Mar 072014
 
Two in one, in more ways than one
Armin Bhuiya

Armin Bhuiya

Armin Bhuiya (pictured) is a dynamic and lively young geneticist and plant breeder, who has made huge strides in tracking crucial  genes in Bangladeshi rice landraces (or traditional farmer varieties). Armin took a ‘sandwich’ approach twinning two traits  – salt and submergence tolerance – in order to boost farmers’ yields. Her quest for salt-impervious ‘amphibian’ rice has seen her cross frontiers to The Philippines, and back to her native Bangladesh with solutions that will make a difference, borrowing a leaf along the way from the mythical submarine world of Atlantis for life under water. Using cutting-edge crop science, Armin is literally recreating out-of-this-world stuff working two elements of the ancient world  earth and water – plus that commodity that was then so prized enjoying a  premium comparable to gems: salt. Read on! 

A rice heritage, and the ‘sandwich’ saga and submarine search both begin…

“My father worked at the Bangladesh Rice Research Institute (BRRI), which basically means I grew up in rice research. You could say that I was born and bred in agriculture and this inspired me to study agriculture myself,” says Armin. As a result of these early experiences, Armin started a master’s degree in 2006 on genetics and plant breeding, specialising in hybrid rice. Ever since, rice has been her religion, following in the footsteps of her father to join the Bangladesh Rice Research Institute (BRRI).

Her other defining hallmark is her two-in-one approach. Sample this: once she completed her two-in-one master’s, Armin went on to study for a PhD in the same twin areas at Bangladesh Agricultural University. Pondering long and hard on what research would be of most practical use, she asked herself “What is the need? What research will be useful for my country and for the world?” (Editorial aside: out of this world work, apparently…)

Not content  pondering  over the question by herself, her natural two-track approach kicked in. Mulling with her colleagues from BRRI, the answer, it first seemed, was to find ways to produce salt-tolerant high-yielding rice. In Bangladesh and many other parts of South and Southeast Asia, climate change is driving up the sea level, spreading salinity further and deeper across low-lying coastal rice-fields, beyond the bounds where salt-drenched terrain has long been a perennial problem. Modern rice varieties are highly sensitive to salt. So, despite the low yields and quality, farmers continue to favour hardy traditional rice landraces that can take the heat and hit from the salt. Proceeding from this earthy farmer reality and inverting the research–development continuum, Armin needed no further thinking as the farmers showed the way to go. Her role and the difference she could make was to track the ‘treasure’ genes locked in these landraces that were transferred to high-yielding but salt-sensitive rice varieties, to fortify them against salt.

But that was not all. There’s power in numbers and consulting others, harnessing the best in diversity. In comes the two-track approach again, with Armin now turning to fellow scientists again, with the reality from farmers. Upon further consultations with colleagues, yet another fundamental facet emerged that could not be ignored. Apparently, salt-impervious rice alone would not be not enough, and here’s why. Salt and tides aside, during the rainy season inland, flash floods regularly submerge the fields, literally drowning the crop. More than 20 million hectares in South and Southeast Asia are affected – including two million hectares in coastal Bangladesh alone. The southern belt of Bangladesh is particularly affected, as modern varieties are sensitive to not only submergence but also salinity. So Armin had her work cut out for her, and she now knew that for the fruit of her labour to boost rice production in coastal regions as well (two tracks again! Inland and coastal low-lying rice-lands), what she needed to do was to work on producing high-yielding, salt-impervious, ‘amphibian’ rice that could withstand not only salinity but also submarine life. In other words, pretty much rice for a latter-day real-life rendition of the mythical Atlantis.

Armin has successfully incorporated dual tolerance to salinity and submergence in the popular Bangladeshi mega-variety BR11. This will provide the ideal salt-tolerant ‘amphibian’ rice suitable for farmers in the flood-prone salty-water-drenched swaths of southern Bangladesh.

