title is something of a spoiler alert, we hope you tune in to this comprehensive reel to see the reality of molecular rice breeding in the Mekong. More

Soraya Leal-Bertioli

Soraya Leal-Bertioli

Last, and by no means least, is a captivating collage of clips featuring GCP researcher, Soraya Leal-Bertioli (EMBRAPA, Brazil) waxing lyrical about that hard genetic nut to crack: the groundnut, and how GCP’s Tropical Legumes I (TLI) project was crucial in getting the crop breeding community to share genetic resources, molecular markers, knowledge, and tools on a cross-continental initiative breaking boundaries in multiple ways. Video collage

Links

Mar 072014
 
Two in one, in more ways than one
Armin Bhuiya

Armin Bhuiya

Armin Bhuiya (pictured) is a dynamic and lively young geneticist and plant breeder, who has made huge strides in tracking crucial  genes in Bangladeshi rice landraces (or traditional farmer varieties). Armin took a ‘sandwich’ approach twinning two traits  – salt and submergence tolerance – in order to boost farmers’ yields. Her quest for salt-impervious ‘amphibian’ rice has seen her cross frontiers to The Philippines, and back to her native Bangladesh with solutions that will make a difference, borrowing a leaf along the way from the mythical submarine world of Atlantis for life under water. Using cutting-edge crop science, Armin is literally recreating out-of-this-world stuff working two elements of the ancient world  earth and water – plus that commodity that was then so prized enjoying a  premium comparable to gems: salt. Read on! 

A rice heritage, and the ‘sandwich’ saga and submarine search both begin…

“My father worked at the Bangladesh Rice Research Institute (BRRI), which basically means I grew up in rice research. You could say that I was born and bred in agriculture and this inspired me to study agriculture myself,” says Armin. As a result of these early experiences, Armin started a master’s degree in 2006 on genetics and plant breeding, specialising in hybrid rice. Ever since, rice has been her religion, following in the footsteps of her father to join the Bangladesh Rice Research Institute (BRRI).

Her other defining hallmark is her two-in-one approach. Sample this: once she completed her two-in-one master’s, Armin went on to study for a PhD in the same twin areas at Bangladesh Agricultural University. Pondering long and hard on what research would be of most practical use, she asked herself “What is the need? What research will be useful for my country and for the world?” (Editorial aside: out of this world work, apparently…)

Not content  pondering  over the question by herself, her natural two-track approach kicked in. Mulling with her colleagues from BRRI, the answer, it first seemed, was to find ways to produce salt-tolerant high-yielding rice. In Bangladesh and many other parts of South and Southeast Asia, climate change is driving up the sea level, spreading salinity further and deeper across low-lying coastal rice-fields, beyond the bounds where salt-drenched terrain has long been a perennial problem. Modern rice varieties are highly sensitive to salt. So, despite the low yields and quality, farmers continue to favour hardy traditional rice landraces that can take the heat and hit from the salt. Proceeding from this earthy farmer reality and inverting the research–development continuum, Armin needed no further thinking as the farmers showed the way to go. Her role and the difference she could make was to track the ‘treasure’ genes locked in these landraces that were transferred to high-yielding but salt-sensitive rice varieties, to fortify them against salt.

But that was not all. There’s power in numbers and consulting others, harnessing the best in diversity. In comes the two-track approach again, with Armin now turning to fellow scientists again, with the reality from farmers. Upon further consultations with colleagues, yet another fundamental facet emerged that could not be ignored. Apparently, salt-impervious rice alone would not be not enough, and here’s why. Salt and tides aside, during the rainy season inland, flash floods regularly submerge the fields, literally drowning the crop. More than 20 million hectares in South and Southeast Asia are affected – including two million hectares in coastal Bangladesh alone. The southern belt of Bangladesh is particularly affected, as modern varieties are sensitive to not only submergence but also salinity. So Armin had her work cut out for her, and she now knew that for the fruit of her labour to boost rice production in coastal regions as well (two tracks again! Inland and coastal low-lying rice-lands), what she needed to do was to work on producing high-yielding, salt-impervious, ‘amphibian’ rice that could withstand not only salinity but also submarine life. In other words, pretty much rice for a latter-day real-life rendition of the mythical Atlantis.

