Jan 232013
 
Print Friendly

Abdelbagi Ismail

 I was forever inquisitive as to how things grew, and questioning when they didn’t grow well. I think it’s what got me interested in plant science.”
– Abdelbagi Ismail, Plant Physiologist and Principal Scientist, International Rice Research Institute.

Today, we talk to Abdel. His riveting voyage in plant science starts on the bountiful banks of the Nile, before we sail on to Asia’s ricelands.  We’ll make a short stopover in USA for cowpeas and drought in between,  then proceed to to our main meal of rice, spiced and seasoned with a strong dash of salt-and-P.

It’s not just about food, but also family: you’ll  get to meet a sister Challenge Programme along the way. Intrigued? We hope so, so please do read on

‘A’ for Abdel and agriculture – an early passion for plants
From a tender age, Abdel was fascinated by agriculture.

Growing up on a small family farm backing onto the banks of the Nile in the Northern State of Sudan, he helped his parents in tilling the land, sowing and harvesting.

Abdel reminisces, “It was a relaxing paradise with all types of fruit growing around you year-round. Working and living on a farm, I was forever inquisitive as to how things grew, and questioning when they didn’t grow well. I think it’s what got me interested in plant science.”

Armed with a Bachelor’s and Master’s in Agricultural Sciences (agronomy, crop production, water relations) from the University of Khartoum, Sudan, Abdel moved to the University of California, Riverside, USA, for a PhD on drought tolerance in cowpeas.

“It was the first time I had ever left Africa, and it was a real eye-opener,” Abdel recalls. “It was a fantastic new page in my career too, as I was working with world-class professors and mentors. I chose to work on cowpeas because it is a hardy crop that can be grown in dry conditions which were – and still are – becoming more prevalent in sub-Saharan Africa.” (you can take a sidetrack here, to see our research on cowpeas)

 What interests me is how some societies have survived, and, in some cases, flourished because they invested in improving their plants and crops to adapt and adjust to weather adversities.”

Navigating away from the Nile, and discovering his niche
For this native son of the Nile, this move was a watershed. It marked the start of a dedicated – and still ongoing – career quest to understand how plants can adapt to better tolerate extreme environmental stresses such as higher and lower temperatures, too much or too little water, salinity, and nutrient imbalances.

“Abiotic stresses have had, and continue to have, a major impact on human life, with some societies disappearing altogether because of changes in soils or climate,” says Abdel. “What interests me is how some societies have survived, and, in some cases, flourished because they invested in improving their plants and crops to adapt and adjust to weather adversities.”

From time immemorial, the communities around the Nile where Abdel spent his childhood are a prime example of this flourishing against adversity.

IRRI beckons, and nurtures
In 2000, Abdel accepted a position at the International Rice Research Institute (IRRI) in The Philippines.

Abdel inspects cyclone-damaged rice in Isladi Village, southern Bangladesh.

“I saw it as an opportunity to convert knowledge and scientific discoveries into resources that could help needy farmers,” explains Abdel.

Abdel confesses that when he joined IRRI, his intention was to stay for a short stint and then move on. But as he became more involved in his work, he felt IRRI offered him the best opportunity to build his career, and to contribute to global food-security issues.

“I’ve been here for 12 years now. IRRI really is a great place to grow as a person and a researcher, and to learn how to become a leader.”

Having GCP provide ongoing funding and support for public institutions to conduct a long-term project has been pivotal to the success of the project. It has given us all the security we need to focus on conducting the complex research required…”

Trailblazing for GCP : a much-needed dash of ‘salt-and-P’
In 2004, Abdel proposed a collaborative project between nine different research organisations, across seven countries, to improve salt tolerance and phosphorus uptake efficiency in rice. The work was funded by a sister CGIAR Challenge Programme on Water and Food (CPWF).

This work caught – and held – GCP’s attention, because it sought to overcome a problem that negatively affects the lives of tens of thousands of rice growers around the world. The two resultant GCP-funded IRRI-led projects involved partners from Bangladesh, India, Indonesia, Vietnam and USA’s University of California, Davis. Globally, more than 15 million hectares of ricelands are saline, and more than one-third of all ricelands are phosphorus-deficient, hitting poor communities hardest.