Through the door of opportunity
The opportunity that opened the door for Armin to fulfil her dream was a DuPont Pioneer postgraduate fellowship implemented by GCP. The competitive programme provides grants for postgraduate study in plant breeding and genetics to boost the yields of staple food crops. This fellowship took Armin to Filipino shores and the molecular breeding labs at the International Rice Research Institute (IRRI). Here she got what she terms a golden opportunity to work under the tutelage of Abdelbagi Ismail, a leading plant physiologist focusing on overcoming abiotic stresses. From him, Armin learnt how carry out the precise meticulous research required for identifying quantitative trait loci (QTLs).

Armin at work at the greenhouse.

Armin at work at the IRRI greenhouse in 2011.

Armin conducted her research with two different mapping populations, both derived from Bangladeshi landraces (Kutipatnai and Ashfal). She found a total of nine quantitative trait loci (QTLs) from one mapping population and 82 QTLs from another for tolerance to salinity stress at seedling stage (QTL is a gene locus where allelic variation is associated with variation in a quantitative trait). Incorporating these additional genes into a high-yielding variety will help to develop promising salt-tolerant varieties in future. She has also successfully incorporated QTLs for dual tolerance to salinity (Saltol) and submergence (Sub1) in the popular Bangladeshi mega-variety, BR11. Stacking (or ‘pyramiding’ in technical terms) Saltol and Sub1 QTLs in BR11 will provide the ideal salt-tolerant ‘amphibian’ rice suitable for farmers in the flood-prone salty-water-drenched swaths of southern Bangladesh.

I know what to do and what is needed… I am going to share what I learned with my colleagues at BRRI and agricultural universities, as well as teach these techniques to students”

Dream achiever and sharer: aspiring leader inspiring change
The Pioneer–GCP fellowship has given Armin the opportunity to progress professionally. But, more than that, it means that through this remarkable young scientist, others from BRRI will benefit – as will her country and region. “While I was at IRRI,” Armin says, “I trained myself in modern molecular plant-breeding methods, as I knew that this practical experience in high-tech research methods would definitely help Bangladesh. I know what to do and what is needed. I am going to share what I learned with my colleagues at BRRI and agricultural universities, as well as teach these techniques to students. It makes me very happy and my parents very proud that the fellowship has helped me to make my dream come true.”

Away from professional life, there have been benefits at home too, with these benefits delivered with Armin’s aplomb and signature style in science – doing two in one, in more ways than one. This time around, the approach has led to dual doctorates for a dual-career couple in different disciplines: “When I went to The Philippines” Armin reveals, “my husband decided to come with me, and took the opportunity to study for a PhD in development communications. So we were both doing research at the same time!”

While Armin’s research promises to make a real difference in coastal rice-growing areas, Armin herself has the potential to lead modern plant breeding at her institute, carry GCP work forward in the long term, post-GCP, and to inspire others as she herself was inspired – to make dreams come true and stimulate change. An inspired rice scientist is herself an inspiration. You will agree with us that Armin personifies Inspiring change, our favoured sub-theme for International Women’s Day this year.

Go, Armin, Go! We’re mighty proud of what you’ve achieved, which we have no doubt serves as inspiration for others!

Links

 

Jan 232013
 

Abdelbagi Ismail

 I was forever inquisitive as to how things grew, and questioning when they didn’t grow well. I think it’s what got me interested in plant science.”
– Abdelbagi Ismail, Plant Physiologist and Principal Scientist, International Rice Research Institute.

Today, we talk to Abdel. His riveting voyage in plant science starts on the bountiful banks of the Nile, before we sail on to Asia’s ricelands.  We’ll make a short stopover in USA for cowpeas and drought in between,  then proceed to to our main meal of rice, spiced and seasoned with a strong dash of salt-and-P.

It’s not just about food, but also family: you’ll  get to meet a sister Challenge Programme along the way. Intrigued? We hope so, so please do read on

‘A’ for Abdel and agriculture – an early passion for plants
From a tender age, Abdel was fascinated by agriculture.

Growing up on a small family farm backing onto the banks of the Nile in the Northern State of Sudan, he helped his parents in tilling the land, sowing and harvesting.

Abdel reminisces, “It was a relaxing paradise with all types of fruit growing around you year-round. Working and living on a farm, I was forever inquisitive as to how things grew, and questioning when they didn’t grow well. I think it’s what got me interested in plant science.”