Armin has successfully incorporated dual tolerance to salinity and submergence in the popular Bangladeshi mega-variety BR11. This will provide the ideal salt-tolerant ‘amphibian’ rice suitable for farmers in the flood-prone salty-water-drenched swaths of southern Bangladesh.

Through the door of opportunity
The opportunity that opened the door for Armin to fulfil her dream was a DuPont Pioneer postgraduate fellowship implemented by GCP. The competitive programme provides grants for postgraduate study in plant breeding and genetics to boost the yields of staple food crops. This fellowship took Armin to Filipino shores and the molecular breeding labs at the International Rice Research Institute (IRRI). Here she got what she terms a golden opportunity to work under the tutelage of Abdelbagi Ismail, a leading plant physiologist focusing on overcoming abiotic stresses. From him, Armin learnt how carry out the precise meticulous research required for identifying quantitative trait loci (QTLs).

Armin at work at the greenhouse.

Armin at work at the IRRI greenhouse in 2011.

Armin conducted her research with two different mapping populations, both derived from Bangladeshi landraces (Kutipatnai and Ashfal). She found a total of nine quantitative trait loci (QTLs) from one mapping population and 82 QTLs from another for tolerance to salinity stress at seedling stage (QTL is a gene locus where allelic variation is associated with variation in a quantitative trait). Incorporating these additional genes into a high-yielding variety will help to develop promising salt-tolerant varieties in future. She has also successfully incorporated QTLs for dual tolerance to salinity (Saltol) and submergence (Sub1) in the popular Bangladeshi mega-variety, BR11. Stacking (or ‘pyramiding’ in technical terms) Saltol and Sub1 QTLs in BR11 will provide the ideal salt-tolerant ‘amphibian’ rice suitable for farmers in the flood-prone salty-water-drenched swaths of southern Bangladesh.

I know what to do and what is needed… I am going to share what I learned with my colleagues at BRRI and agricultural universities, as well as teach these techniques to students”

Dream achiever and sharer: aspiring leader inspiring change
The Pioneer–GCP fellowship has given Armin the opportunity to progress professionally. But, more than that, it means that through this remarkable young scientist, others from BRRI will benefit – as will her country and region. “While I was at IRRI,” Armin says, “I trained myself in modern molecular plant-breeding methods, as I knew that this practical experience in high-tech research methods would definitely help Bangladesh. I know what to do and what is needed. I am going to share what I learned with my colleagues at BRRI and agricultural universities, as well as teach these techniques to students. It makes me very happy and my parents very proud that the fellowship has helped me to make my dream come true.”

Away from professional life, there have been benefits at home too, with these benefits delivered with Armin’s aplomb and signature style in science – doing two in one, in more ways than one. This time around, the approach has led to dual doctorates for a dual-career couple in different disciplines: “When I went to The Philippines” Armin reveals, “my husband decided to come with me, and took the opportunity to study for a PhD in development communications. So we were both doing research at the same time!”

While Armin’s research promises to make a real difference in coastal rice-growing areas, Armin herself has the potential to lead modern plant breeding at her institute, carry GCP work forward in the long term, post-GCP, and to inspire others as she herself was inspired – to make dreams come true and stimulate change. An inspired rice scientist is herself an inspiration. You will agree with us that Armin personifies Inspiring change, our favoured sub-theme for International Women’s Day this year.

Go, Armin, Go! We’re mighty proud of what you’ve achieved, which we have no doubt serves as inspiration for others!

Links

 

Jan 232013
 

Abdelbagi Ismail

 I was forever inquisitive as to how things grew, and questioning when they didn’t grow well. I think it’s what got me interested in plant science.”
– Abdelbagi Ismail, Plant Physiologist and Principal Scientist, International Rice Research Institute.

Today, we talk to Abdel. His riveting voyage in plant science starts on the bountiful banks of the Nile, before we sail on to Asia’s ricelands.  We’ll make a short stopover in USA for cowpeas and drought in between,  then proceed to to our main meal of rice, spiced and seasoned with a strong dash of salt-and-P.

It’s not just about food, but also family: you’ll  get to meet a sister Challenge Programme along the way. Intrigued? We hope so, so please do read on

‘A’ for Abdel and agriculture – an early passion for plants
From a tender age, Abdel was fascinated by agriculture.