In the nine years since, and together with his colleagues and partners, Abdel has developed the proposal into a productive and coherent suite of interconnected projects: he has managed and overseen most of the progress made during the discovery of the genes associated with salinity tolerance (Saltol) and phosphorus uptake (Pup1), and their insertion into well-known rice varieties that farmers in Bangladesh, Indonesia and The Philippines know and trust.

It’s all about rice: salt tolerance (Saltol) ‘meets’ phosphorus uptake (Pup1) in Bangladesh. Abdel is on the extreme right. Next to him is Sigrid Heuer, Principal Investigator of the ‘Pup1’ work.

Keeping the faith, and going where no rice has gone before…
A long-term horizon helps, since, just like art, science cannot be hurried: “Having GCP provide ongoing funding and support for public institutions to conduct a long-term project has been pivotal to the success of the project,” Abdel emphasises.

“It has given us all the security we need to focus on conducting the complex research required to advance our knowledge about these genes, then breed and develop popular varieties containing then. In some cases, we have developed lines with doubled yields, and grown rice in areas where it has never been grown before because the land was too saline.”

For Abdel, such achievements are heartening as they provide farmers with greater food and income security, which in turn improves their and their community’s livelihoods.

“It brings a smile to my face whenever I think about how our work helps to produce higher-yielding crops for poverty-stricken countries whose farmers often can only afford to grow one crop per year,” says Abdel sincerely.

Abdel continues to build upon, and has even employed, partners he has met through the GCP project…”We want to improve their capacity to take up new breeding techniques, such as the use of molecular markers, which can reduce the time it takes to breed new varieties from six to 10 years to two to three years…”

Continually building on the best
So what’s in store for the future?

Having discovered the Saltol gene and developed experimental lines, his team is now training breeders from country breeding programmes on how they can successfully breed for salt tolerance and tolerance of other abiotic stresses using their own popular varieties, thereby fortifying popular varieties with these much-needed tolerance traits.

“We want to improve their capacity to take up new breeding techniques, such as the use of molecular markers, which can reduce the time it takes to breed new varieties from six to 10 years to two to three years,” reveals Abdel. “This will allow them to breed for crops quicker, in response to ever-changing and extreme climate conditions.”

As for his other projects with IRRI, Abdel continues to build upon, and has even employed, partners he has met through the GCP project to help him with his Stress tolerant rice for Africa and South Asia (STRASA) project.

GCP helped IRRI attract support from other funders…”

Going further, faster, together… five and counting, still learning, and the future looks bright
STRASA is almost five years old and has another five years left to run.

“GCP helped IRRI to attract additional support from other funders, such as the Bill & Melinda Gates Foundation, to start STRASA, which seeks to support the development and distribution of stress-tolerant varieties in Africa and South Asia,” Abdel explains.

Abdel’s parting words? “I’m still committed to understand how plants can be manipulated to adapt to, and better tolerate, extreme environmental stresses, which seems  more feasible today than it has ever been before.”

Links

Dec 212012
 
Print Friendly

I’ve always enjoyed my job, particularly teaching students and young researchers, but this project has made me think about how I can do more practical science.” – Zeba Seraj, Biochemistry and Molecular Biology Professor, University of Dhaka, Bangladesh

Zeba Seraj

Growing up with a botanist as a father, Zeba Seraj was nurtured to look at plants in a scientific light. But at one stage in her life, she took a different fork on the road: she was more interested in rat livers and cow eyes, before becoming a ‘late bloomer’ in applied science and molecular plant breeding, which is her current niche.

Taking that fork: rats seduced, cows made eyes, but both lost…
Having completed her Undergraduate and Master’s in Biochemistry at the University of Dhaka, Bangladesh, during the 70s and 80s, she moved to Scotland for a PhD at the University of Glasgow. After being persuaded that molecular biology and recombinant DNA technology were not likely to be too different in animals and plants, she focused on the separation of nuclear proteins involved in post-transcriptional processing in the rat liver system.

“I then went on to work as a postdoc at the University of Liverpool, UK, for 18 months, where I worked on a bovine retina cDNA [complementary DNA] library,” Zeba recalls. “I was exposed to a number of recombinant DNA techniques and was pleasantly surprised to find DNA much easier to work with compared to proteins! I enjoyed it, but when I returned to the Bangladesh, there was no work in that field, so I turned to plants.”