Armed with a Bachelor’s and Master’s in Agricultural Sciences (agronomy, crop production, water relations) from the University of Khartoum, Sudan, Abdel moved to the University of California, Riverside, USA, for a PhD on drought tolerance in cowpeas.

“It was the first time I had ever left Africa, and it was a real eye-opener,” Abdel recalls. “It was a fantastic new page in my career too, as I was working with world-class professors and mentors. I chose to work on cowpeas because it is a hardy crop that can be grown in dry conditions which were – and still are – becoming more prevalent in sub-Saharan Africa.” (you can take a sidetrack here, to see our research on cowpeas)

 What interests me is how some societies have survived, and, in some cases, flourished because they invested in improving their plants and crops to adapt and adjust to weather adversities.”

Navigating away from the Nile, and discovering his niche
For this native son of the Nile, this move was a watershed. It marked the start of a dedicated – and still ongoing – career quest to understand how plants can adapt to better tolerate extreme environmental stresses such as higher and lower temperatures, too much or too little water, salinity, and nutrient imbalances.

“Abiotic stresses have had, and continue to have, a major impact on human life, with some societies disappearing altogether because of changes in soils or climate,” says Abdel. “What interests me is how some societies have survived, and, in some cases, flourished because they invested in improving their plants and crops to adapt and adjust to weather adversities.”

From time immemorial, the communities around the Nile where Abdel spent his childhood are a prime example of this flourishing against adversity.

IRRI beckons, and nurtures
In 2000, Abdel accepted a position at the International Rice Research Institute (IRRI) in The Philippines.

Abdel inspects cyclone-damaged rice in Isladi Village, southern Bangladesh.

“I saw it as an opportunity to convert knowledge and scientific discoveries into resources that could help needy farmers,” explains Abdel.

Abdel confesses that when he joined IRRI, his intention was to stay for a short stint and then move on. But as he became more involved in his work, he felt IRRI offered him the best opportunity to build his career, and to contribute to global food-security issues.

“I’ve been here for 12 years now. IRRI really is a great place to grow as a person and a researcher, and to learn how to become a leader.”

Having GCP provide ongoing funding and support for public institutions to conduct a long-term project has been pivotal to the success of the project. It has given us all the security we need to focus on conducting the complex research required…”

Trailblazing for GCP : a much-needed dash of ‘salt-and-P’
In 2004, Abdel proposed a collaborative project between nine different research organisations, across seven countries, to improve salt tolerance and phosphorus uptake efficiency in rice. The work was funded by a sister CGIAR Challenge Programme on Water and Food (CPWF).

This work caught – and held – GCP’s attention, because it sought to overcome a problem that negatively affects the lives of tens of thousands of rice growers around the world. The two resultant GCP-funded IRRI-led projects involved partners from Bangladesh, India, Indonesia, Vietnam and USA’s University of California, Davis. Globally, more than 15 million hectares of ricelands are saline, and more than one-third of all ricelands are phosphorus-deficient, hitting poor communities hardest.

In the nine years since, and together with his colleagues and partners, Abdel has developed the proposal into a productive and coherent suite of interconnected projects: he has managed and overseen most of the progress made during the discovery of the genes associated with salinity tolerance (Saltol) and phosphorus uptake (Pup1), and their insertion into well-known rice varieties that farmers in Bangladesh, Indonesia and The Philippines know and trust.

It’s all about rice: salt tolerance (Saltol) ‘meets’ phosphorus uptake (Pup1) in Bangladesh. Abdel is on the extreme right. Next to him is Sigrid Heuer, Principal Investigator of the ‘Pup1’ work.

Keeping the faith, and going where no rice has gone before…
A long-term horizon helps, since, just like art, science cannot be hurried: “Having GCP provide ongoing funding and support for public institutions to conduct a long-term project has been pivotal to the success of the project,” Abdel emphasises.

“It has given us all the security we need to focus on conducting the complex research required to advance our knowledge about these genes, then breed and develop popular varieties containing then. In some cases, we have developed lines with doubled yields, and grown rice in areas where it has never been grown before because the land was too saline.”

For Abdel, such achievements are heartening as they provide farmers with greater food and income security, which in turn improves their and their community’s livelihoods.