Growing up on a small family farm backing onto the banks of the Nile in the Northern State of Sudan, he helped his parents in tilling the land, sowing and harvesting.

Abdel reminisces, “It was a relaxing paradise with all types of fruit growing around you year-round. Working and living on a farm, I was forever inquisitive as to how things grew, and questioning when they didn’t grow well. I think it’s what got me interested in plant science.”

Armed with a Bachelor’s and Master’s in Agricultural Sciences (agronomy, crop production, water relations) from the University of Khartoum, Sudan, Abdel moved to the University of California, Riverside, USA, for a PhD on drought tolerance in cowpeas.

“It was the first time I had ever left Africa, and it was a real eye-opener,” Abdel recalls. “It was a fantastic new page in my career too, as I was working with world-class professors and mentors. I chose to work on cowpeas because it is a hardy crop that can be grown in dry conditions which were – and still are – becoming more prevalent in sub-Saharan Africa.” (you can take a sidetrack here, to see our research on cowpeas)

 What interests me is how some societies have survived, and, in some cases, flourished because they invested in improving their plants and crops to adapt and adjust to weather adversities.”

Navigating away from the Nile, and discovering his niche
For this native son of the Nile, this move was a watershed. It marked the start of a dedicated – and still ongoing – career quest to understand how plants can adapt to better tolerate extreme environmental stresses such as higher and lower temperatures, too much or too little water, salinity, and nutrient imbalances.

“Abiotic stresses have had, and continue to have, a major impact on human life, with some societies disappearing altogether because of changes in soils or climate,” says Abdel. “What interests me is how some societies have survived, and, in some cases, flourished because they invested in improving their plants and crops to adapt and adjust to weather adversities.”

From time immemorial, the communities around the Nile where Abdel spent his childhood are a prime example of this flourishing against adversity.

IRRI beckons, and nurtures
In 2000, Abdel accepted a position at the International Rice Research Institute (IRRI) in The Philippines.

Abdel inspects cyclone-damaged rice in Isladi Village, southern Bangladesh.

“I saw it as an opportunity to convert knowledge and scientific discoveries into resources that could help needy farmers,” explains Abdel.

Abdel confesses that when he joined IRRI, his intention was to stay for a short stint and then move on. But as he became more involved in his work, he felt IRRI offered him the best opportunity to build his career, and to contribute to global food-security issues.

“I’ve been here for 12 years now. IRRI really is a great place to grow as a person and a researcher, and to learn how to become a leader.”

Having GCP provide ongoing funding and support for public institutions to conduct a long-term project has been pivotal to the success of the project. It has given us all the security we need to focus on conducting the complex research required…”

Trailblazing for GCP : a much-needed dash of ‘salt-and-P’
In 2004, Abdel proposed a collaborative project between nine different research organisations, across seven countries, to improve salt tolerance and phosphorus uptake efficiency in rice. The work was funded by a sister CGIAR Challenge Programme on Water and Food (CPWF).

This work caught – and held – GCP’s attention, because it sought to overcome a problem that negatively affects the lives of tens of thousands of rice growers around the world. The two resultant GCP-funded IRRI-led projects involved partners from Bangladesh, India, Indonesia, Vietnam and USA’s University of California, Davis. Globally, more than 15 million hectares of ricelands are saline, and more than one-third of all ricelands are phosphorus-deficient, hitting poor communities hardest.

In the nine years since, and together with his colleagues and partners, Abdel has developed the proposal into a productive and coherent suite of interconnected projects: he has managed and overseen most of the progress made during the discovery of the genes associated with salinity tolerance (Saltol) and phosphorus uptake (Pup1), and their insertion into well-known rice varieties that farmers in Bangladesh, Indonesia and The Philippines know and trust.

It’s all about rice: salt tolerance (Saltol) ‘meets’ phosphorus uptake (Pup1) in Bangladesh. Abdel is on the extreme right. Next to him is Sigrid Heuer, Principal Investigator of the ‘Pup1’ work.