The rise of rice, propelled by ‘Petrra’ project and petri dish
Back at her old University, one of Zeba’s first projects was working on salt tolerance in rice which allowed her to set up plant tissue culture facilities and establish a modest molecular biology laboratory. Zeba thereafter worked with the International Rice Research Institute (IRRI) and the Bangladesh Rice Research Institute (BRRI) on the Petrra project (poverty elimination through rice research assistance). The project was funded by the Department for International Development, UK. Meanwhile, she also spent a couple of months in the laboratory of the illustrious Dr John Bennett at IRRI, learning the latest technology in DNA markers and polymerase chain reaction (PCR) technology. This inital work would, in a way, lead her to GCP.

Meeting GCP, and banking on potential
Zeba joined the GCP community in 2005, working on the rice Saltol (salt tolerance) project. She was a focal collaborator in Bangladesh for this IRRI-led project that aimed to revitalise marginal ricelands by discovering and breeding into popular rice varieties ‘survival’ genes to enable rice to not only survive but also thrive on saline or phosphorus-poor soils.

“We were introduced to the project through the Principal Investigator, Abdel Ismail,” recalls Zeba. “Our lab was not very modern, but we did have all the facilities to do marker work, as well as a firm grasp on the theory, so IRRI and GCP must have seen potential in us.”

 …doing the research helped me understand the practical application better… It was a real eye-opener.”

Transiting from theory to practice
After 15 years of working as an associate professor and professor at the University of Dhaka (DU), mainly nurturing young biochemists, Zeba was re-energised by the thought of working on such a practical project that would have a direct impact on her country’s food security, and on its farmers’ livelihoods.

In the background, genotyping in progress at the Department of Biochemistry and Molecular Biology, University of Dhaka. In thef oreground, student– supervisor consultations. Pictured (left to right) are: Zeba I Seraj, Roman, Adnan, Sarwar, Debashis,Rabin, Dost, Mishu, Shamim and Rejbana.

Nearly one million hectares along the Bangladesh coast are affected by varying degrees of salinity which has severely limited the introduction of modern high-yielding rice varieties, as few of these are saline-tolerant. Given Bangladesh’s high population, farmers need as bountiful yields as possible, and minimum risk of failure.

“After reading and teaching theory for so long, it was really exciting to actually put it into practice and work towards a practical outcome,” says Zeba.

“Actually doing the research helped me understand the practical application better too. It was a real eye-opener.”

 Using molecular markers allowed us to at least halve the time it would take to release stress-tolerant rice.” 

Gaining time: the ‘miracles’ and ‘magic’ of molecular makers
Zeba’s lab was responsible for the molecular evaluation and selection of rice lines bred by BRRI for insertion of the genomic region containing Saltol (discovered to confer salt toleranceby the previous IRRI-led GCP-funded project).

Md Sazzadur Rahman of BRRI assesses progress on a salt-tolerant rice variety in the field.

“We collected leaf samples from the BRRI-bred lines which were a combination of popular rice landraces and a Saltol donor.” explains Zeba ‘Landraces’ is ‘breeder-speak’ for varieties grown by, and popular with, farmers, but not necessarily improved by selective scientific breeding. Zeba continues, “We then used molecular markers which would indicate the presence of the Saltol genomic region.”

“The information we gathered guided the breeders at BRRI to select rice plants with the Saltol region. Selected plants were then further analysed with markers, to maximise the presence of popular alleles,” she adds. Allele is one of two, or more, forms of a gene – the alternative form of a gene responsible for a trait producing different effects.

“Using molecular markers allowed us to at least halve the time it would take to release stress-tolerant rice,” Zeba reveals.

 I will be the happiest person on earth the day they release the new lines, knowing that I’d helped to make a difference.”

Seven years on, what next?
Zeba is grateful that she and her lab were active partners in GCP projects for seven consecutive years: first in the IRRI-led project in 2005 to 2009, then in a follow-up supplementary capacity-building DU-led project from 2010 to 2011, for which Zeba was the Principal Investigator.

Nirmal Sharma and Jamal emasculate the first backcross population of a crosscombination for a second backcross at BRRI

“I don’t think we could have done the work without the various GCP networks. Several times in the project we would lag behind and they’d offer us support to get us back on track,” says Zeba. “They also instilled in us the importance of proper data management, and we have now implemented their system to collect, store and report data for all of our projects. We also now have all the equipment and processes in place, meaning that we’re now able to accommodate similar projects, now and into the future.”