“It brings a smile to my face whenever I think about how our work helps to produce higher-yielding crops for poverty-stricken countries whose farmers often can only afford to grow one crop per year,” says Abdel sincerely.

Abdel continues to build upon, and has even employed, partners he has met through the GCP project…”We want to improve their capacity to take up new breeding techniques, such as the use of molecular markers, which can reduce the time it takes to breed new varieties from six to 10 years to two to three years…”

Continually building on the best
So what’s in store for the future?

Having discovered the Saltol gene and developed experimental lines, his team is now training breeders from country breeding programmes on how they can successfully breed for salt tolerance and tolerance of other abiotic stresses using their own popular varieties, thereby fortifying popular varieties with these much-needed tolerance traits.

“We want to improve their capacity to take up new breeding techniques, such as the use of molecular markers, which can reduce the time it takes to breed new varieties from six to 10 years to two to three years,” reveals Abdel. “This will allow them to breed for crops quicker, in response to ever-changing and extreme climate conditions.”

As for his other projects with IRRI, Abdel continues to build upon, and has even employed, partners he has met through the GCP project to help him with his Stress tolerant rice for Africa and South Asia (STRASA) project.

GCP helped IRRI attract support from other funders…”

Going further, faster, together… five and counting, still learning, and the future looks bright
STRASA is almost five years old and has another five years left to run.

“GCP helped IRRI to attract additional support from other funders, such as the Bill & Melinda Gates Foundation, to start STRASA, which seeks to support the development and distribution of stress-tolerant varieties in Africa and South Asia,” Abdel explains.

Abdel’s parting words? “I’m still committed to understand how plants can be manipulated to adapt to, and better tolerate, extreme environmental stresses, which seems  more feasible today than it has ever been before.”

Links

Dec 212012
 

I’ve always enjoyed my job, particularly teaching students and young researchers, but this project has made me think about how I can do more practical science.” – Zeba Seraj, Biochemistry and Molecular Biology Professor, University of Dhaka, Bangladesh

Zeba Seraj

Growing up with a botanist as a father, Zeba Seraj was nurtured to look at plants in a scientific light. But at one stage in her life, she took a different fork on the road: she was more interested in rat livers and cow eyes, before becoming a ‘late bloomer’ in applied science and molecular plant breeding, which is her current niche.

Taking that fork: rats seduced, cows made eyes, but both lost…
Having completed her Undergraduate and Master’s in Biochemistry at the University of Dhaka, Bangladesh, during the 70s and 80s, she moved to Scotland for a PhD at the University of Glasgow. After being persuaded that molecular biology and recombinant DNA technology were not likely to be too different in animals and plants, she focused on the separation of nuclear proteins involved in post-transcriptional processing in the rat liver system.

“I then went on to work as a postdoc at the University of Liverpool, UK, for 18 months, where I worked on a bovine retina cDNA [complementary DNA] library,” Zeba recalls. “I was exposed to a number of recombinant DNA techniques and was pleasantly surprised to find DNA much easier to work with compared to proteins! I enjoyed it, but when I returned to the Bangladesh, there was no work in that field, so I turned to plants.”

The rise of rice, propelled by ‘Petrra’ project and petri dish
Back at her old University, one of Zeba’s first projects was working on salt tolerance in rice which allowed her to set up plant tissue culture facilities and establish a modest molecular biology laboratory. Zeba thereafter worked with the International Rice Research Institute (IRRI) and the Bangladesh Rice Research Institute (BRRI) on the Petrra project (poverty elimination through rice research assistance). The project was funded by the Department for International Development, UK. Meanwhile, she also spent a couple of months in the laboratory of the illustrious Dr John Bennett at IRRI, learning the latest technology in DNA markers and polymerase chain reaction (PCR) technology. This inital work would, in a way, lead her to GCP.

Meeting GCP, and banking on potential
Zeba joined the GCP community in 2005, working on the rice Saltol (salt tolerance) project. She was a focal collaborator in Bangladesh for this IRRI-led project that aimed to revitalise marginal ricelands by discovering and breeding into popular rice varieties ‘survival’ genes to enable rice to not only survive but also thrive on saline or phosphorus-poor soils.