Keeping the faith, and going where no rice has gone before…
A long-term horizon helps, since, just like art, science cannot be hurried: “Having GCP provide ongoing funding and support for public institutions to conduct a long-term project has been pivotal to the success of the project,” Abdel emphasises.

“It has given us all the security we need to focus on conducting the complex research required to advance our knowledge about these genes, then breed and develop popular varieties containing then. In some cases, we have developed lines with doubled yields, and grown rice in areas where it has never been grown before because the land was too saline.”

For Abdel, such achievements are heartening as they provide farmers with greater food and income security, which in turn improves their and their community’s livelihoods.

“It brings a smile to my face whenever I think about how our work helps to produce higher-yielding crops for poverty-stricken countries whose farmers often can only afford to grow one crop per year,” says Abdel sincerely.

Abdel continues to build upon, and has even employed, partners he has met through the GCP project…”We want to improve their capacity to take up new breeding techniques, such as the use of molecular markers, which can reduce the time it takes to breed new varieties from six to 10 years to two to three years…”

Continually building on the best
So what’s in store for the future?

Having discovered the Saltol gene and developed experimental lines, his team is now training breeders from country breeding programmes on how they can successfully breed for salt tolerance and tolerance of other abiotic stresses using their own popular varieties, thereby fortifying popular varieties with these much-needed tolerance traits.

“We want to improve their capacity to take up new breeding techniques, such as the use of molecular markers, which can reduce the time it takes to breed new varieties from six to 10 years to two to three years,” reveals Abdel. “This will allow them to breed for crops quicker, in response to ever-changing and extreme climate conditions.”

As for his other projects with IRRI, Abdel continues to build upon, and has even employed, partners he has met through the GCP project to help him with his Stress tolerant rice for Africa and South Asia (STRASA) project.

GCP helped IRRI attract support from other funders…”

Going further, faster, together… five and counting, still learning, and the future looks bright
STRASA is almost five years old and has another five years left to run.

“GCP helped IRRI to attract additional support from other funders, such as the Bill & Melinda Gates Foundation, to start STRASA, which seeks to support the development and distribution of stress-tolerant varieties in Africa and South Asia,” Abdel explains.

Abdel’s parting words? “I’m still committed to understand how plants can be manipulated to adapt to, and better tolerate, extreme environmental stresses, which seems  more feasible today than it has ever been before.”

Links

Sep 072012
 

Preparing rice root samples (Photo: IRRI)ALL IN THE ROOTS: A plant’s roots are a marvellously multitalented organ. They act as fingers and mouths helping plants forage and absorb water and nutrients. They act like arms and legs offering a sturdy base of support so a plant doesn’t keel over. They help store food and water, like our stomach and fat cells. And in some plants, can spawn new life – we leave that to your imagination!

That is why it is of little surprise that this multitalented organ was the key to discovering why some rice lines yield better in phosphorus-poor soils, a puzzle whose answer has eluded farmers and researchers… until now.  And even better, the findings hold promise for sorghum, maize and wheat too. Please read on!

 In search of the key – The Gene Trackers
In 1999, Dr Matthias Wissuwa, now with the Japan International Research Centre for Agricultural Sciences (JIRCAS), deduced that Kasalath, a northern Indian rice variety, contained one or more genes that allowed it to grow successfully in low-phosphorus conditions.

For years, Matthias made it his mission to find these genes, only to find it was as easy as finding a needle in a genetic haystack. He teamed up with the International Rice Research Institute (IRRI), and with GCP’s support, the gene trackers were able to narrow the search down to five genes of interest.

“We had started with 68 genes and within three years, we had narrowed in on these five candidate genes. And then, one-by-one, we checked whether they were related to phosphorous uptake,” recollects Dr Sigrid Heuer, senior scientist at IRRI and leader of the team that published the discovery in Nature in August 2012.

Sigrid Heuer at a rice phosphorus uptake demonstration field in The Philippines.

“In the end we found that if a certain protein kinase gene was turned on in tolerant plants like Kasalath, then those plants would perform better in phosphorus-deficient soils.”

They named this protein kinase gene PSTOL1, which stands for Phosphorus Starvation Tolerance. “When we put this gene into intolerant rice varieties that did not have this gene, they performed better in phosphorus-deficient soils.”