Personally Zeba feels the project has given her a new direction in her career that she’s keen to further explore. “I’ve always enjoyed my job, particularly teaching students and young researchers, but this project has made me think about how I can do more practical science,” confides Zeba.

As for the Saltol project, she is keeping a close eye on the application waiting for the news of high-yield salt-tolerant lines becoming accessible to all Bangladeshi rice farmers.

“I will be the happiest person on earth the day they release the new lines, knowing that I’d helped to make a difference.”

Links

  • More on Zeba Seraj on page 40 here
  • The road behind us: read on the early days (2005/2006) of the rice salt-tolerance work:
    • on pages 36–39 here
    • on pages 28–30 here
    • on page 6 here
  • Profile: Abdel Ismail, Principal Investigator of the salt tolerance project

 

Nov 302012
 
Print Friendly
Photo: IRRI

Sigrid Heuer

Meet Sigrid Heuer (pictured), a Molecular Biologist and Senior Scientist at the International Rice Research Institute (IRRI). Her lively and riveting story will take us from Africa through her native Europe and on to Asia, and finally Down Under to Australia.

Origins – the African chapter
Africa holds a special and soft spot in Sigrid’s love affair with science: it was while on this continent that she realised her calling in life as a scientist – linking people doing pure research on plant genes to help plants survive and even thrive in harsh environments, with people who want to apply that knowledge to breed crops that can change the lives of millions of farmers who constantly compromise with nature to make a living.

Photo: IRRI

Fieldwork: Sigrid at a field trial for rice phosphorus uptake.

“Working as a postdoc at the Africa Rice Center in Senegal was a real life-changing experience,” Sigrid recollects with great fondness. “It’s where I found my niche, using my background in theoretical science and applying it to developing crops that could overcome abiotic stresses, and in doing so, make a real impact on people’s lives.”

Rowing further down the river: from upstream to downstream science
Sigrid was born and raised in Hamburg, Germany. She remembers wanting to be a psychologist and didn’t consider science until a few years after finishing school. After completing a biology undergraduate at Phillips University, Marburg, Germany, she returned to her home city of Hamburg to complete a Masters and PhD in plant physiology and molecular biology respectively.

“Back then, I was really involved in upstream science, fascinated in the fine details without much consideration of how such research could benefit society,” says Sigrid. “I still enjoy this form of science and really do value its purpose, but putting it into practice and focusing on the impact that it can have is what really motivates me now.”

Moving to IRRI, and meeting Pup1 and GCP
After three years in Senegal, Sigrid moved to the Philippines to join IRRI in 2003, first as a consultant then as a part-time scientist. In these early years, she was working on several projects, one of which was the GCP-funded Pup1 (rice phosphorus uptake) project.

“The project sought to identify the genes associated with phosphorus uptake in rice lines that could tolerate phosphorus-deficient soils,” says Sigrid. “It was an interesting project in which I was able to use my background in molecular biology. Little by little, I got more and more involved in the Pup1 project and after a year I was asked by Matthias Wissuwa, who was leading the project at the time, if I wanted to take it over. It was a great opportunity which I jumped at, not knowing then how challenging it would prove.”

Pup1 was the first major project I had managed. It was a playground of sorts that allowed me to learn what I needed to know about managing a project – writing proposals and reports, managing budgets and people’s time, and everything else that comes with leading a team.

The ‘root’ and  ‘command post’ where it all happens: Sigrid in the office. For the benefit of our readers, we would have credited the young artist whose colourful work graces the background below the bookshelf, but we were too polite to pry and prise out the young talent’s name, having hogged too much of Sigrid’s time already!

Learning to lead – both work and play

Over the last seven years, Sigrid has been a Principal Investigator and joint leader of the project, which has given her latitude to mature professionally, and not just in science alone. “It’s been tough but personally fulfilling,” Sigrid says, with just a touch of exhaustion.

Pup1 was the first major project I had managed. It was a playground of sorts that allowed me to learn what I needed to know about managing a project – writing proposals and reports, managing budgets and people’s time, and everything else that comes with leading a team. I was really lucky to have Matthias’ help as well as the other experienced collaborators and networks. However, the main factor that made my job a lot less stressful, was the benefit of long-term funding and support from GCP. GCP was always there, supporting us and giving us confidence even when we weren’t sure we were going to succeed.”