“We were introduced to the project through the Principal Investigator, Abdel Ismail,” recalls Zeba. “Our lab was not very modern, but we did have all the facilities to do marker work, as well as a firm grasp on the theory, so IRRI and GCP must have seen potential in us.”

 …doing the research helped me understand the practical application better… It was a real eye-opener.”

Transiting from theory to practice
After 15 years of working as an associate professor and professor at the University of Dhaka (DU), mainly nurturing young biochemists, Zeba was re-energised by the thought of working on such a practical project that would have a direct impact on her country’s food security, and on its farmers’ livelihoods.

In the background, genotyping in progress at the Department of Biochemistry and Molecular Biology, University of Dhaka. In thef oreground, student– supervisor consultations. Pictured (left to right) are: Zeba I Seraj, Roman, Adnan, Sarwar, Debashis,Rabin, Dost, Mishu, Shamim and Rejbana.

Nearly one million hectares along the Bangladesh coast are affected by varying degrees of salinity which has severely limited the introduction of modern high-yielding rice varieties, as few of these are saline-tolerant. Given Bangladesh’s high population, farmers need as bountiful yields as possible, and minimum risk of failure.

“After reading and teaching theory for so long, it was really exciting to actually put it into practice and work towards a practical outcome,” says Zeba.

“Actually doing the research helped me understand the practical application better too. It was a real eye-opener.”

 Using molecular markers allowed us to at least halve the time it would take to release stress-tolerant rice.” 

Gaining time: the ‘miracles’ and ‘magic’ of molecular makers
Zeba’s lab was responsible for the molecular evaluation and selection of rice lines bred by BRRI for insertion of the genomic region containing Saltol (discovered to confer salt toleranceby the previous IRRI-led GCP-funded project).

Md Sazzadur Rahman of BRRI assesses progress on a salt-tolerant rice variety in the field.

“We collected leaf samples from the BRRI-bred lines which were a combination of popular rice landraces and a Saltol donor.” explains Zeba ‘Landraces’ is ‘breeder-speak’ for varieties grown by, and popular with, farmers, but not necessarily improved by selective scientific breeding. Zeba continues, “We then used molecular markers which would indicate the presence of the Saltol genomic region.”

“The information we gathered guided the breeders at BRRI to select rice plants with the Saltol region. Selected plants were then further analysed with markers, to maximise the presence of popular alleles,” she adds. Allele is one of two, or more, forms of a gene – the alternative form of a gene responsible for a trait producing different effects.

“Using molecular markers allowed us to at least halve the time it would take to release stress-tolerant rice,” Zeba reveals.

 I will be the happiest person on earth the day they release the new lines, knowing that I’d helped to make a difference.”

Seven years on, what next?
Zeba is grateful that she and her lab were active partners in GCP projects for seven consecutive years: first in the IRRI-led project in 2005 to 2009, then in a follow-up supplementary capacity-building DU-led project from 2010 to 2011, for which Zeba was the Principal Investigator.

Nirmal Sharma and Jamal emasculate the first backcross population of a crosscombination for a second backcross at BRRI

“I don’t think we could have done the work without the various GCP networks. Several times in the project we would lag behind and they’d offer us support to get us back on track,” says Zeba. “They also instilled in us the importance of proper data management, and we have now implemented their system to collect, store and report data for all of our projects. We also now have all the equipment and processes in place, meaning that we’re now able to accommodate similar projects, now and into the future.”

Personally Zeba feels the project has given her a new direction in her career that she’s keen to further explore. “I’ve always enjoyed my job, particularly teaching students and young researchers, but this project has made me think about how I can do more practical science,” confides Zeba.

As for the Saltol project, she is keeping a close eye on the application waiting for the news of high-yield salt-tolerant lines becoming accessible to all Bangladeshi rice farmers.

“I will be the happiest person on earth the day they release the new lines, knowing that I’d helped to make a difference.”

Links

  • More on Zeba Seraj on page 40 here
  • The road behind us: read on the early days (2005/2006) of the rice salt-tolerance work:
    • on pages 36–39 here
    • on pages 28–30 here
    • on page 6 here
  • Profile: Abdel Ismail, Principal Investigator of the salt tolerance project

 

cheap ghd australia