The importance of phosphorus
Rice, like all plants, needs phosphorus to survive and thrive. It’s a key element in plant metabolism, root growth, maturity and yield. Plants deficient in phosphorus are often stunted.

Sigrid explains that whereas phosphorus is abundant in most soils, it is however not always easily accessible by plants. “Many soil types bond tightly to phosphorus, surrendering only a tiny amount to plant roots. This is why more than half of the world’s rice lands are phosphorus-deficient.”

Farmers can get around this by applying phosphate fertilisers. However this is a very expensive exercise and is not an option for the majority of the world’s rice growers, especially the poorer ones –the price of rock phosphate has more than doubled since 2007. The practice is also not sustainable since it is a finite resource.

By selecting for rice varieties with PSTOL1, growers will be less reliant on phosphate fertilisers.

How it works: unravelling PSTOL1 mechanics
In phosphorus-poor soils, PSTOL1 switches on during the early stage of root development. The gene tells the plant to grow larger longer roots, which are able to forage through more soil to absorb and store more nutrients.

“By having a larger root surface area, plants can explore a greater area in the soil and find more phosphorus than usual,” says Sigrid. “It’s like having a larger sponge to absorb more water.”

A rice variety — IR-74 — with Pup1 (left) and without Pup1 (right).

Although the researchers focussed on this one key nutrient, they found the extra root growth helped with other vital elements like nitrogen and potassium.

Another by-chance discovery was that phosphorus uptake 1 (Pup1), the collection of genes (locus) where PSTOL1 is found, is present within a large group of rice varieties.

“We found that in upland rice varieties – those bred for drought-prone environments – most have Pup1,” says Sigrid. “So the breeders in these regions have, without knowing it, been selecting for phosphorus tolerance.”

“When thinking about it, it makes sense as phosphorus is very immobile in dry soils, therefore these plants would have had to adapt to grow longer roots to reach water deeper in the soil and this, at the same time, helps to access more reservoirs of phosphorous .”

Breeding for phosphorus tolerance, and going beyond rice
Using conventional breeding methods, Sigrid says that her team introduced PSTOL1 into two irrigated rice varieties and three Indonesian upland varieties, and found that this increased yields by up to 20 percent.

“In our pot experiments,” she added, “when we use soil that is really low in phosphorus, we see yield increases of 60 percent and more. This will mean growers of upland rice varieties will probably benefit the most from these new lines, which is pleasing given they are among the poorest rice growers in the world.”

Read how Indonesian researchers are developing their own breeds of upland rice with the PSTOL1 gene

Sigrid also sheds light on broadening the research to other crop varieties: “The project team is currently looking at Pup1 in sorghum and maize and we are just about to start on wheat.”

Building capacity and ensuring impact
Like all GCP projects, this one invests as much time in building capacity for country breeding programmes as on research.

Sigrid and her team are currently conducting the first Pup1 workshop to train researchers from Bangladesh, India, Indonesia, Nepal, Philippines, Thailand and Vietnam. They will share molecular markers that indicate the presence of PSTOL1, techniques to select for the gene, as well as for new phosphorus-efficient varieties.

Breeding for phosphorus-efficient rice in the Philippines.

“The aim of these workshops is to take these important tools to where they are most needed and allow them to evolve according to the needs and requirements of each country,” says Dr Rajeev Varshney, GCP’s Comparative and Applied Genomics Leader. “Breeders will be able to breed new rice varieties faster and more easily, and with 100 percent certainty that their rice plants will have the gene. Within three to five years, each country will be able to breed varieties identical to those that growers know and trust except that they will now have the Pup1 gene and an improved ability to unlock and take up soil phosphorus.”

Joining hands in collaboration
This IRRI-led project was conducted in collaboration with JIRCAS and the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD) working with the Indonesian Centre for Rice Research. Other partners included: Italy’s University of Milano, Germany’s Max Planck Institute in Golm, the University of The Philippines at Los Baños, USA’s Cornell University and University of California (Davis and Riverside), Brazil’s EMBRAPA, Africa Rice Center, Iran’s Agricultural Biotechnology Research Institute, Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO) and University of Dhaka in Bangladesh.

Links

Sigrid’s presentation at the GCP General Research Meeting 2011

cheap ghd australia