Persistence pays: tangible products, plus publication in Nature
In August 2012, Sigrid and her team achieved what they had set out to do seven years ago, through what Sigrid puts down to sheer persistence: their discovery of the Pup1 gene was recognised by their scientific peers and published in the highly renowned journal,  Nature.

Sigrid (3rd left) at the lab with other colleagues in the phosphorus uptake team.

“Having our paper published is really something special and personally my greatest achievement to date,” says Sigrid, but she is also quick to add that it was a team achievement, and that the achievement was in itself humbling.

“It was a double reward for persisting with the research, and with getting it into Nature. We wanted it in Nature for several reasons. To raise awareness on phosphorus deficiency and phosphorus being a limited resource, especially in poorer countries; and to draw attention to how we do molecular breeding these days, which is a speedier, easier and cost-effective approach to developing crops that have the potential to alleviate such problems.”

Sigrid hopes the article will have a lasting impression on readers, and encourage funders to continue to support projects that have such impact on the lives of end-users.

What next? Technology transfer, transitions and torch smoothly passing on…
With the Pup1 gene now found, IRRI researchers are working with breeders from country-based breeding programmes around the world to help them understand the techniques to breed local varieties of rice that can grow in phosphorus-deficient soils. They are also collaborating with other projects that wish to use the Pup1 project as a case study for phosphorous deficiency tolerance in other crops like maize, sorghum, and wheat (see an example here, that includes partners from Africa and Latin America).

Sigrid sees this next stage as a perfect time to step down from the project: she plans to move to Adelaide, Australia at the end of 2012 to lead a new project that is looking at drought and nitrogen deficiency tolerance in wheat.

“Matthias passed the baton on to me, and now I get to pass the baton on to someone else, so it’s nice. And I’ll be sure to always be around to help them too.”

Links

Sigrid’s presentation at the GCP General Research Meeting 2011

 

 

Sep 072012
 
Print Friendly

Joko infront of his office at ICABIOGRAD’s Molecular Biology Division.

Indonesian upland rice growers can expect to receive improved varieties that thrive in phosphorus-poor soils within a few years, thanks to the hard work of their national breeding programmes.

Joko Prasetiyono is a proud Indonesian researcher who loves rice.

“I don’t know why. I just love researching ways to improve it so it grows and yields better. I also I love to eat it,” says Joko with a laugh.

Having worked as a molecular breeder, concentrating solely on rice for 17 years at the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD), one would expect a different reaction. But Joko says he’s as interested in the little white grain as much as when he started as an undergraduate with ICABIOGRAD.

And why wouldn’t he be when he and his team are contributing to research that has just been published in Nature and is set to reduce fertiliser application and improve rice yields in Indonesia and the world over by 20 percent!

Improving Indonesian varieties, no genetic modification

Farmers often use phosphate fertilisers to aid in growing rice in these areas, but this option is often too expensive for Indonesian upland growers.

The project has found plants that have a Pup1 locus (a collection of genes), with the specific gene PSTOL1, are able to tolerate phosphorus-deficient conditions and produce better yields than those not suited for the conditions. An Indian rice variety, Kasalath, was one such.

“We are breeding rice varieties that we know have a Pup1 locus and subsequent PSTOL1 gene in them with Indonesian varieties that are suited to Indonesia’s growing systems,” explains Joko.   

Partnering with the International Rice Research Institute (IRRI), ICABIOGRAD and their partner the Indonesian Center for Rice Research (ICRR) have improved the phosphorus tolerance of Indonesian rice varieties Dodokan, Situ Bagendit and Batur.

“The new plants we are creating are not genetically modified; just bred using smarter breeding techniques,” says Joko. “The aim is to breed varieties identical to those that farmers already know and trust, except that they will have the PSTOL1 gene and an improved ability to take up soil phosphorus.”

Joko says that these varieties are currently being tested in field trials and it will take another 2–3 years before Indonesian farmers will have a variety that will yield as well if not better, needing 30–50 percent less fertiliser.

Evolving Indonesian plant research 

ICABIOGRAD team selecting breeding material in 2010. L-R: Masdiar Bustamam, Tintin Suhartini and Ida Hanarida.

GCP is as much about its people and partnerships as its research and products. ICABIOGRAD benefited from a GCP capacity-building grant in mid-2007 to enhance the institute’s capacity in phenotyping and molecular analysis. The grant covered, among other areas, intensive residential staff training at IRRI; PhD student support; infrastructure such as a moist room, temperature-controlled centrifuge apparatus, computers and appropriate specialised software; and  a blast innoculation room. These capacity-building activities were coordinated by Masdiar Bustamam who has since retired, but was then a Senior Scientist at ICABIOGARD.

But coming back to Joko and the PSTOL1 work, Joko started on this project in 2005 as a GCP-funded PhD student at Bogor Agriculture University, Indonesia. He is grateful to be part of a transnational project, which has offered him technical support that he would not otherwise have been able to receive through ICABIOGRAD alone.

IRRI visits ICABIOGRAD in 2009. L-R: Matthias Wissuwa, Sigrid Heuer (both IRRI), Masdiar Bustaman (ICABIOGRAD) and Joong Hyoun Chin

Joko believes the experience of working with IRRI, as a joint partner on this project, will leave an important, and lasting, legacy for researchers at ICABIOGRAD and ICRR. The partnership has also challenged the two local institutes to broaden their horizons past their borders.

“IRRI is teaching us how to use marker-assisted selection and we [ICABIOGRAD and ICRR] are just as busy identifying phosphorus-deficient hotspots in upland areas, choosing the best Indonesian recipient rice varieties for the gene, conducting the breeding and phenotyping testing,” he clarifies.

Breeding for sustainability

The ultimate goal of this project is to help Indonesian growers use marginal land.

Over half the world rice lands are deficient of ‘plant-available’ phosphorus, and Indonesia is no different. Joko explains that while there is plenty of phosphorus in the soil, plants are not able to access it.

“Other minerals in the soil like aluminum, calcium and iron are bound to phosphorus, shielding it from plants roots so they can only absorb a fraction of it.”

Field test of Pup1 lines at Taman Bogo , Indonesia.

In most countries, farmers apply phosphate fertilisers to their crops to combat this deficiency. For Joko this is not a sustainable approach for a lot of Indonesia’s farmers because the fertilisers are expensive and costs will continue to rise as phosphate supplies dwindle.

“Our approach is a lot more sustainable and cost-effective than applying fertiliser. We’ll breed these new plants for phosphorus-poor soils to produce more roots so they can find more phosphorus. The more phosphorus they find, the more of it they can absorb.”

Joko hopes these new plants will help farmers on marginal lands to obtain decent yields without having to spend money on expensive phosphate fertilisers.

“It’s great that our work has been recognised by Nature for publication, but what we really want is to help rice growers here in Indonesia and around the world.”

Links

Jun 272012
 
Print Friendly

India is the world’s largest producer and consumer of chickpea, accounting for more than a third (66 percent) of world production.

The Indian Agricultural Research Institute (IARI) and the Indian Institute of Pulses Research (IIPR) are collaborating with the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) on marker-assisted backcrossing (MABC), to improve chickpeas for drought tolerance.

This complementary activity in the Tropical Legumes I project (TLI) Phase II is being funded by the Department of Biotechnology, Government of India.

Dr N Nadrajan (pictured left), IIPR Director, adds “We have been trained on the breeding tools offered by the Integrated Breeding Platform, including data management, and on electronic data collection using a handheld device.”

Shailesh Tripathi (pictured right) is a Senior Scientist working on chickpea breeding at IARI. “During Phase I of TLI, ICRISAT and its partners identified a root-trait QTL region which confers drought tolerance in chickpeas, and the markers by which to transfer this QTL region. By evaluating the chickpea reference set, ICRISAT and its partners in Africa identified about 40 lines for drought tolerance, and these lines are being used in Phase II of the project,” says Shailesh. [Editor’s note: A ‘reference set’ is a sub-sample of existing germplasm collections that facilitates and enables access to existing crop diversity for desired traits, such as drought tolerance or resistance to disease or pests]

“Through GCP, we have benefitted from training in molecular breeding. The benefits of this go beyond this project,” he adds.

The Indian scientists are using MABC as well as marker-assisted recurrent selection (MARS) in Phase II, applying genomic resources that came from Phase I of the project.

“Our goal is to obtain lines with good root traits for drought tolerance,” says Shailesh, realistically adding that “Variety release will take time, but the good news is that we already have the pre-release materials to identify donors for specific traits, like root biomass.”

Progress in chickpea research in Africa and Asia

Related links

cheap ghd australia